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Abstract
Let C be a ρ-bounded, ρ-closed, convex subset of a modular function space Lρ . We
investigate the existence of common fixed points for asymptotic pointwise
nonexpansive semigroups of nonlinear mappings Tt : C → C, i.e. a family such that
T0(f ) = f , Ts+t(f ) = Ts ◦ Tt(f ) and

ρ(T (f ) – T (g)) ≤ αt(f )ρ(f – g),

where lim supt→∞ αt(f ) ≤ 1 for every f ∈ C. In particular, we prove that if Lρ is
uniformly convex, then the common fixed point is nonempty ρ-closed and convex.
MSC: Primary 47H09; secondary 46B20; 47H10; 47E10
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1 Introduction
The purpose of this paper is to prove the existence of common fixed points for semi-
groups of nonlinear mappings acting in modular function spaces which are natural gen-
eralizations of both function and sequence variants of many important, from applica-
tions perspective, spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz,
Calderon-Lozanovskii spaces and many others, see the book by Kozlowski [] for an ex-
tensive list of examples and special cases. Earlier studies of fixed point theory in modu-
lar function spaces can be found in [–], see also []. Recently, Khamsi and Kozlowski
presented a series of fixed point results for pointwise contractions, asymptotic pointwise
contractions, pointwise nonexpansive and asymptotic pointwise nonexpansive mappings
acting in modular functions spaces [, ] (all these should be considered in the modular
sense, not in the sense of the corresponding norms). These results are also new and of a big
interest, even in amuch simpler context of ‘plain’ modular contractions and nonexpansive
mappings, i.e., without any pointwise and asymptotic complications.
In many cases, modular type conditions are much more natural as modular type as-

sumptions can be more easily verified than their metric or norm counterparts. Further-
more, there are also important results that can be proved only using the apparatus of
modular function spaces. Khamsi et al. demonstrated in [] that a mapping T is norm-
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nonexpansive in a modular function space Lρ if and only if

ρ
(
λ
(
T(f ) – T(g)

)) ≤ ρ
(
λ(f – g)

)
for any λ ≥ .

They also gave an example of a mapping which is ρ-nonexpansive, but it is not norm-
nonexpansive. From this perspective, the fixed point theory in modular function spaces
should be considered as complementary to the fixed point theory in normed spaces and
in metric spaces.
Let us recall that a family {Tt}t≥ of mappings forms a semigroup if T(x) = x and

Ts+t = Ts ◦Tt , see Definition . below for details. Such a situation is quite typical in math-
ematics and applications. For instance, in the theory of dynamical systems, the modular
function space Lρ would define the state space and the mapping (t, f ) → Tt(f ) would rep-
resent the evolution function of a dynamical system. The question about the existence of
common fixed points and about the structure of the set of common fixed points, can be
interpreted as a question whether there exist points that are fixed during the state space
transformationTt at any given point of time t, and if yes, what the structure of a set of such
points may look like. In the setting of this paper, the state space may be an infinite dimen-
sional vector space. Therefore, it is natural to apply these results not only to deterministic
dynamical systems but also to stochastic dynamical systems.
The existence of common fixed points for families of contractions and nonexpansive

mappings in the Banach spaces have been investigated since the early s, see, e.g.,
Belluce and Kirk [, ], Browder [], Bruck [], DeMarr [], Lim []. The asymptotic
approach for finding common fixed points of semigroups of Lipschitzian (but not point-
wise Lipschitzian) mappings has also been investigated for some time, see, e.g., Tan and
Xu []. It is worthwhile mentioning the recent studies on the special case, when the pa-
rameter set for the semigroup is equal to {, , , , . . .} and Tn = Tn, the nth iterate of an
asymptotic pointwise nonexpansive mapping, i.e., T : C → C such that there exists a se-
quence of functions αn : C → [,∞) with

∥∥Tn(f ) – Tn(g)
∥∥ ≤ αn(f )‖f – g‖ for any f , g ∈ C

and lim supn→∞ αn(f ) =  for any f ∈ C. Kirk and Xu [] proved the existence of fixed
points for asymptotic pointwise contractions and asymptotic pointwise nonexpansive
mappings in the Banach spaces, while Hussain and Khamsi extended this result to metric
spaces [] and Khamsi and Kozlowski to modular function spaces [, ]. Kozlowski in
[] and [] proved convergence to fixed points of some iterative algorithms, applied to
asymptotic pointwise nonexpansive mappings in the Banach spaces, and the existence of
common fixed points of semigroups of asymptotic pointwise nonexpansive semigroups
in the Banach spaces []. Convergence of generalized Mann and Ishikawa algorithms to
common points of such semigroups in Banach spaces was established in [] and [].
In the context of modular function spaces, convergence to fixed points of some iterative
algorithms, applied to asymptotic pointwise nonexpansive mappings, was proven by Bin
Dehaish and Kozlowski in [].
In this paper, we extend the definition of asymptotic pointwise nonexpansive mappings

to semigroups of mappings and prove some common fixed point results in the context
of modular function spaces. Therefore, our results generalize the results of Kozlowski
[], who proved the existence of common fixed points for semigroups of nonexpansive
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mappings in modular functions spaces, to the pointwise asymptotic semigroups. How-
ever, methods used in the current paper are substantially different due to the asymptotic
behavior of semigroups in question. It is worth noting that existence of semigroups of
nonexpansive mappings in modular function spaces was discussed by Khamsi [] in the
context of Musielak-Orlicz spaces and discussed applications to differential equations.

2 Preliminaries
Let us introduce basic notions related to modular function spaces and related notation,
which will be used in this paper. For further details, we refer the reader to preliminary
sections of the recent articles [, , ] or to the survey article [], see also [, , ] for
the standard framework of modular function spaces.
Let � be a nonempty set, and let � be a nontrivial σ -algebra of subsets of �. Let P be

a δ-ring of subsets of � such that E ∩A ∈P for any E ∈ P and A ∈ �. Let us assume that
there exists an increasing sequence of sets Kn ∈ P such that � =

⋃
Kn. By E we denote

the linear space of all simple functions with supports from P . ByM∞ we will denote the
space of all extended measurable functions, i.e., all functions f : � → [–∞,∞] such that
there exists a sequence {gn} ⊂ E , |gn| ≤ |f | and gn(ω) → f (ω) for all ω ∈ �. By A we denote
the characteristic function of the set A.

Definition . [] Let ρ :M∞ → [,∞] be a nontrivial, convex and even function. We
say that ρ is a regular convex function pseudomodular if:

(i) ρ() = ;
(ii) ρ is monotone, i.e., |f (ω)| ≤ |g(ω)| for all ω ∈ � implies ρ(f )≤ ρ(g), where

f , g ∈M∞;
(iii) ρ is orthogonally subadditive, i.e., ρ(f A∪B) ≤ ρ(f A) + ρ(f B) for any A,B ∈ � such

that A∩ B �= ∅, f ∈M;
(iv) ρ has the Fatou property, i.e., |fn(ω)| ↑ |f (ω)| for all ω ∈ � implies ρ(fn) ↑ ρ(f ),

where f ∈M∞;
(v) ρ is order continuous in E , i.e., gn ∈ E and |gn(ω)| ↓  implies ρ(gn) ↓ .

Similarly, as in the case of measure spaces, we say that a set A ∈ � is ρ-null if ρ(gA) = 
for every g ∈ E . We say that a property holds ρ-almost everywhere if the exceptional set
is ρ-null. As usual, we identify any pair of measurable sets, whose symmetric difference
is ρ-null, as well as any pair of measurable functions, differing only on a ρ-null set. With
this in mind, we define M = {f ∈ M∞; |f (ω)| < ∞ ρ-a.e.}, where each element is actually
an equivalence class of functions equal ρ-a.e. rather than an individual function.

Definition . [] We say that a regular function pseudomodular ρ is a regular convex
function modular if ρ(f ) =  implies f =  ρ-a.e. The class of all nonzero regular convex
function modulars, defined on � will be denoted by �.

Definition . [, , ] Let ρ be a convex function modular. A modular function space
is the vector space Lρ = {f ∈M;ρ(λf ) →  as λ → }. In the vector space Lρ , the following
formula

‖f ‖ρ = inf

{
α > ;ρ

(
f
α

)
≤ 

}

defines a norm, frequently called Luxembourg norm.
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The following notions will be used throughout the paper.

Definition . [] Let ρ ∈ �.
(a) We say that {fn} is ρ-convergent to f and write fn → f (ρ) if and only if ρ(fn – f ) → .
(b) A sequence {fn}, where fn ∈ Lρ , is called ρ-Cauchy if ρ(fn – fm) →  as n,m → ∞.
(c) We say that Lρ is ρ-complete if and only if any ρ-Cauchy sequence in Lρ is

ρ-convergent.
(d) A set B⊂ Lρ is called ρ-closed if for any sequence of fn ∈ B, the convergence

fn → f (ρ) implies that f belongs to B.
(e) A set B⊂ Lρ is called ρ-bounded if sup{ρ(f – g); f ∈ B, g ∈ B} <∞.

Since ρ fails in general the triangle identity, many of the known properties of limit may
not extend to the ρ-convergence. For example, the ρ-convergence does not necessarily
imply the ρ-Cauchy condition. However, it is important to remember that the ρ-limit is
unique when it exists. The following proposition brings together few facts that will be
often used in the proofs of our results.

Proposition . [] Let ρ ∈ �.
(i) Lρ is ρ-complete.
(ii) ρ-balls Bρ(f , r) = {g ∈ Lρ ;ρ(f – g) ≤ r} are ρ-closed.
(iii) If ρ(αfn) →  for an α > , then there exists a subsequence {gn} of {fn} such that

gn →  ρ-a.e.
(iv) ρ(f ) ≤ lim infn→∞ ρ(fn), whenever fn → f ρ-a.e. (Note: this property is equivalent to

the Fatou property.)

Let us recall the definition of an asymptotic pointwise nonexpansive mapping acting in
a modular function space.

Definition . [] Let ρ ∈ �, and let C ⊂ Lρ be nonempty and ρ-closed. A mapping T :
C → C is called

(i) a pointwise Lipschitzian mapping, if there exists α : C → [,∞) such that

ρ
(
T(f ) – T(g)

) ≤ α(f )ρ(f – g) for any f , g ∈ C;

(ii) an asymptotic pointwise nonexpansive, if there exists a sequence of mappings
αn : C → [,∞) such that

ρ
(
Tn(f ) – Tn(g)

) ≤ αn(f )ρ(f – g) for any f , g ∈ C

and lim supn→∞ αn(f ) ≤  for any f ∈ Lρ .
A point f ∈ C is called a fixed point of T , whenever T(f ) = f . The set of fixed points of T
will be denoted by F(T).

This definition is now extended to a one-parameter family of mappings.

Definition . A one-parameter family F = {Tt : t ≥ } of mappings from C into itself is
said to be a asymptotic pointwise nonexpansive semigroup onC ifF satisfies the following
conditions:

http://www.fixedpointtheoryandapplications.com/content/2013/1/214
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(i) T(f ) = f for f ∈ C;
(ii) Tt+s(f ) = Tt(Ts(f )) for f ∈ C and t, s ∈ [,∞);
(iii) for each t ≥ , Tt is an asymptotic pointwise nonexpansive mapping, i.e., there

exists a function αt : C → [,∞) such that

ρ
(
Tt(f ) – Tt(g)

) ≤ αt(f )ρ(f – g) for all f , g ∈ C (.)

such that lim supt→∞ αt(f ) ≤  for every f ∈ C;
(iv) for each f ∈ C, the mapping t → Tt(f ) is ρ-continuous.

For each t ≥ , let F(Tt) denote the set of its fixed points. Define then the set of all common
fixed points set for mappings from F as the following intersection

F(F ) =
⋂
t≥

F(Tt).

Note that without loss of generality, we may assume αt(f ) ≥  for any t ≥  and f ∈ C,
and lim supt→∞ αt(f ) = limt→∞ αt(f ) = .

3 Existence of common fixed points
The concept ρ-type is a powerful technical tool, which is used in the proofs of many fixed
point results. The definition of a ρ-type is based on a given sequence. In this work, we
generalize this definition to be adapted to one-parameter family of mappings.

Definition . Let K ⊂ Lρ be convex and ρ-bounded.
() A function τ : K → [,∞] is called a ρ-type (or shortly a type) if there exists a

one-parameter family {ht}t≥ of elements of K such that for any f ∈ K there holds

τ (f ) = inf
M>

(
sup
t≥M

ρ(ht – f )
)
.

() Let τ be a type. A sequence {gn} is called a minimizing sequence of τ if

lim
n→∞ τ (gn) = inf

{
τ (f ) : f ∈ K

}
.

Note that τ is convex, provided ρ is convex.
Let us recall the modular equivalents of uniform convexity introduced in [].

Definition . Let ρ ∈ �. We define the following uniform convexity (UC) type proper-
ties of the function modular ρ :

(i) Let r > , ε > . Define

D(r, ε) =
{
(f , g) : f , g ∈ Lρ ,ρ(f ) ≤ r,ρ(g)≤ r,ρ(f – g) ≥ εr

}
.

Let

δ(r, ε) = inf

{
 –


r
ρ

(
f + g


)
: (f , g) ∈D(r, ε)

}
if D(r, ε) �= ∅,

and δ(r, ε) =  if D(r, ε) = ∅. We say that ρ satisfies (UC) if for every r > , ε > ,
δ(r, ε) > . Note that for every r > , D(r, ε) �= ∅, for ε >  small enough.

http://www.fixedpointtheoryandapplications.com/content/2013/1/214
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(ii) We say that ρ satisfies (UUC) if there exists η(s, ε) > , for every s ≥ , and ε > 
such that

δ(r, ε) > η(s, ε) >  for r > s.

The following technical lemma is very useful throughout this paper (see [] for its
proof ).

Lemma . Let ρ ∈ � be (UUC). Let R > . Assume that {fn} and {gn} are in Lρ such that

lim sup
n→∞

ρ(fn) ≤ R; lim sup
n→∞

ρ(gn) ≤ R and lim
n→∞ρ

(
fn + gn



)
= R.

Then we must have limn→∞ ρ(fn – gn) = .

The following property plays in the theory of modular function space a role similar to
the reflexivity in the Banach spaces, see, e.g., [].

Definition . We say that Lρ has property (R) if and only if every nonincreasing se-
quence {Cn} of nonempty, ρ-bounded, ρ-closed and convex subsets of Lρ has a nonempty
intersection.

Similarly as in the Banach space case, the modular uniform convexity implies the prop-
erty (R).

Theorem . [] Let ρ ∈ � be (UUC), then Lρ has a property (R).

The next lemma is the generalization of the minimizing sequence property for types
defined by the sequences in Lemma . in [] to the one-parameter semigroup case.

Lemma . Assume ρ ∈ � is (UUC). Let C be a nonempty, ρ-bounded, ρ-closed and con-
vex subset of Lρ . Let τ be a type defined by a one-parameter family {ht}t≥ in C.

(i) If τ (f) = τ (f) = inff∈C τ (f ), then f = f.
(ii) Any minimizing sequence {fn} of τ is ρ-convergent.Moreover, the ρ-limit of {fn} is

independent of the minimizing sequence.

Proof First, let us prove (i). Let f, f ∈ C such that τ (f) = τ (f) = inff∈C τ (f ). Let us consider
two cases.
Case : inff∈C τ (f ) = . Since

ρ

(
f – f


)
= ρ

(
f – ht + ht – f



)
≤ ρ(f – ht) + ρ(ht – f)

for any t ≥ , we get

ρ

(
f – f


)
≤ sup

t≥M
ρ(f – ht) + sup

t≥M
ρ(ht – f)

http://www.fixedpointtheoryandapplications.com/content/2013/1/214
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for anyM > . Since

τ (f ) = inf
M>

(
sup
t≥M

ρ(f – ht)
)
= lim

M→∞ sup
t≥M

ρ(f – ht)

for any f ∈ C, we get

ρ

(
f – f


)
≤ τ (f) + τ (f) = ,

which implies f = f as claimed.
Case : inff∈C τ (f ) > . Assume to the contrary that f �= f. Set

R = inf
f∈C

τ (f ) and ε =
ρ(f – f)

R
.

Let ν ∈ (,R). Then ρ(f – f) = Rε ≥ (R + ν)ε. Using the definition of τ , we deduce that
there existsMν >  such that

sup
t≥Mν

ρ(f – ht) ≤ τ (f) + ν = R + ν and sup
t≥Mν

ρ(f – ht) ≤ τ (f) + ν = R + ν.

Since ρ is (UUC), there exists η(R, ε) >  such that

δ(R + ν, ε) ≥ η(R, ε)

for any ν ∈ (,R). So for any t ≥ Mν , we have

ρ

(
f + f


– ht
)

≤ (R + ν)
(
 – δ(R + ν, ε)

) ≤ (R + ν)
(
 – η(R, ε)

)
.

Hence

τ

(
f + f


)
≤ sup

t≥Mν

ρ

(
f + f


– ht
)

≤ (R + ν)
(
 – η(R, ε)

)
.

Since C is convex, we get

R ≤ τ

(
f + f


)
≤ (R + ν)

(
 – η(R, ε)

)
.

If we let ν → , we will get

R ≤ R
(
 – η(R, ε)

)
,

which is impossible, since R >  and η(R, ε) > . Therefore, we must have f = f.
Next, we prove (ii). Denote R = infg∈C τ (g). For any n≥ , let us set

Kn = convρ{ht ; t ≥ n},

http://www.fixedpointtheoryandapplications.com/content/2013/1/214
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where convρ(A) is the intersection of all ρ-closed convex subset of C, which contains
A⊂ C. Since C is itself ρ-closed and convex, we get Kn ⊂ C for any n≥ . Property (R) will
then imply

⋂
Kn �= ∅. Let us fix then arbitrary f ∈ ⋂

Kn, g ∈ C and ε > . By definition of
τ (g), there exists Mε >  such that supt≥Mε

ρ(g – ht) ≤ τ (g) + ε. Let n ≥ Mε . Then for any
t ≥ n, we have ρ(g – ht)≤ τ (g) + ε, i.e., ht ∈ Bρ(g, τ (g) + ε). Since Bρ(g, τ (g) + ε) is ρ-closed
and convex, we get Kn ⊂ Bρ(g, τ (g) + ε). Hence f ∈ Bρ(g, τ (g) + ε), i.e.,

ρ(g – f ) ≤ τ (g) + ε. (.)

Since ε was taken arbitrarily greater than , we get ρ(g – f ) ≤ τ (g) for any g ∈ C. Let {fn}
be a minimizing sequence for τ . If R = , then, since {fn} is a minimizing sequence, we get
limn→∞ τ (fn) = R = . Using (.), we can see that ρ(fn – f ) ≤ τ (fn) for any n ≥ . Hence
{fn} is ρ-convergent to f . Since selection of f was independent of {fn}, it follows that any
minimizing sequence is ρ-convergent to f if R = . We can assume, therefore, that R > .
For any n ≥ , let us set

dn = sup
i,j≥n

ρ(fi – fj). (.)

We claim that {fn} is ρ-Cauchy. Assume to the contrary that this is not the case. Since
the sequence {dn} is decreasing and {fn} is not ρ-Cauchy, we get d := infn≥ dn > . Set
ε = d

R > . Let us fix arbitrary ν ∈ (,R). Since limn→∞ τ (fn) = R, there exists n ≥  such
that for any n ≥ n, we have

τ (fn) ≤ R +
ν


. (.)

Let n≥ n. By (.), there exists in, jn ≥  such that

ρ(fin – fjn ) > dn –
d


≥ d

= Rε > (R + ν)ε.

Using the definition of τ and (.), we deduce the existence ofM >  such that

sup
t≥M

ρ(fin – ht) ≤ τ (fin ) +
ν


≤ R + ν

and

sup
t≥M

ρ(fjn – ht) ≤ τ (fjn ) +
ν


≤ R + ν.

Hence

ρ

(
fin + fjn


– ht

)
≤ (R + ν)

(
 – δ(R + ν, ε)

)

for any t ≥ M. Since ρ is (UUC), there exists η(R, ε) >  such that δ(R + ν, ε) ≥ η(R, ε).
Hence

ρ

(
fin + fjn


– ht

)
≤ (R + ν)

(
 – η(R, ε)

)

http://www.fixedpointtheoryandapplications.com/content/2013/1/214
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for any t ≥ M. Hence

R ≤ τ

(
fin + fjn



)
≤ sup

t≥M
ρ

(
fjn + fjn


– ht

)
≤ (R + ν)

(
 – η(R, ε)

)
< R.

Using the definition of R, we get

R ≤ (R + ν)
(
 – η(R, ε)

)

for any ν ∈ (,R). If we let ν → , we get R ≤ R(–η(R, ε)). This contradiction implies that
{fn} is ρ-Cauchy. Since Lρ is ρ-complete, we deduce that {fn} is ρ-convergent as claimed.
In order to finish the proof of (ii), let us show that the ρ-limit of {fn} is indepen-

dent of the minimizing sequence. Indeed, let {gn} be another minimizing sequence of τ .
The previous proof will show that {gn} is also ρ-convergent. In order to prove that the
ρ-limits of {fn} and {gn} are equal, let us show that limn→∞ ρ(fn – gn) = . Assume not, i.e.,
limn→∞ ρ(fn – gn) �= . Without loss of generality, we may assume that there exists d > 
such that ρ(fn – gn) ≥ d for any n ≥ . Set ε = d

R > . Let ν ∈ (,R). Since limn→∞ τ (fn) =
limn→∞ τ (gn) = R, there exists n ≥  such that for any n ≥ , we have τ (fn) ≤ R + ν

 and
τ (gn) ≤ R + ν

 . Fix n≥ n. Then

ρ(fn – gn) ≥ d = Rε > (R + ν)ε.

Using the definition of τ , we deduce the existence ofM >  such that

sup
t≥M

ρ(fn – ht) ≤ τ (fn) +
ν


≤ R + ν

and

sup
t≥M

ρ(gn – ht) ≤ τ (gn) +
ν


≤ R + ν.

Hence

ρ

(
fn + gn


– ht

)
≤ (R + ν)

(
 – δ(R + ν, ε)

)

for any t ≥ M. Since ρ is (UUC), there exists η(R, ε) >  such that δ(R + ν, ε) ≥ η(R, ε) for
any ν > . Hence

ρ

(
fn + gn


– ht

)
≤ (R + ν)

(
 – η(R, ε)

)

for any t ≥ M. So

τ

(
fn + gn



)
≤ sup

t≥M
ρ

(
fn + gn


– ht

)
≤ (R + ν)

(
 – η(R, ε)

)
.

Using the definition of R, we get

R ≤ (R + ν)
(
 – η(R, ε)

)
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for any ν ∈ (,R). If we let ν → , we get R ≤ R( – η(R, ε)). This contradiction implies
limn→∞ ρ(fn – gn) = . The Fatou property will finally imply that

ρ(f – g) ≤ lim inf
n→∞ ρ(fn – gn),

where f is the ρ-limit of {fn} and g is the ρ-limit of {gn}. Hence ρ(f – g) = , i.e., f = g . �

Using Lemma ., we are ready to prove our common fixed point result for asymptotic
pointwise nonexpansive semigroups.

Theorem . Assume ρ ∈ � is (UUC). Let C be a ρ-closed, ρ-bounded convex nonempty
subset. LetF = {Tt : t ≥ } be an asymptotic pointwise nonexpansive semigroup on C.Then
F has a common fixed point, and the set F(F ) of common fixed points is ρ-closed and
convex.

Proof Let us fix f ∈ C and define the function

τ (g) = inf
M>

(
sup
t≥M

ρ
(
Tt(f ) – g

))
.

Since C is ρ-bounded, we have τ (g) ≤ diamρ(C) < +∞ for any g ∈ C. Hence τ = inf{τ (g) :
g ∈ C} exists and is finite. For any n≥ , there exists gn ∈ C, such that

τ ≤ τ (gn) < τ +

n
.

Therefore, limn→∞ τ (zn) = τ, i.e., {gn} is aminimizing sequence for τ . By Lemma ., there
exists g ∈ C such that {gn} ρ-converges to g . Let us now prove that g ∈ F(F ). Note that

ρ
(
Ts+t(f ) – Ts(h)

) ≤ αs(h)ρ
(
Tt(f ) – h

)

for s, t >  and h ∈ C. Using the definition of τ , we get

τ
(
Ts(h)

) ≤ sup
t+s≥M

ρ
(
Ts+t(f ) – Ts(h)

) ≤ αs(h) sup
t≥M–s

ρ
(
Tt(f ) – h

)

for anyM > s, which implies

τ
(
Ts(h)

) ≤ αs(h)τ (h). (.)

Since lims→∞ αs(g) = , there exists s >  such that for any s ≥ s, we have αs(g) <  + .
Repeating this argument, one will find s > s +  such that for any s ≥ s, we have αs(g) <
 + 

 . By induction, we will construct a sequence {sn} of positive numbers such that sn+ <
sn + 

n and for any s≥ sn, we have αs(gn) <  + 
n . Let us fix t ≥ . Then inequality (.) will

imply

τ
(
Tsn+t(gn)

) ≤ αsn+t(gn)τ (gn) ≤
(
 +


n

)
τ (gn)

http://www.fixedpointtheoryandapplications.com/content/2013/1/214
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for any n≥ . In particular, we get that {Tsn+t(gn)} is aminimizing sequence of τ . Therefore,
Lemma . implies that {Tsn+t(gn)} ρ-converges to g for any t ≥ . In particular, we have
{Tsn (gn)} ρ-converges to g . Since

ρ
(
Tsn+t(gn) – Tt(g)

) ≤ αt(g)ρ
(
Tsn (gn) – g

)
,

we get {Tsn+t(gn)} ρ-converges to Tt(g). Finally, using

ρ

(
Tt(g) – g



)
≤ ρ

(
Tt(g) – Tsn+t(gn)

)
+ ρ

(
Tsn+t(gn) – g

)
,

we get Tt(g) = g . Since t was arbitrarily positive, we get g ∈ F(F ), i.e., F(F ) is not empty.
Next, let us prove that F(F ) is ρ-closed. Let {fn} in F(F ) ρ-convergent to f . Since

ρ
(
Ts(fn) – Ts(f )

) ≤ αs(f )ρ(fn – f )

for any n ≥  and s > , we get {Ts(fn)} ρ-converges to Ts(f ). Since fn ∈ F(F ), we get
{Ts(fn)} = {fn}. In other words, {fn} ρ-converges to Ts(f ) and f . The uniqueness of the
ρ-limit implies then that Ts(f ) = f for any s≥ , i.e., f ∈ F(F ). Therefore, F(F ) is ρ-closed.
Let us finish the proof of Theorem . by showing that F(F ) is convex. It is sufficient to
show that

h =
f + g


∈ F(F )

for any f , g ∈ F(F ).Without loss of generality, we will assume that f �= g . Let s > .We have

ρ
(
f – Ts(h)

)
= ρ

(
Ts(f ) – Ts(h)

) ≤ αs(f )ρ(f – h)

and

ρ
(
g – Ts(h)

)
= ρ

(
Ts(g) – Ts(h)

) ≤ αs(g)ρ(g – h).

Since ρ(f – h) = ρ(g – h) = ρ( f –g ) and

ρ

(
f – g


)
≤ 


ρ
(
f – Ts(h)

)
+


ρ
(
g – Ts(h)

)
,

we conclude that

lim
s→∞ρ

(
f – Ts(h)

)
= lim

s→∞ρ
(
g – Ts(h)

)
= ρ

(
f – g


)
.

Similarly, we have

ρ

(
f –

h + Ts(h)


)
≤ 


ρ(f – h) +



ρ
(
f – Ts(h)

)

and

ρ

(
g –

h + Ts(h)


)
≤ 


ρ(g – h) +



ρ
(
g – Ts(h)

)
.
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Since

ρ

(
f – g


)
≤ 


ρ

(
f –

h + Ts(h)


)
+


ρ

(
g –

h + Ts(h)


)
,

we conclude that

lim
s→∞ρ

(
f –

h + Ts(h)


)
= lim

s→∞ρ

(
g –

h + Ts(h)


)
= ρ

(
f – g


)
.

Therefore, we have

lim
s→∞ρ

(
f – Ts(h)

)
= lim

s→∞ρ

(
f –

h + Ts(h)


)
= ρ(f – h).

Lemma ., applied to At = f –Ts(h) and Bt = Ts(h) – g , implies that ρ(At –Bt) → . Hence

lim
s→∞ρ

(
h – Ts(h)

)
= lim

s→∞ρ

(
At – Bt



)
≤ lim

s→∞ρ(At – Bt) = .

Clearly, we will get lims→∞ ρ(h – Ts+t(h)) = , for any t ≥ . Since

ρ
(
Tt(h) – Ts+t(h)

) ≤ αt(h)ρ
(
h – Ts(h)

)
,

we get lims→∞ ρ(Tt(h) – Ts+t(h)) = . Finally, using the inequality

ρ

(
h – Tt(h)



)
≤ 


ρ
(
h – Ts+t(h)

)
+


ρ
(
Tt(h) – Ts+t(h)

)
,

by letting s→ ∞, we get Tt(h) = h for any t ≥ , i.e., h ∈ F(F ). �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors participated in the design of this work and performed equally. All authors read and approved the final
manuscript.

Author details
1Department of Mathematics, King Abdulaziz University, P.O. Box 53909, Jeddah, 21593, Saudi Arabia. 2Department of
Mathematical Sciences, University of Texas at El Paso, El Paso, Texas, USA. 3Department of Mathematics and Statistics,
King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia. 4School of Mathematics and Statistics,
University of New South Wales, Sydney, NSW 2052, Australia.

Acknowledgements
This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant
No. (247-006-D1433). The authors, therefore, acknowledge with thanks technical and financial support of DSR.

Received: 28 February 2013 Accepted: 24 July 2013 Published: 12 August 2013

References
1. Kozlowski, WM: Modular Function Spaces. Series of Monographs and Textbooks in Pure and Applied Mathematics,

vol. 122. Dekker, New York (1988)
2. Khamsi, MA, Kozlowski, WM, Reich, S: Fixed point theory in modular function spaces. Nonlinear Anal. 14, 935-953

(1990)
3. Khamsi, MA, Kozlowski, WM, Shutao, C: Some geometrical properties and fixed point theorems in Orlicz spaces.

J. Math. Anal. Appl. 155(2), 393-412 (1991)

http://www.fixedpointtheoryandapplications.com/content/2013/1/214


Bin Dehaish et al. Fixed Point Theory and Applications 2013, 2013:214 Page 13 of 13
http://www.fixedpointtheoryandapplications.com/content/2013/1/214

4. Khamsi, MA: Fixed point theory in modular function spaces. In: Proceedings of the Workshop on Recent Advances on
Metric Fixed Point Theory, Sevilla, September 1995, pp. 31-35 (1996). MR1440218 (97m:46044)

5. Kozlowski, WM: Advancements in fixed point theory in modular function. Arab. J. Math. (2012).
doi:10.1007/s40065-012-0051-0

6. Khamsi, MA, Kozlowski, WM: On asymptotic pointwise contractions in modular function spaces. Nonlinear Anal. 73,
2957-2967 (2010)

7. Khamsi, MA, Kozlowski, WM: On asymptotic pointwise nonexpansive mappings in modular function spaces. J. Math.
Anal. Appl. 380(2), 697-708 (2011)

8. Belluce, LP, Kirk, WA: Fixed-point theorems for families of contraction mappings. Pac. J. Math. 18, 213-217 (1966)
9. Belluce, LP, Kirk, WA: Nonexpansive mappings and fixed-points in Banach spaces. Ill. J. Math. 11, 474-479 (1967)
10. Browder, FE: Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 54, 1041-1044 (1965)
11. Bruck, RE: A common fixed point theorem for a commuting family of nonexpansive mappings. Pac. J. Math. 53, 59-71

(1974)
12. DeMarr, RE: Common fixed-points for commuting contraction mappings. Pac. J. Math. 13, 1139-1141 (1963)
13. Lim, TC: A fixed point theorem for families of nonexpansive mappings. Pac. J. Math. 53, 487-493 (1974)
14. Tan, K-K, Xu, H-K: An ergodic theorem for nonlinear semigroups of Lipschitzian mappings in Banach spaces.

Nonlinear Anal. 19(9), 805-813 (1992)
15. Kirk, WA, Xu, HK: Asymptotic pointwise contractions. Nonlinear Anal. 69, 4706-4712 (2008)
16. Hussain, N, Khamsi, MA: On asymptotic pointwise contractions in metric spaces. Nonlinear Anal. 71(10), 4423-4429

(2009)
17. Kozlowski, WM: Fixed point iteration processes for asymptotic pointwise nonexpansive mappings in Banach spaces.

J. Math. Anal. Appl. 377(1), 43-52 (2011)
18. Kozlowski, WM: Pointwise Lipschitzian mappings in uniformly convex and uniformly smooth Banach spaces.

Nonlinear Anal. (2013). doi:10.1016/j.na.2013.02.003
19. Kozlowski, WM: Common fixed points for semigroups of pointwise Lipschitzian mappings in Banach spaces. Bull.

Aust. Math. Soc. 84, 353-361 (2011)
20. Kozlowski, WM, Sims, B: On the convergence of iteration processes for semigroups of nonlinear mappings in Banach

spaces (to appear)
21. Kozlowski, WM: On the construction of common fixed points for semigroups of nonlinear mappings in uniformly

convex and uniformly smooth Banach spaces. Comment. Math. 52(2), 113-136 (2012)
22. Bin Dehaish, BA, Kozlowski, WM: Fixed point iterations processes for asymptotic pointwise nonexpansive mappings

in modular function spaces. Fixed Point Theory Appl. 2012, 118 (2012)
23. Kozlowski, WM: On the existence of common fixed points for semigroups of nonlinear mappings in modular

function spaces. Comment. Math. 51(1), 81-98 (2011)
24. Khamsi, MA: Nonlinear semigroups in modular function spaces. Math. Jpn. 37(2), 1-9 (1992)
25. Kozlowski, WM: Notes on modular function spaces I. Comment. Math. 28, 91-104 (1988)
26. Kozlowski, WM: Notes on modular function spaces II. Comment. Math. 28, 105-120 (1988)

doi:10.1186/1687-1812-2013-214
Cite this article as: Bin Dehaish et al.: Common fixed points for pointwise Lipschitzian semigroups in modular
function spaces. Fixed Point Theory and Applications 2013 2013:214.

http://www.fixedpointtheoryandapplications.com/content/2013/1/214
http://dx.doi.org/10.1007/s40065-012-0051-0
http://dx.doi.org/10.1016/j.na.2013.02.003

	Common ﬁxed points for pointwise Lipschitzian semigroups in modular function spaces
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Existence of common ﬁxed points
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


