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Abstract
Self-adaptive methods which permit step-sizes being selected self-adaptively are
effective methods for solving some important problems, e.g., variational inequality
problems. We devote this paper to developing and improving the self-adaptive
methods for solving the split feasibility problem. A new improved self-adaptive
method is introduced for solving the split feasibility problem. As a special case, the
minimum norm solution of the split feasibility problem can be approached iteratively.
MSC: 47J25; 47J20; 49N45; 65J15

Keywords: split feasibility problem; self-adaptive method; projection; minimization
problem; minimum-norm

1 Introduction
As we know, the original split feasibility problem (SFP) was introduced firstly by Censor
and Elfving [], and has received much attention since its inception in . This is due to
its applications in signal processing and image reconstruction, with particular progress in
intensity-modulated radiation therapy; please, see [–].
Since the SFP is a special case of the convex feasibility problem (CFP), which is to find a

point in the nonempty intersection of finitely many closed and convex sets, we next briefly
review some historic approaches which relate to the CFP. The CFP is an important prob-
lem becausemany real-world inversion or estimation problems in engineering as well as in
mathematics can be cast into this framework; see, e.g., Combettes [], Bauschke and Bor-
wein [] and Kiwiel []. Traditionally, iterative projection methods for solving the CFP
employ orthogonal projections onto convex sets (i.e., nearest point projections with re-
spect to the Euclidean distance function); see, e.g., [–]. Much work has been done
with generalized distance functions and the generalized projections associated with them
suggested by Bregman [].
In , Censor and Elfving [] investigated the use of different kinds of generalized

projections in a single iterative process for solving the SFP. Their proposal is an iterative
algorithm, which involves the computation of the inverse of a matrix, which is known to
be a difficult task. That is why Byrne [, ] proposed the so-called CQ algorithm, which
generates a sequence by a recursive procedure with suitable step-size. The CQ algorithm
only involves the computations of the projections onto the sets C andQ, respectively, and
is therefore implementable in the case where these projections have closed-form expres-
sions (e.g., C and Q are the closed balls or half-spaces). There is a large number of refer-
ences on the CQmethod in the literature; see, for instance, [–]. However, we have to
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remark that the determination of the step-size depends on the operator (matrix) norm (or
the dominant eigenvalue of a matrix product). This means that in order to implement the
CQ algorithm, one has first to compute (or, at least, to estimate) the matrix norm of an
operator, which is in general not an easy work in practice.
To overcome the above difficulty, the so-called self-adaptivemethodwhich permits step-

size being selected self-adaptively was developed. Note that this method is the application
of the projection method of Goldstein [], Levitin and Polyak [] to a suitable vari-
ational inequality problem, which is among the simplest numerical methods for solving
variational inequality problems. Nevertheless, the efficiency of this projectionmethod de-
pends strongly on the choice of the step-size parameter. If one chooses a small parameter
such that it guarantees the convergence of the iterative sequence, the recursion leads to
slow speed of convergence. On the other hand, if one chooses a large step-size to improve
the speed of convergence, the generated sequence may not converge. In real applications
to solving variational inequality problems, the Lipschitz constant may be difficult to esti-
mate, even if the underlyingmapping is linear, the case such as the SFP. Some self-adaptive
methods for solving variational inequality problems have been developed according to the
original Goldstein-Levitin-Polyak method [, ]. See, e.g., [–].
Motivated by the self-adaptive strategy, Zhang et al. [] proposed their method by us-

ing variable step-sizes instead of the fixed step-sizes as in Censor et al. []. Also, a self-
adaptive projection method was introduced by Zhao and Yang [], and it was adopted
by using the Armijo-like searches. The advantage of these algorithms lies in the fact that
neither prior information about the matrix norm A nor any other conditions on Q and A
are required, and still convergence is guaranteed.
In this paper, we further develop and improve the self-adaptive methods for solving the

SFP. An improved self-adaptivemethod is introduced for solving the SFP. As a special case,
the minimum norm solution of the SFP can be approached iteratively.

2 Framework and preliminary results
LetH andH be two Hilbert spaces, and let C andQ be two closed and convex subsets of
H andH, respectively. LetA :H →H be a bounded linear operator. The split feasibility
problem (SFP) is to find a point x∗ such that

x∗ ∈ C and Ax∗ ∈Q. ()

Next, we use � to denote the solution set of the SFP, i.e., � = {x ∈ C : Ax ∈Q}.
In , Censor and Elfving [] investigated the use of different kinds of generalized

projections in a single iterative process for solving the SFP. They were the first to propose
the following algorithm which involved the computation of the inverse A–:

xk+ = A–PQ
(
PA(C)(Axk)

)
, k ≥ ,

where C and Q are closed and convex sets in R
n, while A is a full rank n × n matrix and

A(C) = {y ∈ R
n | y = Ax,x ∈ C}. Note that A– is not easily executed. Consequently, Byrne

[, ] proposed the so-called CQ algorithm which generates a sequence {xn} by the re-
cursive procedure

xn+ = PC
(
xn – τnA∗(I – PQ)Axn

)
, ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/201
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where the step-size τn is chosen in the interval (, /‖A‖). It is remarkable that the CQ
algorithm only involves the computations of the projections PC and PQ onto the setsC and
Q, respectively, and is therefore implementable in the case where PC and PQ have closed-
form expressions (e.g., C and Q are the closed balls or half-spaces). However, we observe
that the determination of the step-size τn depends on the operator (matrix) norm ‖A‖ (or
the largest eigenvalue of A∗A). This means that for practical implementation of the CQ
algorithm, one has first to compute (or, at least, to estimate) the matrix norm of A, which
is in general not an easy task in practice.
To overcome the above difficulty, the so-called self-adaptivemethodwhich permits step-

size τn being selected self-adaptively was developed. If we set

f (x) :=


‖Ax – PQAx‖,

then the convex objective f is differentiable and has a Lipschitz gradient given by

∇f (x) = A∗(I – PQ)A.

Thus, the CQ algorithm () can be obtained by minimizing the following convex mini-
mization problem

min
x∈C f (x). ()

We know that a point x∗ ∈ C is a stationary point of problem () if it satisfies

〈∇f
(
x∗),x – x∗〉 ≥ , ∀x ∈ C. ()

Thus, we can use a gradient projection algorithm below to solve the (SFP)

xn+ = PC
(
xn – τn∇f (xn)

)
, ()

where τn, the step-size at iteration n, is chosen in the interval (, /L), where L is the
Lipschitz constant of ∇f .
The abovemethod () has to be thought of as the application of the projectionmethod of

Goldstein [], Levitin and Polyak [] to the variational inequality problem (), which is
among the simplest numerical methods for solving variational inequality problems. Nev-
ertheless, the efficiency of this projection method depends greatly on the choice of the
parameter τn. A small τn guarantees the convergence of the iterative sequence, but the
recursion leads to slow speed of convergence. On the other hand, a large step-size will
improve the speed of convergence, but the generated sequence may not converge. In real
applications for solving variational inequality problems, the Lipschitz constant may be
difficult to estimate, even if the underlying mapping is linear, the case such as the SFP.
The methods in Zhang et al. [] and Censor et al. [] were proposed for solving the

multiple-sets split feasibility problem.

Algorithm . S. Given a nonnegative sequence τn such that
∑∞

n= τn < ∞, δ ∈ (, ),
μ ∈ (, ), ρ ∈ (, ), ε > , β > , and arbitrary initial point x. Set γ = β and n = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/201
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S. Find the smallest nonnegative integer ln such that βn+ = μlkγk and

xn+ = PC
(
xn – βn+∇f (xn)

)
,

which satisfies

βn+
∥∥∇f (xn) –∇f (xn+)

∥∥ ≤ ( – δ)
〈
xn – xn+,∇f (xn) –∇f (xn+)

〉
.

S. If

βn+
∥∥∇f (xn) –∇f (xn+)

∥∥ ≤ ρ
〈
xn – xn+,∇f (xn) –∇f (xn+)

〉
,

then set γn+ = ( + τn+)βn+; otherwise, set γn+ = βn+.
S. If ‖e(xn,βn)‖ ≤ ε, stop; otherwise, set n := n +  and go to S.

The following self-adaptive projection method was introduced by Zhao and Yang [],
and it was adopted by using the Armijo-like searches.

Algorithm . Given constants β > , σ ∈ (, ) and γ ∈ (, ). Let x be arbitrary. For
n = , , . . . , calculate

xn+ = PC
(
xn – τn∇f (xn)

)
,

where τn = βγ ln and ln is the smallest nonnegative integer l such that

f
(
PC

(
xn – βγ l∇f (xn)

)) ≤ f (xn) – σ
〈∇f (xn),xn – PC

(
xn – βγ l∇f (xn)

)〉
.

The advantage of Algorithm . and Algorithm . lies in the fact that neither prior
information about the matrix norm A nor any other conditions on Q and A are required,
and still convergence is guaranteed.
We shall introduce our improved self-adaptive method for solving the SFP. In this re-

spect, we need the ingredients introduced right now.
Let C be a nonempty closed convex subset of a real Hilbert spaceH . Amapping T : C →

C is called nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

A mapping ψ : C → C is said to be δ-contractive if there exists a constant δ ∈ [, ) such
that

∥∥ψ(x) –ψ(y)
∥∥ ≤ δ‖x – y‖, ∀x, y ∈ C.

Recall that the (nearest point or metric) projection from H onto C, denoted by PC , as-
signs to each x ∈H the unique point PC(x) ∈ C with the property

∥∥x – PC(x)
∥∥ = inf

{‖x – y‖ : y ∈ C
}
.

It is well known that the metric projection PC of H onto C has the following basic prop-
erties:

http://www.fixedpointtheoryandapplications.com/content/2013/1/201
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(a) ‖PC(x) – PC(y)‖ ≤ ‖x – y‖ for all x, y ∈H ;
(b) 〈x – y,PC(x) – PC(y)〉 ≥ ‖PC(x) – PC(y)‖ for every x, y ∈ H ;
(c) 〈x – PC(x), y – PC(x)〉 ≤  for all x ∈H and y ∈ C.
Next we adopt the following notation:
• xn → xmeans that xn converges strongly to x;
• xn ⇀ xmeans that xn converges weakly to x;
• ωw(xn) := {x : ∃xnj ⇀ x} is the weak ω-limit set of the sequence {xn}.
Recall that a function f :H →R is called convex if

f
(
λx + ( – λ)y

) ≤ λf (x) + ( – λ)f (y), ∀λ ∈ (, ),∀x, y ∈H .

It is known that a differentiable function f is convex if and only if the following relation
holds:

f (z) ≥ f (x) +
〈∇f (x), z – x

〉
, ∀z ∈H .

Recall that an element g ∈H is said to be a subgradient of f :H →R at x if

f (z) ≥ f (x) + 〈g, z – x〉, ∀z ∈H .

If the function f : H → R has at least one subgradient at x, it is said to be subdifferen-
tiable at x. The set of subgradients of f at the point x is called the subdifferential of f at
x, and is denoted by ∂f (x). A function f is called subdifferentiable if it is subdifferentiable
at all x ∈ H . If f is convex and differentiable, then its gradient and subgradient coincide.
A function f : H → R is said to be weakly lower semi-continuous (w-lsc) at x if xn ⇀ x
implies

f (x)≤ lim inf
n→∞ f (xn).

f is said to be w-lsc on H if it is w-lsc at every point x ∈H .
The first lemma is easy to prove.

Lemma . [] Let f (x) := 
‖Ax – PQAx‖. Then

(i) f is convex and differentiable;
(ii) f is w-lsc on C.

Lemma . [] Given x∗ ∈ H. Then x∗ solves the SFP if and only if x∗ solves the fixed
point equation

x∗ = PC
(
x∗ – γA∗(I – PQ)Ax∗),

where γ > .

Lemma . [] Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δn,

where {γn} is a sequence in (, ) and {δn} is a sequence such that

http://www.fixedpointtheoryandapplications.com/content/2013/1/201
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()
∑∞

n= γn = ∞;
() lim supn→∞

δn
γn

≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

Lemma . [] Let {sn} be a sequence of real numbers that does not decrease at infinity,
in the sense that there exists a subsequence {sni} of {sn} such that sni ≤ sni+ for all i ≥ . For
every n≥ n, define an integer sequence {τ (n)} as

τ (n) =max{k ≤ n : sni < sni+}.

Then τ (n) → ∞ as n→ ∞ and for all n ≥ n

max{sτ (n), sn} ≤ sτ (n)+.

3 Main results
In this section we state and prove our main results.
LetC andQ be nonempty closed convex subsets of realHilbert spacesH andH, respec-

tively. Let ψ : C → H be a δ-contraction with δ ∈ [,
√

 ). Let A :H → H be a bounded

linear operator.

Algorithm . For given x ∈ C, assume that {xn} has been constructed. If ∇f (xn) = ,
then stop and xn is a solution of SFP (). Otherwise, continue and compute xn+ by the
recursion

xn+ = PC

[
αnψ(xn) + ( – αn)

(
xn –

ρnf (xn)
‖∇f (xn)‖ ∇f (xn)

)]
, n≥ , ()

where {αn} ⊂ (, ) and {ρn} ⊂ (, ).

Theorem . Suppose that the SFP is consistent, that is, � �=∅. Assume that the following
conditions hold:
(a) limn→∞ αn =  and

∑∞
n= αn = ∞;

(b) infn ρn( – ρn) > .
Then {xn} defined by () converges strongly to z, which solves the following variational in-
equality:

z ∈ � such that
〈
z –ψ(z), z – x

〉 ≤  for all x ∈ �. ()

Proof First, it is obvious that the solution of the variational inequality () is unique (by
the strong monotonicity of I –ψ according to the related results in variational inequality),
denoted by z. Then z = P�(ψ(z)). We may assume that the sequence {xn} is infinite, that
is, Algorithm . does not terminate in a finite number of iterations. Thus, ∇f (xn) �=  for
all n. From (), we have

‖xn+ – z‖ =
∥∥∥∥PC

[
αnψ(xn) + ( – αn)

(
xn –

ρnf (xn)
‖∇f (xn)‖ ∇f (xn)

)]
– z

∥∥∥∥


≤
∥∥∥∥αn

(
ψ(xn) – z

)
+ ( – αn)

(
xn –

ρnf (xn)
‖∇f (xn)‖ ∇f (xn) – z

)∥∥∥∥


http://www.fixedpointtheoryandapplications.com/content/2013/1/201
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≤ αn
∥∥ψ(xn) – z

∥∥ + ( – αn)
∥∥∥∥xn – ρnf (xn)

‖∇f (xn)‖ ∇f (xn) – z
∥∥∥∥


≤ ( – αn)
[
‖xn – z‖ + ρ

nf (xn)
‖∇f (xn)‖ –

ρnf (xn)
‖∇f (xn)‖

〈∇f (xn),xn – z
〉]

+ αn
(∥∥ψ(xn) –ψ(z)

∥∥ +
∥∥ψ(z) – z

∥∥). ()

By the convexity of f (Lemma .) and the fact that ∇f (z) =  for z ∈ �, we deduce that

f (xn) = f (xn) – f (z) ≤ 〈∇f (xn),xn – z
〉
. ()

Using the inequality (a + b) ≤ (a + b) for all a,b ∈R, we have

(∥∥ψ(xn) –ψ(z)
∥∥ +

∥∥ψ(z) – z
∥∥) ≤ 

∥∥ψ(xn) –ψ(z)
∥∥ + 

∥∥ψ(z) – z
∥∥

≤ δ‖xn – z‖ + 
∥∥ψ(z) – z

∥∥. ()

From ()-(), we get

‖xn+ – z‖ ≤ ( – αn)
[
‖xn – z‖ – ρn( – ρn)

f (xn)
‖∇f (xn)‖

]

+ δαn‖xn – z‖ + αn
∥∥ψ(z) – z

∥∥

≤ [
 –

(
 – δ

)
αn

]‖xn – z‖ + (
 – δ

)
αn

‖ψ(z) – z‖
 – δ

≤ max

{
‖xn – z‖, ‖ψ(z) – z‖

 – δ

}
.

By induction, we deduce

‖xn+ – z‖ ≤ max

{
‖x – z‖, ‖ψ(z) – z‖

 – δ

}
.

Hence, {xn} is bounded.
By using the firm nonexpansivity of PC , we derive that

‖xn+ – z‖ =
∥∥∥∥PC

[
αnψ(xn) + ( – αn)

(
xn –

ρnf (xn)
‖∇f (xn)‖ ∇f (xn)

)]
– PCz

∥∥∥∥


≤ αn
〈
ψ(xn) – z,xn+ – z

〉
+ ( – αn)

〈
xn –

ρnf (xn)
‖∇f (xn)‖ ∇f (xn) – z,xn+ – z

〉

= αn
〈
ψ(xn) –ψ(z),xn+ – z

〉
+ αn

〈
ψ(z) – z,xn+ – z

〉

+ ( – αn)
〈
xn –

ρnf (xn)
‖∇f (xn)‖ ∇f (xn) – z,xn+ – z

〉

≤ αnδ‖xn – z‖‖xn+ – z‖ + αn
〈
ψ(z) – z,xn+ – z

〉

+ ( – αn)
∥∥∥∥xn – ρnf (xn)

‖∇f (xn)‖ ∇f (xn) – z
∥∥∥∥‖xn+ – z‖

=
(

αnδ‖xn – z‖ + ( – αn)
∥∥∥∥xn – ρnf (xn)

‖∇f (xn)‖ ∇f (xn) – z
∥∥∥∥
)

‖xn+ – z‖

http://www.fixedpointtheoryandapplications.com/content/2013/1/201
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+ αn
〈
ψ(z) – z,xn+ – z

〉

≤ 


(
αnδ‖xn – z‖ + ( – αn)

∥∥∥∥xn – ρnf (xn)
‖∇f (xn)‖ ∇f (xn) – z

∥∥∥∥
)

+


‖xn+ – z‖ + αn

〈
ψ(z) – z,xn+ – z

〉
.

It follows that

‖xn+ – z‖ ≤
(

αnδ‖xn – z‖ + ( – αn)
∥∥∥∥xn – ρnf (xn)

‖∇f (xn)‖ ∇f (xn) – z
∥∥∥∥
)

+ αn
〈
ψ(z) – z,xn+ – z

〉

≤ αnδ
‖xn – z‖ + ( – αn)

∥∥∥∥xn – ρnf (xn)
‖∇f (xn)‖ ∇f (xn) – z

∥∥∥∥


+ αn
〈
ψ(z) – z,xn+ – z

〉

≤ αnδ
‖xn – z‖ + ( – αn)

[
‖xn – z‖ – ρn( – ρn)

f (xn)
‖∇f (xn)‖

]

+ αn
〈
ψ(z) – z,xn+ – z

〉
=

[
 –

(
 – δ

)
αn

]‖xn – z‖ + αn
〈
ψ(z) – z,xn+ – z

〉

– ( – αn)ρn( – ρn)
f (xn)

‖∇f (xn)‖ . ()

Next, we will prove that xn → z following the ideas in []. Set sn = ‖xn – z‖ for all
n ≥ . Since αn →  and infn ρn( – ρn) > , we may assume, without loss of generality,
that ( – αn)ρn( – ρn) ≥ σ for some σ > . Thus, we can rewrite () as

sn+ – sn +
(
 – δ

)
αnsn +

σ f (xn)
‖∇f (xn)‖ ≤ αn

〈
ψ(z) – z,xn+ – z

〉
. ()

Now, we consider two possible cases.
Case . Assume that {sn} is eventually decreasing, i.e., there existsN >  such that {sn} is

decreasing for n ≥N . In this case, {sn} must be convergent, and from () it follows that

 ≤ σ f (xn)
‖∇f (xn)‖ ≤ sn – sn+ –

(
 – δ

)
αnsn + αn

∥∥ψ(z) – z
∥∥‖xn+ – z‖

≤ sn – sn+ +Mαn, ()

where M >  is a constant such that supn{‖ψ(z) – z‖‖xn+ – z‖} ≤ M. Letting n → ∞ in
(), we get

lim
n→∞ f (xn) = .

Since {xn} is bounded, there exists a subsequence {xnk } of {xn} converging weakly to x̃ ∈ C.
From the weak lower semicontinuity of f , we have

 ≤ f (x̃) ≤ lim inf
k→∞

f (xnk ) = lim
n→∞ f (xn) = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/201
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Hence, f (x̃) = , i.e., Ax̃ ∈Q. This indicates that

ωw(xn) ⊂ �.

Furthermore, due to the property of the projection (c),

lim sup
n→∞

〈
ψ(z) – z,xn+ – z

〉
= max

ω∈ωw(xn)

〈
ψ(z) – P�

(
ψ(z)

)
,ω – P�

(
ψ(z)

)〉 ≤ .

From (), we obtain

sn+ ≤ [
 –

(
 – δ

)
αn

]
sn + αn

〈
ψ(z) – z,xn+ – z

〉
. ()

Applying Lemma . to (), we get sn → .
Case . Assume {sn} is not eventually decreasing. That is, there exists an integer n such

that sn ≤ sn+. Thus, we can define an integer sequence {τn} for all n≥ n as follows:

τ (n) =max{k ∈N | n ≤ k ≤ n, sk ≤ sk+}.

Clearly, τ (n) is a non-decreasing sequence such that τ (n) → +∞ as n → ∞ and

sτ (n) ≤ sτ (n)+

for all n ≥ n. In this case, we derive from () that

σ f (xτ (n))
‖∇f (xτ (n))‖ ≤ Mατ (n) → .

It follows that

lim
n→∞ f (xτ (n)) = .

This implies that every weak cluster point of {xτ (n)} is in the solution set �; i.e.,
ωw(xτ (n)) ⊂ �.
On the other hand, we note that

‖xτ (n)+ – xτ (n)‖ ≤ ατ (n)
∥∥ψ(xτ (n)) – xτ (n)

∥∥ + ( – ατ (n))
ρτ (n)f (xτ (n))
‖∇f (xτ (n))‖ → ,

from which we can deduce that

lim sup
n→∞

〈
ψ(z) – z,xτ (n)+ – z

〉
= lim sup

n→∞
〈
ψ(z) – z,xτ (n) – z

〉

= max
ω∈ωw(xτ (n))

〈
ψ(z) – P�

(
ψ(z)

)
,ω – P�

(
ψ(z)

)〉

≤ . ()

Since sτ (n) ≤ sτ (n)+, we have from () that

sτ (n) ≤ 
 – δ

〈
ψ(z) – z,xτ (n)+ – z

〉
. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/201
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Combining () and () yields

lim sup
n→∞

sτ (n) ≤ ,

and hence

lim
n→∞ sτ (n) = .

From (), we have

lim sup
n→∞

sτ (n)+ ≤ lim sup
n→∞

sτ (n).

Thus,

lim
n→∞ sτ (n)+ = .

From Lemma ., we have

 ≤ sn ≤ max{sτ (n), sτ (n)+}.

Therefore, sn → . That is, xn → z. This completes the proof. �

From Theorem ., we can deduce easily the following algorithm and corollary.

Algorithm . For given x ∈ C, assume that {xn} has been constructed. If ∇f (xn) = ,
then stop and xn is a solution of SFP (). Otherwise, continue and compute xn+ by the
recursion

xn+ = PC

[
( – αn)

(
xn –

ρnf (xn)
‖∇f (xn)‖ ∇f (xn)

)]
, n≥ , ()

where {αn} ⊂ (, ) and {ρn} ⊂ (, ).

Theorem . Suppose that the SFP is consistent, that is, � �=∅. Assume that the following
conditions hold:
(a) limn→∞ αn =  and

∑∞
n= αn = ∞;

(b) infn ρn( – ρn) > .
Then {xn} defined by () converges strongly to the minimum norm solution of the SFP.

4 Concluding remarks
This work contains our study dedicated to developing and improving self-adaptive meth-
ods for solving the split feasibility problem. We have introduced our improved self-
adaptive method for solving the split feasibility problem. As a special case, the minimum
norm solution of the split feasibility problem can be approached iteratively. This study is
motivated by relevant applications for solving many real-world problems, which give rise
to mathematical models in the sphere of variational inequality problems.

http://www.fixedpointtheoryandapplications.com/content/2013/1/201
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