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Abstract

In the present paper, an iterative algorithm for solving mixed equilibrium problems
and fixed points problems has been constructed. It is shown that under some mild
conditions, the sequence generated by the presented algorithm converges strongly
to the common solution of mixed equilibrium problems and fixed points problems.
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1 Introduction
Let H be a real Hilbert space with the inner product (-, -) and the norm || - ||, respectively.
Let C be a nonempty closed convex subset of H. For a nonlinear mapping A : C — H and

a bifunction F : C x C — R, the mixed equilibrium problem is to find z € C such that

F(z,y) + (Az,y—2z) >0, VyeC. 1.1)

The solution set of (1.1) is denoted by MEP. If A = 0, then (1.1) reduces to the following
equilibrium problem of finding z € C such that

F(z,y) >0, VyeC. (1.2)

The solution set of (1.2) is denoted by EP. If F = 0, then (1.1) reduces to the variational
inequality problem of finding z € C such that

(Az,y—2z) >0, VyeC. (1.3)

The solution set of (1.3) is denoted by VI. Problem (1.1) is very general in the sense that it
includes, as special cases, optimization problems, variational inequalities, minimax prob-
lems, Nash equilibrium problem in noncooperative games and others. See, e.g., [1-22].
For solving mixed equilibrium problem (1.1), Moudafi [9] introduced an iterative algo-
rithm and proved a weak convergence theorem. Further, Takahashi and Takahashi [15]
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introduced the following iterative algorithm for finding an element of F(S) N MEP:

F(Zmy) + (Axnry_zn> + i(y_zmzn —%,) >0, Vy eC, a 4)

Xps1 = By + S(ayu + (1 - B,)z,)

for all n > 0, where S : C — C is a nonexpansive mapping. They proved that the sequence
{x,} generated by (1.4) converges strongly to z = Proj(s)nyep(#)-

Recently, Yao and Shahzad [19] gave the following iteration process for nonexpansive
mappings with perturbation: x; € C and

Xns1 = (1= Bu)xy + Bu Projc(anun +(1- an)Txn)» n=0,

where {«,} and {8, } are sequences in [0, 1], and the sequence {u,} in H is a small perturba-
tion for the n-step iteration satisfying ||u,| — 0 as n — oo. In fact, there are perturbations
always occurring in the iterative processes because the manipulations are inaccurate.

Using the ideas in [19], Chuang et al. [4] introduced the following iteration process for
finding a common element of the set of solutions of the equilibrium problem and the set
of fixed points for a quasi-nonexpansive mapping with perturbation: ¢; € H and

x, € C such that F(x,,y) + ﬁ(y—xn,xn —-qu) >0, VyeC,
qn+1 = Qully + (1 - an)(/gnxn + (1 - ,Bn)sxn)

for all n > 0. They showed that the sequence {g,} converges strongly to Projzggp-
Motivated and inspired by the above works, in the present paper, we construct an it-
erative algorithm for solving mixed equilibrium problems and fixed points problems. It
is shown that under some mild conditions the sequence {x,} generated by the presented
algorithm converges strongly to the common solution of mixed equilibrium problems and
fixed points problems. As an application, we can find the minimum norm element without

involving projection.

2 Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that a mapping
A: C — H is called a-inverse-strongly monotone if there exists a positive real number o > 0
such that

(Ax — Ay, x —y) > a||Ax — Ay|®>, Vx,y€C.

It is clear that any «-inverse-strongly monotone mapping is monotone and é-Lipschitz
continuous. A mapping S: C — C is said to be nonexpansive if ||Sx — Sy|| < ||« — y|| for all
%,y € C. And a mapping S: C — C is said to be strictly pseudo-contractive if there exists a
constant 0 < k <1 such that

2

[1Sx = Syll* < llx = ylI* + k|| (I = S)x— (I = S)y|", Vx,yeC.

For such a case, we also say that S is a x -strictly pseudo-contractive mapping.
Throughout this paper, we assume that a bifunction F : C x C — R satisfies the following
conditions:
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(H1) F(x,x)=0 forallx € C;

(H2) F is monotone, i.e., F(x,y) + F(y,x) <0 for all x,y € C;

(H3) foreachx,y,z € C,limg o F(tz+ (1 - t)x,y) < F(x,9);

(H4) for eachx € C, y > F(x,y) is convex and lower semicontinuous.
We need the following lemmas for proving our main results.

Lemma 2.1 [7] Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F: C x C — R be a bifunction which satisfies conditions (H1)-(H4). Let r > 0 and x € H.
Then there exists z € C such that

1
F(z,y)+-(y-2z-x)>0, VyeC.
r
Further, if T,(x) ={z€ C: F(z,y) + %(y —z,z—x) > 0,Yy € C}, then we have
(i) T, is single-valued and T, is firmly nonexpansive, i.e., for any x,y € H,
1T = Tyl < (Tox — Ty, = y);
(ii) EP is closed and convex and EP = F(T,).

Lemma 2.2 [19] Let C, H, F and T,x be as in Lemma 2.1. Then we have
5 S—t
I Tsx — Tyx||” < —— (Tsx — Tyx, Tyx — x)
s
foralls,t>0andx e H.

Lemma 2.3 [19] Let C be a nonempty closed convex subset of a real Hilbert space H. Let
the mapping A : C — H be a-inverse strongly monotone and r > 0 be a constant. Then we
have

| = rA)x — (L = rA)y|* < llx = yI* + r(r - 2a) | Ax - Ay|®, V¥x,y € C.
In particular, if 0 <r <2, then I — rA is nonexpansive.

Lemma 2.4 [23] Let {x,} and {y,} be bounded sequences in a Banach space X and let {f,}
be a sequence in [0,1] with 0 < liminf,_, ., B, <limsup,_, ., B, <1. Suppose that x,,1 = (1 —
,Bn)yn + ,annforﬂ” n > 0andlim Supnﬁoo(”ynﬂ —Yn | = e —%n ”) < 0. Thenlim,_, ”yn -
%nll = 0.

Lemma 2.5 [24] Let C be a nonempty closed convex subset of a real Hilbert space H. Let
S: C — C be a \-strict pseudo-contraction. Then we have

(i) F(S)={x:Sx=x} is closed convex;

(i) «I+ (1 -k)S for k € [A,1) is nonexpansive.

Lemma 2.6 [25] Let C be a nonempty closed and convex of a real Hilbert space H. Let
S : C — C be a «-strictly pseudo-contractive mapping. Then I — S is demi-closed at 0, i.e.,
ifx, — x € C and x,, — Sx, — 0, then x = Sx.

Lemma 2.7 [16] Assume that {a,} is a sequence of nonnegative real numbers such that

Ane1 < (1= V)@ + 8,V
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where {y,} is a sequence in (0,1) and {3,} is a sequence such that
(1) Z:il VYn = O0;
(2) limsup,_, o8, <0 or Y o2 184Vl < 00.

Then lim,_, o a,, = 0.

3 Main results
In this section, we prove our main results.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H and let F :
C x C — R be a bifunction satisfying conditions (H1)-(H4). Let A : C — H be an a-inverse-
strongly monotone mapping and let S : C — C be a k-strictly pseudo-contractive mapping.
Suppose that F(S) N MEP #@. Let xy € C, {z,} and {x,} be sequences in C generated by

F(Zmy) + (Axmy - Zn) + ﬁ(}’ —ZyyZp — (anun + (1 - an)xrl)) >0, Vy eC,
KXn+l = ,ann + (1 - ,Bn)yzn + (1 - /3}1)(1 - V)Sznr

(3.1)

forall n> 0, where {1,,} C (0,2«), {&t,} C (0,1) and {B,} C (0,1) satisfy
(r1) limy,_ o, = u for some u € H;
(r2) lim, ooy =0andy ) a, =00;
(r3) 0<c<B,<d<landvy € k,1);
(r4) a1l -a,) <A, < b - ay), where [a,b] C (0,2a) and lim,,_, oo (A1 — Ay) = 0.
Then {x,} generated by (3.1) converges strongly to Projp s)nyep(4)-

Proof Note that z,, can be rewritten as z, = Ty, (ntty + (1 — 0tr)%,, — 1, Ax,) for each n. Take
z € F(S) N MEP. 1t is obvious that z = T}, (z = A,A42) = T, (a2 + (1 — oty)(z — ’\”Aj)) for all

1-«,
n > 0. By using the nonexpansivity of T3, and the convexity of | - ||, we derive

2
2, -zl

|| T, (a,,u,, + (1 - ay)x, - A,,Ax,,) -T,,(z-1,Az) ||2

AnAx AnAz
=||Ts, <a,,u,, +(1- a,,)(x,, - = ">> -1, (a,,z +(1- o:,,)(z— 4 ))
1 — 0y 1 — 0y
AnA Az \\ |
ottty + (1—a,) | %, — =2 1)) - az+(1-a,)|z- =
1-o, 1-o,
AnAx AnAz 2
=X =a)| | xn— R + oty (U — 2)
1-a, 1-q,
AnAx, Az |I? )
X — -|z- +apllu, -zl
1-o, l-«o,
Since A is a-inverse strongly monotone, we know from Lemma 2.3 that
)‘nAxn )\.nAZ
Xy — -\z-
1-o, l-«,

)Wl()\n - 2(1 - an)a) 2
Ax, — Az||".
oy M4z

2

IA

<(l-ay

2

2
< llxn—2|" +
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It follows that

MM =21 — a)x)
lzn —2I” < (@ —an)(llxn A Ty

2 2
A, — Az|| ) + |, — 2|

< (1= an)lln — 2l + 1, — 211, (3.2)

So, we have

st =20 = |Butn—2) + (L= Bo) (71 + A= ¥)S)zn = 2) [
< Bulln = 2I* + (1 = Ba)llz, - 2
< Bullon —21* + (L= ) (1 = @) 1% — 211 + |4, — 2I|%)
= [1- Q= Boan]llen —2I* + A = Bu)etullen — 2]
< max{ |, —zII?, [|u, - 2II*}.
Since lim,_, o 4, = u, {u,} is bounded. Therefore, by induction, we deduce that {x,} is

bounded. Hence, {Ax,}, {z,} and {Sz,} are also bounded.
Putting y, = ottty + (1 — 0t)x, — LyAx,, for all n, we have

Zp+l —Zn = T)Ln+1yn+1 - T)Ln+1yn + T)\m-l.y”l - T)\ny"‘
It follows that

|Zne1 — zull < ”T)\nﬂyml - TAn+1yn|| + ”T)\mlyn - T)»nyn”

< e = Iull + 170190 = Thy Yl (3.3)

From Lemma 2.3, we know that I — AA is nonexpansive for all A € (0, 2«). Thus, we have
I — 214 js nonexpansive for all # due to the fact that 22t ¢ (0,2«). Then we get

1-oty41 1-aps1
lyns1 = yull = ||an+1un+1 + (1= @pe1)Xns1 — Anr1AXper — (anun + (L= at)x, — }\nAxn) ”
Ausl A
< Q=) | %41 — = Axp | = A =an)| %, - < Ax,
1-ay 1-ay,
+ U1 Unsr |l + |2t |
A A
= (1 _an+1) ( - nfﬂA)erl - ( - H—HA>xn
1- (07788} 1- (07788}

+

A A
(1 - an+1)<xn - 1 e Axn) - (1 _an)(xn - 1 ‘ Axn) H

— sl —Qy

+ 0t [t |+ 0 |2 ||
< o = Xl + 11 — ulllxall + 1A = Al | A%, |

+ g1 | sper || + ot |2 . (3.4)

By Lemma 2.2, we have

|Ans1 = Al
” T)»n+1yn - Tkn}’n” = - ||T)tn+1yVl _yVl”' (35)

n+l

Page 5of 13
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From (3.3)-(3.5), we obtain

1Zne1 = Zull < %ne1 = X ll + |1 — @l %0l + 1A = Aul | A%l

|)\n+1 _)‘-nl
+ e

I Tkn+1yn _yn” + it | U || + 2l
)Ln+1

Then

|1+ @ =)S)zua — (I + (A - ¥)S)z|
=< ||Zn+1 _Zn”

S e = Xull + (a1 = | lon |l + [Apsr = Aull[Ax, |l

|)‘n+1 _)Ln|
+ —

” Tkn+1yn —Yn ” + 0pt1 ||Mn+l || t oy ”un ”
)&n+l

Therefore,

| (I + @ =y)S)zws = (I + A= y)S)zu]| = ltnsr = 24
<1 = ol ln | + [Apsr = AulllAX, || + i |tne | + 0 |22 |

|)\n+1 _)"n|
+ e ————

T, =Yl
}\.n+1 ” )\-Vl+1yn yn”

Since o, — 0, A,;1 — A, — 0 and liminf,,_, », A, > 0, we obtain

lim Sup(” (VI +(1- V)S)Zwrl - (VI +(1- V)S)Zn ” = ll%ns1 _xn”) <0.

n—0o0

This together with Lemma 2.4 implies that

Tim [[(y1 + (1= y)S)z, 2] = 0. (3.6)
Consequently, we obtain

Tim [janr =2l = lim (1= B,) | (v1 + A= ¥)S)zn = 2] = 0.
From (3.1) and (3.2), we have

e =217 < (= B (y1 + (L= 7)S) T, (uttn + (1= ), = AuAA) — 2

2
+ Bullxn — 2|

<@1- Ign){(l - an)(”xn - Z||2 + uj‘.ﬁ(kn -2(1- Ol,,)O[) lAx), _AZ||2)

2 2
+ay,lu, - Z|| } + Bullxn — 2|

= (1 -(1- ,Bn)an) ll, — Z”2 + (11—_% ()\n -2(1- Oln)Ol) |Ax, _AZ||2

+ (L= Bt llun — 2|
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(L= B
=l = 2l1” + == (o = 21— ety )ar) [ A, - Az])®

n

+(1- ,Bn)an”un - Z”z‘

Then we obtain

%(2(1 — o) — Ay ) || Ax, — Az||®

2 2 2
< xn = zlI° = I — 2l + A = By llu, — 2|

2
< (o = 21l = 1201 = 20 101 = %l + (1 = Bt |t — 211

Since lim,,_, oo o, = 0, lim,,_, o ||%,41 — %, || = 0 and liminf,_, o, %(2(1 —ay)a —Ay,) >0,

we have
lim [|Ax, — Az| = 0. (3.7)
n—0oQ
Next, we show ||x,, — z, || =[x, — T3, ¥x|l = 0. By using the firm nonexpansivity of T; ,, we
have

T3 = 21% = | Topyn — T (2 = 2,A2) |
= (yn — (2= 2A2), To, 9 — Z>
1
= 5 (I -ta- nA2) |+ 11T,y — 211

— ettt + (1= 0 = A Ay = 2nA2) = T3 %).
We note that
[ = (= 2sAD)|* < (U= @)l — 211 + il — 2]
Thus,

1
I Tx,0m — 2017 < 5((1 — )y = 2I1* + ullay — 201 + 1 T, 90 — 211

- ||a,,u,, + (1 —an)xy — T, ¥n — An(Axy — L,AZ) ||2)
That is,

1T, 9 = 2lI* < (1= )10 — 2117 + atullsey — 2]
- ||otnun + (1 —an)xy — T, yn — An(Ax, — LnAZ) ||2
= (L=l = 217 + @ity =211 = letuttn + (1= c)on = T, |
+ 2%,,(0:,,14,, + (1 —an)xy — o, yn Axy —Az) - )»fl||Axn - Az|?

2
=< (1 _an)”xn _Z”2 + O[,,”Mn _lez - ”anun + (1 _an)xn - Tknyn H

+ 2|ttt + (L= )t = T, 9| [ A — Az


http://www.fixedpointtheoryandapplications.com/content/2013/1/183

Yao et al. Fixed Point Theory and Applications 2013, 2013:183 Page 8 of 13
http://www.fixedpointtheoryandapplications.com/content/2013/1/183

It follows that

I%ne1 = 21% < Bullxn — 2117 + (1 = Bu) (1 = ) o — 2II> + (1 = Bu)ewulle, — 2|
— (1= Ba)|| ettt + (1 = o)t — T, 3
+ 2201 = Bu) || @nttn + (1 = 0n)n — T,y | 1A%, — Az]|
= (1= (= Bu)otu) 90 — 21> + (1 = Bu)tu |t — 211
— (1= B) ettt + (1= )t — T,

+20,(1 - ﬁn)”anun + (1 —ou)xy — T, 9n ” lAx, — Az||.
Hence,

(1= B) || @it + (1 = )20 = T, 3|
< lloen = 2lI* = 101 — 211> = A = Bu)et lxn — 21|
+(L= Bt lltbn = 201 + 220(1 = By) || @nttn + (1 = )% = T,y | | Axn — Az
< (Ilen = 2l + ne1 = 211) [6mar = ull + (1 = Bu)et |t — 21|

+2)‘n(1 - ,Bn)”anun + (1 - an)xn - T)»nyn || ”Axn _AZ”'
Since limsup,,_, o Bn <1, [|¥41 — %ull = 0, @, — 0 and ||Ax,, — Az|| — 0, we deduce

lim ||oc,,un + (1 —a)x, — T, yn ” =0.
n—00

This implies that
lim |x, — 2, = [1%5 = T, ¥nll = 0. (3.8)
n—00

Put X = Projp(s)naep(4). We will finally show that x, — x.
Setting v, = x,, — 1i\—(’j{n(Ax,, — A%) for all n. Taking z = ¥ in (3.7) to get ||Ax, — AX|| — O.
First, we prove limsup,,_, . (#—X, v, —X) < 0. We take a subsequence {v,,} of {v,} such that

limsup(u — X, v, —X) = lim (u — %, v,, — %).
n—00 i—oo

It is clear that {v,,} is bounded due to the boundedness of {x,} and ||Ax, — Ax|| — 0. Then
there exists a subsequence {V”i;} of {v,,} which converges weakly to some point w € C.

Hence, {x”"/} also converges weakly to w. At the same time, from (3.6) and (3.8), we have

=0. (3.9)

lim s, = (v7+ (L= 7)S)a,

By the demi-closedness principle (see Lemma 2.6) and (3.9), we deduce w € F(S).
Further, we show that w is also in MEP. From (3.1), we have

F(z,,y) + (Axy, y — z,) + )Li(y— ZnyZn — (a,,u,, +(1- a,,)xn)> >0.

n
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From (H2), we have

(A% Y — 24) + %(y = Zns Zn — (ntty + (1= @)%4)) = F(3,21). (3.10)

n

Putx; =ty +(1-t)wforallt € (0,1 - %) and y € C. Then we have x, € C. So, from (3.10),
we have

(= 21y AXs) > (% — 23y Ay) — (X = 211, AXyy)
1

- )»_<xt —ZnyZp — (anun + (1 - an)xn)) + F(xtrzn)
n
= (Xt — 2, Axy — AZy) + (Xt — 24, Az — Axyy)
1
- )\_(xt —Zny 2% — (anun + (1 - an)xn)) + F(xtrzn)'
n

Since ||z, — x,|| — 0, we have ||Az, — Ax,|| — 0. Further, from monotonicity of A, we have
(%t — 2, Axy — Azy,) > 0. So, from (H4), we have

(x; — w,Axs) > F(xs, w), asn— o0. (3.11)
From (H1), (H4) and (3.11), we also have

0= F(xt,xt)
< tF(xt,y) + (1= £)F (s, W)
< tF(x,y) + (1 - t){x, — w, Axy)

= tF(x,y) + (L= t)t(y — w, Axy)
and hence
0 <F(xp,y)+(1-0){y—w,Ax,).
Letting ¢t — 0, we have, for each y € C,
0 <Fw,y) + (y —w,Aw).
This implies w € MEP. Hence, we have w € F(S) N MEP. This implies that
h;?isolclpw — X, Vy — X) =j1_i)r£10(u - X, Vi —-X)=(u—xw-Xx).
Note that X = Projg(g)yep(u). Then (u —x,w—x) <0, w € F(S) N MEP. Therefore,
limsup(u — x,v,, —x) <O0.

Since u, — u, we have

lim sup(u, — x,v, — %) <O0.

n—0o0

Page9of 13
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From (3.1), we have

%41 — %1
< Bl = &I+ (1= B)]| (1 + (1= )S) T, - &
< Bullw —FI2 + (L= B)| T, — EI1°
= Bulln = F1% + (L= B)|| T, 0 — T, (G~ 2, AD) |
< Bulln —FI + (1= B)|yn — G — 2, AR) |

= Bullxy _55”2 +(1-8,) “O‘nun + (1= o)xy — ApAxy, — (X — A, A%) HZ

(l—oz,,)<(x,,— . Ax,,)—(fc— b A%))+o¢,,(u,,—5c)
1-q, 1-o,

+ ﬁn”xn _55”2
=(1- ﬂn)((l - an)z‘ (xn - i Ax,,) = <5C - L A;C)
1-ay 1-ay,

- An - An .
+20,(1 —a )ty — %, | %, — Ax, | - % - AXx
1-o, l-o,

2 =12 =112
+a, |, — X ) + Bullxn — x|

2

= (1_,371)

2

< Bullxn — x>+ (1 - ﬂn)((l —a,) %, = %2

A
+2a,,(1—a,,)<u,,—9~c,x,,—1 u (Ax,,—Aic)—oNc>+a5||u,,—5c||2)

= (1 - (1 - lgn)an) ”xn _5‘:”2

+ (l_ﬁn)an{Q'(l_an)(un =X,V —X) + oyl _5‘:”2}

It is clear that ) .2, (1 — B,)a, = 00 and limsup,_, . (2(1 — o) (s — %, vy — X) + ot l|tty —
%||?) < 0. We can therefore apply Lemma 2.7 to conclude that x,, — x. This completes the

proof. O

Corollary 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H and let F
C x C — R be a bifunction satisfying conditions (H1)-(H4). Let A : C — H be an a-inverse-
strongly monotone mapping and let S : C — C be a nonexpansive mapping. Suppose that
F(S)NMEP # . Let xy € C, {z,} and {x,} be sequences in C generated by

F(zy,y) + (Axy, y — z) + i(y — 2z 2y — (ot + (1 —a)x,)) >0, VyeC(C,
Xni1 = BnXn + 1- ,Bn)yzn +(1- lgn)(l - V)Szn

(3.12)

forall n> 0, where {1,,} C (0,2«), {ot,} C (0,1) and {B,} C (0,1) satisfy
(r1) lim,— o Uy = u for some u € H;
(r2) lim, oy =0andy o) a, = 00;
(r3) 0<c<B,<d<landy €(0,1);
(rd) a(l—oay) <X, <b(-ay), where [a,b] C (0,2a) and lim,_, oo (Ay41 — Ay) = 0.
Then {x,} generated by (3.12) converges strongly to Projp(s)nyep(4)-
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Corollary 3.3 Let C be a nonempty closed convex subset of a real Hilbert space H and
let F: C x C — R be a bifunction satisfying conditions (H1)-(H4). Let S: C — C be a k-
strictly pseudo-contractive mapping. Suppose that F(S)NEP # . Let xy € C, {z,} and {x,}

be sequences in C generated by

F(zn’y) + i 0/ —ZnyZn — (anun + (1 - an)xn)) 2 O: Vy € C’ (3 13)
X1 = Buxn + (L= By z, + (1 - B,)(L - v)Sz, .

forall n> 0, where {),} C (0,1), {a,,} C (0,1) and {B,} C (0,1) satisfy
(rl) lim,_ o uy, = u for some u € H;
(r2) lim, oy =0andy o) a, = 00;
(r3) 0<c<B,<d<landy € [k,1);
(r4) a(l-a,) <A, <b(1 - ay), where [a,b] C (0,1) and lim,,_, 5o (Ays1 — Ay) = 0.
Then {x,} generated by (3.13) converges strongly to Projpsngp(u).

Corollary 3.4 Let C be a nonempty closed convex subset of a real Hilbert space H and
let F: C x C — R be a bifunction satisfying conditions (H1)-(H4). Let S: C — C be a
nonexpansive mapping. Suppose that F(S)NEP # (. Let xy € C, {z,} and {x,} be sequences

in C generated by

F(20,y) + 3y = 2 20 = @ty + (L= @)x,)) 20, ¥y €C, (314)
KXn+l = ,ann + (1 - ,Bn)yzn + (1 - /3}1)(1 - V)Szn .

for all n > 0, where {1} C (0,1), {a,,} C (0,1) and {B,} C (0,1) satisfy
(r1) limy,_ o tt, = u for some u € H;
(r2) limy ooy =0andy .2 o, =00;
(r3) 0<c<B,<d<landy €(0,1);
(rd) a(l-a,) <A, < b -ay,), where [a,b] C (0,1) and lim,,_, 5o (Ays1 — Ay) = 0.
Then {x,} generated by (3.14) converges strongly to Projpsngp(1).

Corollary 3.5 Let C be a nonempty closed convex subset of a real Hilbert space H and let F
C x C — R be a bifunction satisfying conditions (H1)-(H4). Let A : C — H be an a-inverse-
strongly monotone mapping and let S : C — C be a k-strictly pseudo-contractive mapping.
Suppose that F(S)NMEP # . Let xy € C, {z,} and {x,} be sequences in C generated by

F(zy,y) + (Axy, y — z) + i(y —zZpzy— (1 —a,)x,) >0, VyeC, (3.15)
Xn+l = lgnxn + (1 - ﬂn)yzn + (1 - ﬁn)(l - V)Szn

forall n> 0, where {),,} C (0,2«), {&t,} C (0,1) and {B,} C (0,1) satisfy
(r2) lim, oy =0andy o) a, = 00;
(r3) 0<c<B,<d<landy € [k,1);
(r4) a(l -a,) <A, < b1 - ay), where [a,b] C (0,2a) and lim,_, oo (A1 — Ay) = 0.
Then {x,} generated by (3.15) converges strongly to Projg(snyep(0), which is the minimum

norm element in F(S) N MEEP.
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Corollary 3.6 Let C be a nonempty closed convex subset of a real Hilbert space H and
let F: C x C — R be a bifunction satisfying conditions (H1)-(H4). Let S: C — C be a «-
strictly pseudo-contractive mapping. Suppose that F(S)NEP # . Let xy € C, {z,} and {x,}

be sequences in C generated by

F(z3,9) + 5V = 2w 20 = (1= )x,) =0, VyeC,
Xp+l = ﬁnxn + (1 - ﬂn))/zn + (1 - ﬁn)(l - ]/)SZ,,

(3.16)

forall n> 0, where {,,} C (0,1), {,,} C (0,1) and {B,} C (0,1) satisfy

(r2) limy ooy =0andy .2 o, =00;

(r3) 0<c<B,<d<landy € [k,1);

(rd) a1 -a,) <A, < b1 - ay,), where [a,b] C (0,1) and lim,,_, oo (Ays1 — Ay) = O.
Then {x,} generated by (3.16) converges strongly to Projps)~gp(0), which is the minimum
norm element in F(S) N EP.

Corollary 3.7 Let C be a nonempty closed convex subset of a real Hilbert space H and
let F: C x C — R be a bifunction satisfying conditions (H1)-(H4). Let A : C — H be an
a-inverse-strongly monotone mapping. Suppose that MEP # (. Let xo € C, {z,} and {x,} be

sequences in C generated by

F(z,,9) + (A% Y —20) + =y — 220 — (L —at,)x,) >0, VyeC,
(ZmY) + (A%, y — 2n) + 5y ( )%) y (3.17)

X1 = Buxn + (L= Bu)zn

forall n> 0, where {),} C (0,2a), {a,,} C (0,1) and {B,} C (0,1) satisfy

(r2) limy ooy =0andy ) a, =00;

(r3) 0<c=<B,<d<1;

(r4) a(l -ay,) <A, < b1 - ay), where [a,b] C (0,2a) and lim,,_, oo (A1 — Ay) = 0.
Then {x,} generated by (3.17) converges strongly to Proj,zp(0), which is the minimum norm
element in MEP.

Corollary 3.8 Let C be a nonempty closed convex subset of a real Hilbert space H and let
F: C x C — R be a bifunction satisfying conditions (H1)-(H4). Suppose EP # (. Let xy € C,
{z,} and {x,} be sequences in C generated by

Fz, )+ L (y—zpza— 1—a,)x,) >0, VyeC,
(202) + =0y (1- )} y 1)

Xn+l = ,ann + (1 - lsn)zn

forall n> 0, where {1,} C (0,1), {at,} C (0,1) and {B,} C (0,1) satisfy
(r2) limyooay=0andy o) a, =00;
(r3) 0<c<B,<d<1;
(r4) a(l-a,) < i, < b -a,), where [a,b] C (0,1) and lim,,—, oo (Ay11 — Ay) = 0.
Then {x,} generated by (3.18) converges strongly to Projzp(0), which is the minimum norm

element in EP.
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