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1 Introduction
In the last three decades, the theory of variational inequalities has been used as a tool to
study the Nash equilibrium problem for a finite or infinite number of players; see, for ex-
ample, [1-6] and the references therein. There are two ways to study the Nash equilibrium
problem by using variational inequality technique: (1) system of variational inequalities;
(2) variational inequalities defined over the product of sets. If the number of players is
finite, then the system of variational inequalities is equivalent to the variational inequality
defined over the product of sets; see, for example, [7, 8] and the references therein.

Very recently, Cai and Bu [9] considered the following system of two variational inequal-
ities in the setting of Banach spaces.

Let C be a nonempty, closed and convex subset of a real Banach space X, let B, B, : C —
X be two nonlinear mappings and p; and p» be two positive constants. The problem of

system of variational inequalities (SVI) [9] is to find (x*,y*) € C x C such that

(1 Bry* +x* —y*, J(x —x*)) >0, VxeC, (L.1)
(aBox™ +y* —x*, J(x —y*)) >0, VxeC, '

where J is the normalized duality mapping. The set of solutions of GSVI (1.1) is denoted
by GSVI(C, By, B). This system could be useful to study the Nash equilibrium problem
for two players. They proposed an iterative scheme to compute the approximate solutions
of such a system.
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In particular, if X = H, a real Hilbert space, then GSVI (1.1) reduces to the following
problem of a system of variational inequalities of finding (x*,y*) € C x C such that

(B1y* +x* —y*,x—x*) >0, VxeC, 12)
(UaBox™ +y* —x*,x—y*) >0, VxeC, '

where u; and pu, are two positive constants. The set of solutions of problem (1.2) is still
denoted by GSVI(C, By, By).

In this paper, we introduce two-step relaxed extragradient method for solving SVI (1.1)
and the common fixed point problem of an infinite family {S,} of nonexpansive mappings
of C into itself. Here, the two-step relaxed extragradient method is based on Korpele-
vich’s extragradient method [10] and viscosity approximation method. We first suggest
and analyze an implicit iterative algorithm by the two-step relaxed extragradient method
in a uniformly convex and 2-uniformly smooth Banach space X, and then another explicit
iterative algorithm in a uniformly convex Banach space X with a uniformly Gateaux dif-
ferentiable norm. On the other hand, we also propose and analyze a composite explicit
iterative algorithm by the two-step relaxed extragradient method for solving SVI (1.1) and
the common fixed point problem of {S,} in a uniformly convex and 2-uniformly smooth
Banach space. The results presented in this paper improve, extend, supplement and de-
velop the corresponding results that have appeared very recently in the literature.

2 Preliminaries
Let X* be the dual of X. The normalized duality mapping J : X — 2X" is defined by

J@) = [ e X*: (mxt) = x)? = |#* ]}, VxeX,

where (-, -) denotes the generalized duality pairing.
Let C be a nonempty closed convex subset of a real Banach space X. A mapping A: C —
X is said to be accretive if for each x,y € C there exists j(x — y) € J(x — y) such that

(Ax - Ay, j(x - )) > 0,

where J is the normalized duality mapping. A is said to be a-strongly accretive if for each
%,y € C there exists j(x — y) € J(x — y) such that

(Ax - Ay, j(x —)) = al|lx - yII?

for some o € (0,1). It is said to be B-inverse-strongly-accretive if for each x,y € C there
exists j(x — y) € J(x — y) such that

(Ax - Ay, j(x - y)) = BllAx - Ay|I”

for some B > 0; and finally A is said to be A-strictly pseudocontractive if for each x,y € C
there exists j(x — y) € J(x — y) such that

(Ax - Ay,j(x - 3)) < llx = yII> = 1| x -y - (Ax - Ap)|*

for some A € (0,1).


http://www.fixedpointtheoryandapplications.com/content/2013/1/176

Ceng et al. Fixed Point Theory and Applications 2013, 2013:176 Page 3 of 34
http://www.fixedpointtheoryandapplications.com/content/2013/1/176

Let D be a subset of C and let [T be a mapping of C into D. Then [T is said to be sunny if
H[H(x) + t(x - H(x))] =IT(x),

whenever IT(x) + t(x — I1(x)) € C forx € C and t > 0. A mapping I7 of C into itself is called
aretraction if IT> = IT.1fa mapping I7 of C into itself is a retraction, then IT(z) = z for every
z € R(IT), where R(IT) is the range of IT. A subset D of C is called a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction from C onto D.

It is well known that if X = H, a Hilbert space, then a sunny nonexpansive retraction
I¢ is coincident with the metric projection from X onto C; that is, [1¢ = Pc. If C is a
nonempty closed convex subset of a strictly convex and uniformly smooth Banach space
X and if T : C — C is a nonexpansive mapping with the fixed point set Fix(7) # ¥, then
the set Fix(T') is a sunny nonexpansive retract of C.

The following lemma concerns the sunny nonexpansive retraction.

Lemma 2.1 (see [11]) Let C be a nonempty closed convex subset of a real smooth Banach
space X. Let D be a nonempty subset of C. Let II be a retraction of C onto D and let ] be a
normalized duality mapping on X. Then the following are equivalent:
(i) I is sunny and nonexpansive;
(i) 1176~ T2 < (x =3 J(IT@) — TG))), ¥x,9 € C;
(iil) (x— M (x),J(y—I(x)) <0,Vx€C,yeD.

Next, we present some more lemmas which are crucial for the proofs of our results.

Lemma 2.2 (see [12]) Let {s,} be a sequence of nonnegative real numbers satisfying
Sunn < (L —au)su + By + v, Yn=0,

where {a,}, {Bn} and {y,} satisfy the conditions:
(i) {an} C[0,1] and Y2, oy = 00;
(ii) limsup,,_, o By < 0;
(ili) ¥, >0,Vn>0,andy .o yn < 00.

Then limsup,,_, S, = 0.

Lemma 2.3 (see [12]) In a smooth Banach space X, the following inequality holds:
e+ 3% < ll%l* + 2(n, ] (x + ), Vx,yeX.

Lemma 2.4 (see [13]) Let {x,} and {z,} be bounded sequences in a Banach space X and

let {a,} be a sequence in [0,1] which satisfies the following condition:

0 <liminfe, <limsupw, < 1.
n—00 n—00

Suppose Xy = apxy + (1 — y)z,, Y = 0 and limsup,,_, (1251 — Zall — (%001 — %4]1) < 0.

Then lim,,_, o ||z, — x| = 0.
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Lemma 2.5 (see [14]) Given a number r > 0. A real Banach space X is uniformly convex if
and only if there exists a continuous strictly increasing function g : [0,00) — [0, 00), g(0) =
0, such that

|2+ (@ =2y < Allel® + (L= DIyl = 2@ = Vg (lx =yl
forall » € [0,1] and x,y € X such that ||x|| <r and ||y|| <r.

Lemma 2.6 (see [15]) Let C be a nonempty closed convex subset of a Banach space X. Let
S0,S1,... be a sequence of mappings of C into itself. Suppose that y -, sup{||S,x — Sy_1%| :
x € C} < co. Then, for each y € C, {S,y} converges strongly to some point of C. More-
over, let S be a mapping of C into itself defined by Sy = lim,,_, S,y for all y € C. Then
lim,,_, o sup{||Sx — S,x|| :x € C} = 0.

Let C be a nonempty closed convex subset of a Banach space X and let T : C — C be a
nonexpansive mapping with Fix(T) # (). As previously, let E¢ be a set of all contractions
on C. Fort € (0,1) and f € Ec, let x; € C be a unique fixed point of the contraction x —
tf (x) + 1 — £)Tx on C; that is,

xp = tf (x) + (1 = £) Txy.

Lemma 2.7 (see [16]) Let X be a uniformly smooth Banach space, or a reflexive and strictly
convex Banach space with a uniformly Gateaux differentiable norm. Let C be a nonempty
closed convex subset of X, let T : C — C be a nonexpansive mapping with Fix(T) # @, and
f € Ec. Then the net {x,} defined by x, = tf (x;) + (1 — t) Tx; converges strongly to a point in
Fix(T). If we define a mapping Q : Ec — Fix(T) by Q(f) := s—limy—.o x;, Vf € Ec, then Q(f)
solves the VIP:

((I _f)Q(f)xl(Q(f) —P)> E 0! Vf € EC:P € FIX(T)

Lemma 2.8 (see [17]) Let C be a nonempty closed convex subset of a strictly convex Banach
space X. Let {T,}2, be a sequence of nonexpansive mappings on C. Suppose (oo, Fix(T},)
is nonempty. Let {),} be a sequence of positive numbers with y .- A, = 1. Then a mapping
S on C defined by Sx =Y - hyTyx for x € C is well defined, nonexpansive and Fix(S) =
Moo Fix(T7,) holds.

Lemma 2.9 (see [12]) Let C be a nonempty closed convex subset of a smooth Banach space
X and let the mapping B; : C — X be \;-strictly pseudocontractive and o;-strongly accretive
with o; + A; > 1 for i =1,2. Then, for u; € (0,1], we have

1-o; 1
(I = wiBi)x - (I - wiBy)y| < { }La + (1—Mi)(1+ ;)}Hx—)’”, vx,y € C,

i i

fori=1,2. In particular, if 1 — %(1 - ‘/1;\—‘;") < u; <1, then I — ;B; is nonexpansive for
i=1,2.

Lemma 2.10 (see [9]) Let C be a nonempty closed convex subset of a smooth Banach
space X. Let I1c be a sunny nonexpansive retraction from X onto C and let the mapping
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B;: C — X be A;-strictly pseudocontractive and a;-strongly accretive with o; + A; > 1 for
i=1,2.Let G: C — C be a mapping defined by

G(x) = Hc[Mc(x — paBax) — pBic(x — uaBox)], VxeC.

If1- 113,(1 - /%) <u; <1, then G:C — C is nonexpansive.

Lemma 2.11 (see [9]) Let C be a nonempty closed convex subset of a real 2-uniformly

smooth Banach space X. Let the mapping B; : C — X be a;-inverse-strongly accretive. Then

we have
(T = iBi)x — (I — wiB)y| <l = ylI* + 2pi (i — o) lx =y,  Vx,yeC,

or i = 1,2, where Wi > 0. In par ticular, if 0 < ni < X ) then I — MiBi is nonexpansive for
p «2 94
i= 1,2.

Lemma 2.12 (see [9]) Let C be a nonempty closed convex subset of a real 2-uniformly
smooth Banach space X. Let I1c be a sunny nonexpansive retraction from X onto C. Let
the mapping B; : C — X be a;-inverse-strongly accretive for i =1,2. Let  : C — C be the
mapping defined by

w(x) = Hc[nc(x - Mszx) - ulBlﬂc(x - IJ/ZBQx)], Vx e C.
IfOo<p; < l‘:‘—;for i=1,2, then ¢ : C — C is nonexpansive.
Lemma 2.13 (see [12]) Let C be a nonempty closed convex subset of a smooth Banach
space X. Let I1¢c be a sunny nonexpansive retraction from X onto C and let the mapping
B;: C — X be A;-strictly pseudocontractive and o;-strongly accretive for i = 1,2. For given
x*,y* € C, (x*,y%) is a solution of GSVI (1.1) if and only if x* = c(y* — u1B1y*), where
y* = Hc(x* - ,ungx*).

By Lemma 2.12, we observe that

X = HC[HC(x* - Mszx*) - MlBlnc(x* - Mszx*)],
which implies that x* is a fixed point of the mapping G = ITc({ — w1 B1) (I — 12Bs).
Proposition 2.1 (see [18]) Let X be a real smooth and uniform convex Banach space and

letr > 0. Then there exists a strictly increasing, continuous and convex function g : [0,2r] —
R, g(0) = 0 such that

gl =yll) < Il = 2(x,J ) + Iy,  Vx,y€B,,

where B, = {x € X : ||x|| <r}.
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3 Two-step relaxed extragradient algorithms

In this section, we first suggest and analyze an implicit iterative algorithm by the two-step
relaxed extragradient method in the setting of uniformly convex and 2-uniformly smooth
Banach spaces, and then another explicit iterative algorithm in the setting of uniformly

convex Banach spaces with a uniformly Gateaux differentiable norm.

Theorem 3.1 Let C be a nonempty closed convex subset of a uniformly convex and
2-uniformly smooth Banach space X. Let I1c be a sunny nonexpansive retraction from
X onto C. Let the mapping B; : C — X be w;-inverse-strongly accretive for i = 1,2. Let
f: C— C be a contraction with coefficient p € (0,1). Let {S,}5°, be an infinite family of
nonexpansive mappings of C into itself such that F = (-, Fix(S;) N 2 # ¥}, where 2 is a
fixed point set of the mapping G. For arbitrarily given xo € C, let {x,} be a sequence gener-
ated by

Yn = yf V) + (1 = @) T (I = BT (I = j12B2)xy,
K1 = By + (L= ﬂn)Snym Vn >0,

(3.1)

where 0 < u; < ,‘:—éfor i =1,2. Suppose that {«,} and {B,} are sequences in (0,1) satisfying
the following conditions:

(i) limyooay =0and Yy 2 o, = 00;

(ii) 0<liminf, o B, <limsup,_, . Bn<1.
Assume that y ., sup,p |S:x — Sy_1x|| < 00 for any bounded subset D of C and let S be a
mapping of C into itself defined by Sx = lim,,_, o S, for all x € C and suppose that Fix(S) =
Miso Fix(S:). Then {x,} converges strongly to q € F, which solves the following VIP:

{@a-f(@.J(q-p)) <0, VpeF.

Proof 1t is easy to see that scheme (3.1) can be rewritten as

Yn = arzf(yn) + (1 - a,)G(x,),
X1 = Buxn + (L - ,Bn)Snynr Vn=>0.

(3.2)

Take a fixed p € F arbitrarily. Then by Lemma 2.13 we know that p = G(p). Moreover, by

Lemma 2.12 we have

lyn =2l = |en(Fn) = p) + A - a)(G(xs) - p) |
=ay “f(yn) ~-f(p) ” + oy “f(p) —P” +(1-ay,) ”G(xn) _p”

< aupllyn = pll +au|f(p) - p| + 0 = @) llx, - plI,
which hence implies that

1
1-ayp

ll an)uxn—pn . @ -p]. (33)

Iy =l < <1— -
—aup
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Thus, from (3.2) we have

%41 =PI
= ”:Bn(xn -p)+(1- lgn)(snyn -p) ”
= ﬂn”xn —19|| + (1 - ,Bn)HSnyn —P||

< Bullxn =Pl + L= Bu)llyn - pl
1
l_anp

1-—
< Bullxn —pll + (1—;3;»{(1— 1_a"pan>nxn -pl+ o[ () —p||}

n

[i-0emn, ] 1-p)1-p) &)=l
_[1- at |l —pl + o

1-anp 1-aup 1-p
smax{||xo—p||,”f(fi—"””}.

It immediately follows that {x,} is bounded, and so are the sequences {y,}, {G(x,)} due to

(3.3) and the nonexpansivity of G.
Let us show that ||x,,1; —x,|| — 0 as n — 00. As a matter of fact, from (3.2) we have

In = f () + (1 — ) G(x,),
Yn-1= O‘n—]f(yn—l) + (1 - an—l)G(xn—l)r Vn>1.

Simple calculations show that
Yn—Yn-1=0y (f(y;q) _f(Yn—l)) + (ot —0ty1) (f(yn—l) - G(xn—l)) +(1-ay) (G(xn) - G(xn—l))'
It follows that

”_yn _yn—IH S oy “f(yn) _f(yn—l) ” + |an - an—l| “f(yn—l) - G(xn—l)H
+ (1 - a) || Gxn) = Glxp) |
=< anp”yn _yn—1|| + |an - an—1| “f(yn—l) - G(xn—l) ||

+ (1 —ay)llw, —xp1lls

which hence yields

2

1- — Oy
lyn = Yuall < (1 1z 5,0 an) %0 = %11 + Toipﬂ “f(y;'t—l) - G(xn—1)||~ (3.4)

Thus we have from (3.4)

1Sy = Sn-1yn-1ll
=< ”Snyn - Snyn—ln + ”Snyn—l - Sn—lyn—ln
=< ”yn __yn—1|| + ”Snyn—l _Sn—lyn—ln

|an - an—1|

1-p
< <1 ~1C oz,,,oan> e — 2pall + Toap If Gu1) = G |

Page 7 of 34
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+ 1Suyn-1 = Su-1yYnall

oty — a1
< 1% = Xy |l + :_—apl If @n-1) = Gtn-d) | + 1SnYn1 = Su1du-l,

which implies that

”Snyn - Sn—l_)’n—l” - ”xn - xn—l”

|an - Oln—l|

”f()/n—l) - G(x4-1) “ + [180Yn-1 = Syl

1-aup

From condition (i) and the assumption on {S,}, we have

limSUP(HSnJ/n _Sn—lyn—ln - ||xn _xn—ln) S 0.

n—0o0

It follows from Lemma 2.4 that
lim ”Snyn = x| = 0. (3-5)
n—0o0

Hence we obtain
lim [[x,41 =%,/ = Hm (1= B)[1S,y, — x4l = 0. (3.6)
n—00 n—00

Next we show that ||x, — G(x,)|| = 0 as n — oo.
For simplicity, put g = ITc(p — paBap), uy, = Hc(x, — naBoxy) and v, = M (u, — 1 Biuy).
Then v, = G(x,). From Lemma 2.11 we have
2
ln = qll* = || Mc@n — naBaxy) = Mc(p — paBap) |
< |0 =P = 112(Boxs — Bop) ||

< 1% = pII* = 22 (ot — 6 102) | By — Bopl|® (3.7)

and

v, —pI? = | Hc(uy - p1Biy) — Mg - mBig)|
< Hun —-q- Ml(Blun - qu) ”2

< llun — qll* = 2p1 (o1 — k* 1) | Brtg — Bag*. (3.8)
Substituting (3.7) into (3.8), we obtain

Vi = pII* < s = pII* = 202 (ct2 — k> 12) |1 Boxy — Bopll®

=2 (o = %) | Busty — Big*. (3.9)
According to Lemma 2.3, we have from (3.2)

lyn —P||2 = ”O‘n(f(yn) _f(p)) +(1-a,)v,—p)+ Otn(f(lﬂ) —P) ”2
=< ||Oln(f(yn) _f(p)) + (1 —0) (v —P)||2 + 2%(}((19) -p,JOn —P))
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=y Hf(%l) _f(P)||2 + (1= a)|[va —17”2 + 205n<f(l9) -0, JOn —P)>

< aupllyn = pI* + A =) lve — pII* + 20 | f(©) - || ly - I,

which hence yields

20,

-p
- _anpan>||vn ol + o @ -l -l

Iy, =PI < (1 -
From this together with (3.9) and the convexity of || - ||> we have

”xn+1 —P||2
= | Ba@n =) + A= B)Swyn - D)
5 ,Bn”xn —P||2 + (1 - ﬁn)”‘snyn —P||2

< Bulltn = bl + L= By - I
1—

< Bulltn - +(1—/3n){<1— Lor

-

n

20,
an) lvu=pl+ 1= @) =l —pn}

1-p
< Bullxn —plI* + (1 - ﬂn)(l - an> Vs = plI* + auMy
1—0[,,,0

1-p
< Bullxn —P||2 + (l_ﬂn)<1_ 1-w pan>[”xn —P||2

=22 (0t — 6 102) | Bay — Bopll® = 21 (1 — % 01) 1Byt — B1gl|*] + My
(1-B8,)1-p)
= (1 -, )ll% - pI?

1-aup

1-p
=2(1-Bu) (l 1 a pan) (12 (02 = €% 112) | Box — Bop|®

+ (a1 - K2M1) | B1uty, —qu||2] + o, My

1-p
< oy —pl* =201 - ﬁn)<1 - an) (2 (et2 = ® 2) 1 Box = Bop?
1 Y
+ pa(oa — k1) 1Bty — Big|*] + My, (3.10)
where sup,..o{ 21(:5;) If @) - plllly. — pll} < M; for some M; > 0. So, it follows that
1-p
2(1_,3;1)(1_ Ol,,)
1- AP

x [ (02 = k2 w2) 1Baxyn — Bop > + pr (001 — k% 141) 1By — Brg|*]
< lxn =PI = 041 = PII* + udVy

= (”xn —P” + ||xn+1 —P”) ||xn _xn+1” + aan'
Since 0 < u; < :—5 for i = 1,2, from conditions (i), (ii) and (3.6) we obtain

lim ||Byx, —Bop|| =0 and lim ||Byu, — Bigq|| =0. (3.11)
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Utilizing Proposition 2.1 and Lemma 2.1, we have

llun - g1
= | Ac® - 2Boxs) - He(p - 12Bop) |
< (% — 12Baxy — (p — 112Bop), J (tn — q))
= (w0 — 1]t — q)) + 112(Bap — Boxn, J (1tn — q))

=

[ = pII> + et = 11> = &1 ([| %0 = 0 = (0 = @)||) ] + 12211Bop = Boxu | 14 = g,

N =

which implies that

et = ql® < s = pI* = g1 (%0 = 0 = 0 = @)|}) + 212211Bop = Boullllun = qll. ~ (3.12)

In the same way, we derive

v = plI?
= | M@, — paBiua) — Hclg — paBrg) ||2
<t — p1Brtt, — (q — 11B1q), ] (v — P))
= (tt — 4, vy — p)) + p1(B1q — Brtn,J (v, — p))

=

[ln = ql? + v = p1? = &2 (||t = v + (0 = D))] + 11111B1g = Busa i — P,

N =

which implies that
Ve = pI* < lttn — I = @2 (|| t4r = v + (0 = D)) + 2111B1g = Bt lllve —pll.  (3.13)
Substituting (3.12) into (3.13), we get

v = pI* < 1% =PI = g1 (|0 = 80 = 0 = @) ||) = @2([|ttr = v + (0~ 9)])
+2/02||Bop — Boxn |ty — qll + 21411 B1q — Biut |||V, — . (3.14)

From (3.10) and (3.14)), we have

2
”xn+1 4 ”

1-p
<o, M + Bulx, — pli* + (1—ﬂn)<1— : an)[nxn -pl?
—Qup

—a(|xn—un = 0= a)|) - &(|ttn = vi + (0 - a)|)

+ 212 |Bap = Bl |t = gl + 240111 Big = Buuay || [V, = pI]

1-8,)1-
—a M+ (1 _ Mw) I, — pI1?
1-aup

—u—m(l— 1-¢ an)[g1(||xn—un—<p—q>||)+g2(||un—vn+<p—q>u)]

1-aup
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+242||Bop — Baxulllun — gl + 24111 B1g — Baua |||V, — Pl

1-p
1—0[,,,,0

Saan + ”xn —P||2 - (l_ﬁn)<1_ Q’n) [gl(”xn — Uy — (p_q)”)

+ & (||t =i+ (0= 9)|)] + 20211Bop = Boxll 1 - gl

+241(|B1g - Bruy |||V - pII,

which implies that

1-
1=(1- T L= =) (= (-]

1-

< @My + (1%, = plI* = 101 = pI* + 2021 Bap = Boxull |, — gl
+2p1(1B1q = Bruy || [[va - Pl

< o, My + (1% = pll + %001 = PI) 1% = Xnsr | + 2182[1Bap — Baxull 14 — gl

+ 21 [|B1g — Bruty |||V — pII.
Utilizing conditions (i), (ii), from (3.6) and (3.11) we have
lim gi(|%x —ux = (- )||) =0, lim g (||un—va+ (0 -9q)|) =0. (3.15)
n—00 n—00
Utilizing the properties of g; and g», we deduce that
lim ||xn—un—(p—q)|| =0, lim Hun—v,,+(p—q)|| =0. (3.16)
n—00 n—00
From (3.16) we obtain
”xn_Vn” = “xn — Uy —(p—CI)” + ”Mn —Vnt (P—Q)” —> 0 asn— oo.
That is,
lim ||xn - G(x,) || =0. (3.17)
Hn—0Q
On the other hand, we observe that
In = Gxn) = ay (f(yn) - G(xn))
Since «, — 0 as n — 00, we have
Jlim |y = Gxn)| = 0. (3.18)
We note that

”SnG(xn) - G(xn)” = ”SnG(xn) = SuYn ” + 1Suyn = %l + ”xn - G(xn)”

= H G(xn) = Yn ” + 1S Yn = %ull + ||xn - G(xn)H
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From (3.5), (3.17) and (3.18), we obtain that
lim ||S,G(x,) — Glx,) | = 0. (3.19)
n—00

By (3.19) and Lemma 2.6, we have

”SG(xn) - G(xn)H = ”SG(?C,,) - SnG(xn)” + ”SnG(xn) - G(xn)”

— 0 asn— oo. (3.20)
In terms of (3.17) and (3.20), we have

[l — Sxn | ”xn - G(xn)” + ”G(xn) - SG(xn)” + ”SG(xn) — Sxy ”

IA

IA

2”xn - G(xn) ” + H G(x,) — SG(x,) ”

— 0 asn— oo. (3.21)

Define a mapping Wx = (1 — 6)Sx + 0G(x), 6 € (0,1) is a constant. Then by Lemma 2.8 we
have that Fix(W) = Fix(S) N Fix(G) = F. We observe that

o6 — Watull = |1 = 0) (s — Sxn) + 6 (w0 — Glxn)) |
=< (1 - 9)”96,, - an” +0 ”xn - G(xn)H

From (3.17) and (3.21), we obtain
nlingo l%, — Wx, || = 0. (3.22)
Now, we claim that
liirisololp(f @) - 4,] (% — ) <0, (3.23)
where g = s — lim,_, ¢ x; with x; being a fixed point of the contraction
x> if (x) + (1 - ) Wha.
Then x; solves the fixed point equation x; = #f(x;) + (1 — £) Wx;. Thus we have
Nl =2l = || (L = (Wt = ) + £ (f () = %) |-
By Lemma 2.3 we conclude that

(B
= @ - O(Wat — ) + £(F (x) =) ||
< (1= )| Wty — 2ull® + 22{f () — %, J (1 — %))

< (1= (| Wate = Wa, || + 1| Wok,, — 2,11)° + 28(f (2) — %0, T (x5, — %)
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<@ =) (Ilxe — %ull + | W, —xnll)2 + 28(f (36,) — %0, J (%, — %))
= (1= )*[l1%e = % ll> + 21960 = 2 11| Wot — 2]l + [| Wity — 2%
+ 28(f (36,) — %0, ] (% — %)) + 2006, — %60, ] (3¢ — %))

= (1=2¢+ ) llee = 2all? + £u(8) + 26{f (xe) = 0, T (e = 20)) + 28| = xal®, (3.24)
where
£ = Q=) (2l = %l + 1% — Wata ) 1 — Wl = 0 as n— oo. (3.25)

It follows from (3.24) that

(e = f (o), J (3¢ — %)) < éllx: —xull” + % (2). (3.26)

Letting n — oo in (3.26) and noticing (3.25), we derive

tm sup{y ~ (30), /&~ 5,)) < >, (3.27)

n—0o0

where M, > 0 is a constant such that [x; — x,||> < M, for all £ € (0,1) and # > 0. Taking
t — 01in (3.27), we have

lim sup lim sup(x, — f (%¢), ] (x — %)) < 0.

t—0 n—00

On the other hand, we have

(f(@-a)xn—q)
={f(@) - @] % — D) = (F(@) = @ T %n — %)) + (f(@) — q,] (. — %))
—(F(q) = x0T Gon — ) + {F (@) — e, (o6 — 200)) = (f (30) — %2, (% — %2))
+{f (o) — %0, ] (360 — 1))
={f(q) — @] (%n — @) = T (n — %)) + (e — @, ] (% — %2))
+{f(q) = f (o), T (en = %0)) + (f (%) = %0, T (30 — ).

It follows that

limsup(f(q) — ¢, (¥, — q)) < limsuplf (q) — q,] (% — q) = J (% — %¢))

n—0o0 n—00

+ [|lx: — gl limsup [|x, — x|l + pllg — x| lim sup [|x, — x|
n—00 n—00

+lim sup(f(xt) — %, J (%, — xt))'

n—00

Taking into account that x, — g as ¢ — 0, we have

lim sup(f (@) —q.J(x, — q)> = lirtn Sélp lim sup{f (q) —q.](x, — q))

n—0oQ0 n—00

< limsuplim sup(f(q) -q,]Jxn—q) —J(x, — xr)>~ (3.28)

t—0 n—00
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Since X has a uniformly Fréchet differentiable norm, the duality mapping J is norm-to-
norm uniformly continuous on bounded subsets of X. Consequently, the two limits are in-
terchangeable and hence (3.23) holds. From (3.17) and (3.18) we get (y, — q) — (x, —q) — O.
Noticing that J is norm-to-norm uniformly continuous on bounded subsets of X, we de-
duce from (3.23) that

limsup(f(q) - 4,J(y» — q))

n— 00

=limsup((f(q) - 4.)(xn — @) + (@) = @] n — @) =T (% — )))

n— 00

=limsup{f(q) — ¢,/ (x, — 9)) < 0. (3.29)

n—00

Finally, let us show that x, — g as n — oco. We observe that

2k
— JoulF ) ~£@) + (1 - @,)(G(x) - 4) + @ (F(@) - q) |
< ot (FO) ~f(@) + - @) (Gxa) — 9) | + 20lf (@) ~ 7T O — )
< o[ ) ~ @] + - )| Gx) — a1 + 20l (@) — 4.7 0 — 0))

<auplyn =l + (L —an)lxn — qll* + 20a{f (@) — 4. 30 — @))s

which implies that
-p a,(1-p) 2{f(q)-q,] (.- q))
Iy —qll® < (1— - an>||xn—q||2+ 2@ -2T0n=D) (g5
- P 1-aup 1-p
By the convexity of || - ||? and (3.2), we get
%1 = qll* < Bullxn — qll* + A= B llyn — ql*,
which together with (3.30) leads to
2 2 —p 2
%041 = qll” < Bullxn —qll” + (1 - ﬁn){ (1 ~1 an) % — gl
— 0P
L ll=p) 2@ -.]0,-a)
1-anp 1-p
1-B8.,)1-p)
= [1 T4 % — qlI®
— 0P
1-8,)01- 2F (@) - a.] (9, —
L 1=B-0)  20(@ -0 0n-9) (3.31)
1-anp 1-p

Applying Lemma 2.2 to (3.31), we obtain that x, — g as # — oo. This completes the
proof. d

Corollary 3.1 Let C be a nonempty closed convex subset of a uniformly convex and 2-
uniformly smooth Banach space X. Let Ilc be a sunny nonexpansive retraction from X
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onto C. Let the mapping B; : C — X be o;-inverse-strongly accretive for i =1,2. Let f : C —
C be a contraction with coefficient p € (0,1). Let S be a nonexpansive mapping of C into
itself such that F = Fix(S) N §2 # 0, where $2 is the fixed point set of the mapping G. For

arbitrarily given xy € C, let {x,,} be a sequence generated by

In=f ) + A — ) I — pyB) T — p2Bo)xy,
Xpi1 = B + (1= B)Syn, Y =0,

where 0 < p; < :—éfor i =1,2. Suppose that {«,} and {B,} are sequences in (0,1) satisfying
the following conditions:

(i) limysooay =0and Yy o2 oy = 00;

(ii) 0<liminf,, B, <limsup,_, . Bn<1.

Then {x,} converges strongly to q € F, which solves the following VIP:

(a-f@.)g-p) <0, VpeF.

Theorem 3.2 Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gateaux differentiable norm. Let I1c be a sunny nonexpan-
sive retraction from X onto C. Let the mapping B; : C — X be A;-strictly pseudocontractive
and o;-strongly accretive with o; + A; > 1 for i =1,2. Let f : C — C be a contraction with
coefficient p € (0,1). Let {S,,}52, be an infinite family of nonexpansive mappings of C into
itself such that F = (5, Fix(S;) N 2 # 0, where 2 is a fixed point set of the mapping G. For

arbitrarily given x € C, let {x,} be a sequence generated by

Yn = Wy + (L= o) (I = BT c(I = paBa)xy,
Kn+l = ﬂr{f(xn) +(1- lgn)Snym Vn >0,

(3.32)

where 1 — %(1 - ﬁ) < u; <1fori=1,2.Suppose that {o,} and {B,} are sequences in
(0,1) satisfying the following conditions:
(i) 0<liminfy,_ s oty <limsup,,_, o oty < 1;

(i) limy— o0 By =0andy ;.o By = 00;

(i) D02 1t = @t | < 00 07 ity o0 [t — 11/ = 05

(iv) 3021 1Bu = Bucal < 00 07 1imyi o0 1 /B = 1.
Assume thaty .-, sup,cp |Sux — Sy_1x|| < 00 for any bounded subset D of C and let S be a
mapping of C into itself defined by Sx = 1im,,_, oo Syx for all x € C and suppose that Fix(S) =
Mico Fix(S:). Then {x,} converges strongly to q € F, which solves the following VIP:

{a-f@,)q-p)<0, VpeF.

Proof It is easy to see that scheme (3.32) can be rewritten as

Y = pky + (1 — a,)G(x),

Xn+l = ﬂr(f(xn) +(1- ,Bn)Snym Vn>0.

(3.33)
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Take a fixed p € F arbitrarily. Then by Lemma 2.13 we know that p = G(p). Moreover, by

Lemma 2.10 we have

Iy =pll = [otu(®n = p) + A = ) (Gxn) = p) |
< dulln — pll + (1= )| Gxn) - p
< aullxg —pll + (1 — o)l — pll

= |z, —pll. (3.34)
From (3.34) we obtain

[%60s1 = Il = || Ba(F@n) = P) + (1= Ba)(Suyn — D) ||
< Bu(|f @) —f @) + [F®) - p[) + A= BISuy0 - Pl
< Bup |y —pll + Bu|[f(0) — || + (L= B)lly. - pll
< Bupll%n = pll + Bullf ) — || + A= B)ll%u — pll
= (1= B4 - p))%n = pll + Bulf(0) - P,
= (181 )l -l + Byt - p) - L L2

If () - pll }

smaX{llxo—pII,
1-p

which implies that {x,} is bounded. By Lemma 2.10 we know from (3.34) that {G(x,)} and
{y4} both are bounded.

Let us show that ||x,,1 —x,| — 0 and ||x, — y,|| — 0 as n — oco. As a matter of fact, from
(3.3) we have

Yn = OpXy + (1 - a,)G(x,),

Vn-1 = 0p1%p-1 + (1= 0y1)Glxp1), V> 1
Simple calculations show that
V= Vo1 = Qn(n = Xp1) + (@ — 1) (Kot — Glae1)) + (1= ) (G (%) — G(x01)).
It follows that

19 = Yua |l < ull®n = nca [l + Lot = a1 = Gloua) |
+ (1- )| Gxn) = Gl |
< @ llotn = Fnot |l + et — | |01 — Glnoa) |
+ (L= o) ll%n = Xl

= [lotn = %o [l + ety — et || 021 = Gxn) |- (3.35)
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Furthermore, from (3.33) we have

X+l = ,Br(f(xn) + (1 - lsn)Snynr
Xn = ﬁn—lf(xn—l) + (1 - ,Bn—l)Sn—lyn—lx Vn > 1.

Also, simple calculations show that

Xnsl — Xn = P (f(xn) _f(xn—l)) +(Bn - ﬂn—l)(f(xn—l) - Sn—lyn—l)
+(1- ,Bn)(Snyn - Sn—lyn—1)~ (3.36)

It follows from (3.35) and (3.36) that

%1 = %all < Bullf %) = ®nt) | + 1Bn = Buct | |[f @nt) = Su1ynca |

+ (L= B)ISun = Spaynl

< Bupl%n = Xua | + 1Br = Buca | [ f(en1) = Suann |
+ (1= B) (1S9 = Sudna | + 11SwYn-1 = Su-ryu-all)

< Bup 1% = Xncall + 1Bn = Buc | |[f (6u1) = Suayna |
+ (L= B) 1y = yual + 1Sun1 = Su-1yuall)

< Bup 1% = Xl + 1Bn = Buca | |f (6u1) = Suayna |
+ (1= B[ = Zna | + lotn = || %01 = G(xncn)|]
+18uYn1 = Sncryual

= (1= Bu(1 = p)) %0 = Znr | + 185 = Bucal [f (61) = Suayna |
+ lotn = @t | [ %1 = G@od) || + 1S0Yne1 = Su1Yna |

< (1= Bull = ) 1% — Xucall + M(loty = ctua| + 1B = Bucal)

+ ”Snyn—l - Sn—lyn—ln’ (337)

where sup,,_o {I[f (%) = Suyull + %: — G(x,) ||} < M for some M > 0. Utilizing Lemma 2.2,

from conditions (ii)-(iv) and the assumption on {S,}, we deduce that
lim ||%,41 — %, = 0. (3.38)
n—oQ

Since {x,} and {G(x,)} both are bounded, by Lemma 2.5 there exists a continuous strictly

increasing function g : [0, 00) — [0, 00), g(0) = 0 such that for p € F

lyn - pII>
= an”xn —P||2 + (1 - an) ”G(xn) —P”2 - 0[,,(1 - an)g(Hxn - G(xn) ”)
<oyl —plI* + A= )y — pII* — (1 = 0t)g ([0 — Glx) )

),

= [l = plI* = a1 = atn)g (|| — Gx) |
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which together with (3.33) implies that

1 — pII?
= [Bu(F @) £ B)) + (L= B S =) + BuFB) - 1) |
< B n) —f®)) + A= B)Suyn =) + 2Bulf () — T (01 — )
< Bulf @) —f @ + A = BISuyn = 217 + 284 ) = p 1601 - P
< Bup® 160 = pI* + A= By — I + 284 0) = p |11 — I
< Bupllx = pI* + A = B2 - plI* = 0tu0 = g (]| — Glx) [ )]
+ 28, |f®) = | %01 - p
= (1= a1 = ) 1% — PI* = (1 = Bu)tn (L — ct)g (|2 — Glx) | )
+ 284 (0) = p|[ |21
< % = p1% = (1= Bt (L — ) (|20 = Gx)])) + 284 f ) = p|| %1 — Il (3.39)

It immediately follows that

1- /3,,,)0!,4(1 - an)g(”xn - G(xy,) ||)
< % =PI = %ns1 = PI* + 2B4|[f @) = p| 15001 = Pl

< (I1en = Pl + 11 = PI) 1% = st | + 284 [ ®) = || 15031 — I

Since B, — 0, [|*4+1 — %] = 0 and O < liminf,_, o, < limsup,_, o, <1, we get
lim,, oo g(|lx, — G(x,,)]|) = 0 and hence

lim | %, — G(x,)| = 0. (3.40)
Thus, from (3.33) and (3.40) it follows that
lim [y, — %l = lim (1 - a,)| G(x) = x| = 0. (3.41)

On the other hand, we observe that

Xnsl —Xp = lgn (f(xn) _xn) + (1 - ﬂn)(Snyn - xn)
= ,Bn (f(xn) _xn) + (1 - /Sn)(Snyn _yn) + (1 - /Sn)(yn - xn)~

Then we have

A = BISyn = yull
= ”xnﬂ — %y — Bn (f(xn) _xn) -1=B)n - xn)”
< xns1 = xull + Ba Hf(xn) —Xn ” + (1= B)llyn — %l

< %41 = xull + By “f(xn) —Xn ” + [[yn = xull.
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Since B, — 0, ||%,41 — %,|| = 0 and ||x,, — y,|| = 0 as n — oo, we get
lim S5, -7 =0 and  lim [S,5, - x,] = 0. (3.42)
n—00 n—00

In the meantime, since ||x,, — G(x,)|| = 0 and |lx,, — y,|| = 0 as n — oo, we also get
lim ||y, - G(x,)| = 0. (3.43)
n—0o0

We note that

”SnG(xn) - G(xn)” =< HSnG(xn) = SuYn H + [1Suyn — xull + ”xn - G(xn)”

= “ G(xn) = Yn ” + 1Suyn — xull + ”xn - G(xn)”
From (3.40), (3.42) and (3.43), we obtain
lim ||S,G(x,) — G(x,) | = 0. (3.44)
n—0oQ
By (3.44) and Lemma 2.6, we have

”SG(xn) - G(xn)” = ”SG(xn) - SnG(xn)” + ”SnG(xn) - G(xn)”

— 0 asn— oo. (3.45)
In terms of (3.40) and (3.45), we have

”xn - an” ”xn - G(xn)” + ”G(xn) - SG(xn)” + ||SG(xn) - an ||

IA

IA

2”xn - G(x,) ” + “ G(x,) — SG(x) ”

— 0 asn— oo. (3.46)

Define a mapping Wx = (1 - 0)Sx + 6G(x), 6 € (0,1) is a constant. Then by Lemma 2.8 we
have that Fix(W) = Fix(S) N Fix(G) = F. We observe that

960 = Watull = |1 = 0)(xn — Sxn) + 0 (w0 — Glxn)) |

<@ -0)lx, — Sxul +6 ”xn - G(xn)”
From (3.40) and (3.46), we obtain
lim ||x, — Wx,|| =0. (3.47)
n—0Q
Now, we claim that

limsup(f(q) — ¢, (x, — q)) < 0, (3.48)

Hn— 00

where g = s—lim,_, ¢ x; with x; being the fixed point of the contraction x — #f(x) + (1—£) Wx.
Then x; solves the fixed point equation x; = #f (x;) + (1 — £) Wa,. Utilizing the arguments
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similar to those of (3.28) in the proof of Theorem 3.1, we can deduce that

lim sup(f(q) —q,](x, — q)) = limsup lim sup(f(q) —q,](x, — q))

n—00 t—0 n—00

< limsuplim sup(f(q) -q,]Jxy—q) —J(x, — xr)>'

t—0 n—00

Since X has a uniformly Gateaux differentiable norm, the duality mapping J is norm-to-
weak® uniformly continuous on bounded subsets of X. Consequently, the two limits are
interchangeable and hence the following holds:

limsup(f(q) - ¢,](x» — 9)) < 0. (3.49)

n—o0

From (3.38) we get (4.1 — q) — (¥, — g) — 0. Noticing the norm-to-weak* uniform conti-
nuity of / on bounded subsets of X, we deduce from (3.48) that

lim sup(f(q) -] (Xpi1 — 4)>

n—00

=limsup({f(q) — 4.J ®ni1 — q) =T %n — @) + {f (@) — @] (i1 — 7))

n— 00

=limsup(f(q) — ,J (x, — 9)) < 0. (3.50)

n—00

Finally, let us show that x, — g as n — 0o. We observe that

lyn = qll = [otn(xn — @) + (1 = ) (Gxi) = q) |

< dull%n —qll + (L= o) %0 — gl = 1% — 41,

and

1 — g1
— | BulFon) ~F@) + A= B S — @) + BulF@) - )|
< [Ba(F ) = £ (@) + A= B Sy = D] + 2B @) - 4T %1 — D))
< Bulf @) =f@ | + A= B)1Suyn = ql* + 284l @) — 4.T (61 — @)
< Bupll%n = qll* + (L= B yn — qll* + 2Bulf (@) — 4] (Kn1 — )
< Buollxn —qll* + 1= B)llxn — qlI* + 2Bulf (@) — @] %1 — )
= (1= Bu(1 = ) I1%n = qlI* + 2Bl (@) — 4,] (%1 — q))- (3.51)

Since Y 7 Bx = 00 and limsup,,_, . (f(q) — ¢,J (*us1 — g)) < 0, by Lemma 2.2 we conclude
from (3.51) that x,, — g as n — o0. This completes the proof. O

Corollary 3.2 Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which has a uniformly Gédteaux differentiable norm. Let I1c be a sunny nonex-
pansive retraction from X onto C. Let the mapping B; : C — X be )\;-strictly pseudocon-
tractive and a;-strongly accretive with a; + A; > 1 for i =1,2. Let f : C — C be a contrac-
tion with coefficient p € (0,1). Let S be a nonexpansive mapping of C into itself such that
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F =Fix(S) N 2 # 0, where $2 is a fixed point set of the mapping G. For arbitrarily given

x0 € C, let {x,} be a sequence generated by

Y =y + (L= )T — i B) (I — (1oBs)xy,
Xn+l = ﬁr{f(xn) + (1 - lgn)Syn; Vn>0,

where 1 — li‘f\i 1- 1;—‘7") < u; <1 fori=1,2. Suppose that {o,} and {B,} are sequences in
(0,1) satisfying the following conditions:
(i) 0 <liminfy_ o oty <limsup,,_, o, oty < 1;
(i) limy— o0 By =0andy ;.o By = 00;
(iil) Doy [t — o1 | < 00 o7 limy, o0 |0ty — @ty |/ B = 0
(iv) 3021 1Bu = Buoal < 00 07 1imy, o0 Br1 /B = 1.

Then {x,} converges strongly to q € F, which solves the following VIP:

(a-f@.)q-p) <0, VpeF.

Remark 3.1 Theorems 3.1 and 3.2 improve, extend, supplement and develop [14, Theo-
rem 3.1] in the following aspects. Although the iterative algorithm in Theorem 3.1 is an
implicit algorithm, we can derive the strong convergence of the proposed algorithm un-
der the same conditions on the parameter sequences {«,}, {8,} as in [14, Theorem 3.1].
The assumption of the uniformly convex and 2-uniformly smooth Banach space X in [14,
Theorem 3.1] is weakened to the one of the uniformly convex Banach space X having a

uniformly Gateaux differentiable norm in Theorem 3.2.

4 Relaxed extragradient composite algorithms

In this section, we propose and analyze a composite explicit iterative algorithm by the
two-step relaxed extragradient method for solving GSVI (1.1) and the common fixed point
problem of an infinite family of nonexpansive self-mappings {S,} in a 2-uniformly smooth

and uniformly convex Banach space.

Theorem 4.1 Let C be a nonempty closed convex subset of a uniformly convex and 2-
uniformly smooth Banach space X. Let I1c be a sunny nonexpansive retraction from X
onto C. Let the mapping B; : C — X be a;-inverse-strongly accretive for i =1,2. Let f : C —
C be a contraction with coefficient p € (0,1). Let {S,}32, be an infinite family of nonexpan-
sive mappings of C into itself such that F = (\;5, Fix(S;) N 2 # @, where $2 is a fixed point
set of the mapping G. For arbitrarily given xo € C, let {x,} be a sequence generated by

Yn = anf(xn) + (1 - Ol,,)S,,Hc(I - MIBI)HC(I - NZB2)xm
X1 = By + 1= Ba)SpIIc — i B)IIc( — uaBa)y,, Yn=>0,

(4.1)

where 0 < 1; < E’—éfor i =1,2. Suppose that {a,} and {B,} are sequences in (0,1] satisfying
the following conditions:

(i) limyooay =0andy 2 o, = 00;

(i) {Bu} C la,1] for some a € (0,1);
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(i) Y_02) lon — p1] < 00 or limy o0 0yt /0ty = 1;

(iv) 32021 1B = Bu-t| < 00 0r limymscc | By = Bl /ot = 0.
Assume that y ., sup,cp |S:x — Su_1x|| < 0o for any bounded subset D of C and let S be a
mapping of C into itself defined by Sx = 1im,,_, oo Syx for all x € C and suppose that Fix(S) =
Mico Fix(S:). Then {x,} converges strongly to q € F, which solves the following VIP:

{a-f(@.J(g-p) <0, VpeF.

Proof 1t is easy to see that scheme (4.1) can be rewritten as

I = anf () + (1= ) S, G (%),
Xn+l = lgnyn + (1 - ﬁn)SnG(yn): Vn > 0.

(4.2)

Take a fixed p € F arbitrarily. Then by Lemma 2.13 we know that p = G(p). Moreover, by

Lemma 2.12 we have

1yn =2l = [l (f@n) = p) + (1 = ) (SuGxa) - p) |
< au|[f ) = f D) + o f () - P + (1 = @) [ S4Gx) —
< auplxn —pll +an]f @) - p| + 0 - @,)| Gx,) - p|
< aupllxy = pll + au||f(p) - p|| + 1 - @)%, - pl|
= (1-au(l - p)) %0 - pll + | f () - p|. (4.3)

From (4.3) we have

%01 = Il = [ Ban =) + (1= B)(SuG ) - p) |
< Bullyn —pll + A = )| SuGlyn) - p|
< Bullyn —pll + (1= )] GO) - p||
< Bulyn —pll + A= By —pl
= |ly. —pll
< (1=, - p)llxs —pll + |[f ) - p|

= (1-au(1=p))llxn = pll + (1 —p)”f(lpi—_p”

|[f(l”)—19||}
1-p

= maX{llxo -plls

It immediately follows that {x,} is bounded, and so are the sequences {y,}, {G(x,)}, {G(y,)}
due to (4.3) and the nonexpansivity of G.
Let us show that ||x,.,; — x| — 0 as n — 00. As a matter of fact, from (4.2) we have

Yn = ar(f(xn) + (1 - an)SnG(xn)r
Yn-1= O5;1—]f(xn—1) + (1 —0-1)84-1G(Hym1), Y =1

Page 22 of 34
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Simple calculations show that

Yn—Yn-1 =0y (f(xn) _f(xn—l)) + (an - an—l)(f(xn—l) - Sn—lG(xn—l))
+(1- an)(Sn G(xu) = Sua G(xn—l))'

It follows that

190 = Yt | < ][ Gen) = f @nt) | + Lot = et | |[f (Rne1) = S G |
+ (1= )| S Glx) — S Gl |
< 1% =t | + ety — et | [ (1) = Sp1 G(ana) |
+ (1= ) ([ SnG ) = SuGnt) | + |2 G-1) = Sue1 Gxnr)||)
< 0 1% = Kt | + letn = et | | (1) = Sp1 G(xna) |
+ (1= o) (|| Gxn) = Gxnt) || + [[SnG(Xn-1) = Suo1 Gwn-1) |)
< Pl =2 [l + Lty = et || f (6-1) = Su1 G )|
+ (1= o) (1120 = X1l + || SuG(n-1) — Su-1Glonn)||)
< (1= an(1 = 0)) In = et | + Ity = o | [|[f (1) = S5 Glotnt) |

+ ”SnG(xn—l) - Sn—lG(xn—l) || . (44‘)
So, we have from (4.4)

152G ) = Su1 G|
< [$4GOn) = SuG )| + | S4GOn1) = Syt G|
< GO = GOr)| + 152G 1) — 11 G )|
<190 = yuall + | SuG 1) = Suc1 G |- (4.5)

On the other hand, from (4.2) we have

Xns1 = BuYn + (1- ﬂn)SnG(yyz),
Xp = lsn—lyn—l + (1 - ,Bn—l)Sn—lG(yn—l)'

Also, simple calculations show that

Xl — Xy = ,Bn(yn _yn—l) + (,Bn - ,Bn—l)(yn—l - Sn—lG(yn—l))
+ (1 - ﬂn)(sn G(y;q) - Sn—lG(y;q—l))- (46)

Thus, it follows from (4.4)-(4..6) that for all # > 1

141 = %

< Bullyn = Yn-1ll + 1Bn = Bucal | 911 = Su1 GOt |
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+ (1= B[S G ) = Spa1 Gyuar) |

< Bullyn = yuall + 1Bu = Bual | i1 = Sua GO |
+ (1= B 1y = yuall + [ S4GBu-1) = S1 Gy |)

<19 = Ynall + 1B = Bual [ Y11 = Suc1 G |
+ |84G 1) = Su1 G|

< (1= an(1 = ) 1% = X || + |t = | |[f ®nm1) = Sy G |
+ (181G n1) = Su1 G ) | + 1Bs = Bual | yn1 = Sua GOnn) |
+ (184G Bum1) = Su1 G |

< (1= (1= p)) 16 = Xnt | + M(Jetn — ctua| + 1B = Bt )

+ ”SnG(xn—l) - Sn—lG(xn—l)” + ||SnG(y;1—1) -Su

where sup, - o {Ilf (1) = SuGx)I + lyn — SuGya)|l} < M for some M > 0. Utilizing Lem-
ma 2.2, we deduce from conditions (i), (iii), (iv) and the assumption on {S, } that

limsup ||x,41 — %, = 0. (4.7)
n—0o0

In terms of (4.4), we also have that ||y, — y,-1|| = 0 as n — 0.
Letus show that ||x,,—y, | and ||x, —S,G(x,)|| = 0 as n — co.Indeed, since y, = a,,f (x,,) +
(1-0,)S,G(x,), we get

nli)ngo(l —-ay) ||SnG(xn) —Jn ” = nllfgo Ay ”f(xn) —In H =0,

which together with «,, — 0 implies that
lim ||S,G(x,) — yu| = 0. (4.8)
n—00

Observe that

641 = ull = (A= Bn) [ SuG ) = 7
< =B ([5G ) = SuG )| + [ S2Glxn) ~ )
=B (GO — Glan) | + [|$4Glac) = yu])
< =B (19 = %all + [ S Glx) = 3 )
(1= B)(

),

lyn = Xneall + 1w — xnll + HSnG(xn) ~Un

which together with condition (ii) implies that

1-
”xn+l _yn” S Tﬁn(”xnﬂ _xn” + ”SnG(xn) _yn H)

1_
< aﬂ(mel — all + ]| S G ) = 3 ).
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Obviously, from (4.7) and (4.8) we know that ||x,,; — ¥, || — 0 as n — oo. This implies that
1 = ¥l < N0 = Xl + %041 = Yull = 0 asm— o0. (4.9)
Also, from (4.8) and (4.9) we have
||x,, -8,G(x,) || <%y = yull + ||yn - SnG(x,,)H — 0 asmnm— oo. (4.10)
Let us show that ||x, — G(x,)|| = 0 as n — oo. Indeed, for simplicity, put g = I[Tc(p -
U2Bop), uy = Hc(x, — uaByx,) and v, = Ic(u, — wiBiu,). Then v, = G(x,). From
Lemma 2.11 we have

ln = qlI* = | Hc(@n — p2Baxy) — Mc(p — 112Bop) ||2

< ||%n = p = 2By — Bop) |

IA

90 = pII* = 22 (02 — k% 2) | Ban — Bop | (4.11)
and

v —plI*> = | My — p1Biun) — Mg — p11B1q) ”2
< |#n - q - 111(Biey, — B1gq) ||2

< lltn = qlI* = 2p1 (e = €2 paa ) | Busas, — Bagl|*. (4.12)
Substituting (4.11) into (4.12), we obtain

v = pI* < 1l = pII* = 2102 (ct2 = &> 1) | Boxs = Bop|®
=241 (01 = ie® ) 1 Busay, — Bag|1*. (4.13)

According to Lemma 2.2, we have from (4.2)

lyn = pI* = o (f@xa) — £ @) + (1 = @)(Suvn — ) + au(F () — p) |
< letn(FGen) =) + (1 = ) (Suvi = P)||” + 200lf (B) = 2. s — P))
< & f@n) —f @) + A= @) 1Suva — pI + 20ulf (0) — £, ] 3 — P))
< @np? 1% = pII* + A= a) v — plI* + 204{f (p) = p.] (s — P))

< 0wl —plI* + @ = o) |vs — I + 20, ||f (B) = p| Iy — P,

which together with (4.13) and the convexity of || - ||> implies that

||xn+1_p||2
=180 = p) + (1= B)(S:G ) - p)||*
sﬁnnyn—pnz+(1—ﬁn)||SnG(yn)—p||

< Bullyu—pI* + (1= )| GO) - 1|
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< Bullyn —pI* + (L= Ba)llyn - pII?
= ly. - pI>
< anpllan —pI* + L= a)lva =PI + 20 ||[f (p) — 2| Iy - Pl
< anplln = pl* + (L= a)llva — plI* + Mty
< aupllxn —plI* + 1 = an)[ 0 = pI* = 202 (2 — K 102) || Bax — Bop|®
—2p1(oa = k* 1) | Bity — Bigl*] + My,
= (1- oy = p))llxn — pII* = 2(1 — &) [ 2 (o2 — &> 112) | Box — Bop |
+ pa(oa — k1) 1Buty — Bug)*] + M,
< llxn = pII* = 21 — ) [ 2 (o2 — 6> 2) | Box — Bapll®
+ p1(on — €2 1) 1Bty — Bigl|*] + Micty, (4.14)

where sup, . {2][f(p) - plllly. — pll} < M for some M > 0. So, it follows that

21— ) [ pa(et2 = 5% ) | Baxn = Bopl|? + pr (01 = k2 111) 1Byt — Br]|*]
< 1% = pII? = 1%ns1 = I + My

= (”xn =l + 1%na —p”)”xn = Xl + Mty
Since 0 < u; < 5—5 for i =1,2, from (4.7) and «,, — 0 we obtain
lim ||Byx, —Bop|| =0 and lim ||Byu, — Bigq|l = 0. (4.15)
n— 00 n—0o0
Utilizing Proposition 2.1 and Lemma 2.1, we have

it = qlI> = | ey — paBaxy) — Me(p — 112Bop) ||

< (%0 — 12Boxy — (p — p2Bop),J (1 — q))

(% = 2, T (1t = q)) + p2(Bop — Box, J (i — q))

IA

=PI + it al” i ([~ 160~ o~ 0)])]

+ (12| Bap — Boxllllttn — 4,

which implies that

lletn = qll® < s = pI* = g1 (%0 = 10 = 0 = @)|}) + 212211Bop = Boullllun = gl (4.16)

In the same way, we derive
2
Ve —plI* = || Hc(un — p1Biuy) — Mclq - paBrg) |
< (tn — 1Br1ty = (q - 11B19),J (Vs - p))

= (tbn — 4,](vu — P)) + 11(B1qg — Buttn,J (v — p))
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1
=< E[”un —ql” + v = 1> - & (|t = va + 0 - 9)|)]

+ p1l|Big — Brutn [V — plI,

which implies that

Vi = pI* <ty = ql1* = @ (||ttn = v + (0 = @)||) + 214111 B1g = Baus |||V, — |-

Substituting (4.16) into (4.17), we get

v = pI* < 1% =PI = g1 (|0 = 60 = 0 = @) |) = 2([|ttr = v + (0~ 9)])

+ 202 ||Bop — Baxu ||| tn — qll + 2p111B1g — Buutu |||V = Pl

From (4.14) and (4.18), we have

%41 — pII*
< auplln —plI* + (1= )V — plI* + Myt
< aupllan = plI* + (L= )0 = pII* = &1 (|20 — s = (0 - 9)])
~&([|tn = va+ (0= q)|)) + 21211Bop — Baul| 1 — g
+ 20111 Big — Butu 1V — pIl] + My
< (1= an(t = )l = pII* = (1= @)@ (0 — s — (0 - D))
+@(Jttn = v+ 0 = )]))] + 210211 Bop — Boul 14 - ]

+2p111Biq — Bruy |||V — pIl + Moty

< lan = pI* = @ = @)1 ([| 0 = 100 = @ = D) + &2([|tn = vur + 0~ 0)])]

+242Bap — Baxullllttw — gl + 2p111Brg — Bruau |||V — pll + Mict,
which hence implies that

1 - an)|g(]|%n —un— 0 -a)|) +&(|ttn —ve + ©—9)])]
< 1% = pII* = 1%na1 — P11 + 211211 Bop — Boi | |4 — g
+2p11(1B1q — Biua |||V — Il + Mict,
< My + (1%, = pll + %521 = pII) 1% = %t | + 20421 Bop — B | 4 — gl

+2p1(|Big = Brunlllvs = pII-
Thus, from (4.7), (4.15) and «,, — 0 we have
Tim g ([0~ ~(p-)) =0 and  lim g([un~va+(p-2q)]) =0.
Utilizing the properties of g; and g», we deduce that

lim ”x,,—u,,—(p—q)” =0 and lim Hu,,—v,,+(p—q)” =0.

(4.17)

(4.18)

(4.19)

(4.20)
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From (4.20), we obtain

1% = vall < |2 = thn = 0 = @[ + [ttn = v + @ -@)| > 0 asn— oo.
That is,

,,IEEQ”’C” - G(x)| =0. (4.21)
On the other hand, we observe that

15:G @) = G@n) | < [[SuG ) = yu | + 170 = xull + |20 — Glax) - (4.22)
So, it follows from (4.8), (4.9) and (4.21) that

lim 5, G () — G(xa) | = 0. (4.23)
By (4.23) and Lemma 2.6, we have

”SG(xn) - G(xn)H E ”SG(?C,,,) - SnG(xn)H + ”SnG(xn) - G(xn)H

— 0 asn— oo. (4.24)

In terms of (4.21) and (4.24), we have

A

[l — S |

|0 = Gn) || + | Gxn) = SG(x) | + || SG () = S|

IA

2”xn - G(x,) ” + H G(xn) — SG(xn) ”

— 0 asn— 0. (4.25)

Define a mapping Wx = (1 - 0)Sx + 6G(x) and 6 € (0,1) is a constant. Then by Lemma 2.8
we have that Fix(W) = Fix(S) N Fix(G) = F. We observe that

”xn - Wxn” = ” (1 - 9)(xn _an) + e(xn - G(xn)) ” = (1 - 9)||xn - an” +0 Hxn - G(xn)”
From (4.21) and (4.25), we obtain

lim ||x, — Wa,| = 0. (4.26)

n—00

Utilizing the arguments similar to those of (3.29) in the proof of Theorem 3.1, we can
deduce that

limsup(f(q) - 4,J(y» — q)) < 0. (4.27)

n—0o0

Finally, let us show that x, — g as n — 00. We observe that

1y, — ql?
= |atn (F @) = (@) + (A = ) (S2G (%) - q) + @ (f@) - ) |
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= Han (f(xn) _f(q)) +(1- an)(SnG(xn) - 61) ”2 + 20[;'1(]((61) - q,J(n — q))
< &l fn) —f @] + U - )| $aG ) — q|* + 20{f (@) — 4.7 (3 — @)
< aupllxn —qlI* + 1= )% — qlI* + 20(f (@) — 4, (v — )

= (1= @ = p)llxn — ql* + 204 (q) — 4. (v — ). (4.28)

By the convexity of || - || and (4.2), we get

2
%1 = qll* < Bullyn — gll* + @ = B)|SxG ) = q||” < lyu — al*,

which together with (4.28) leads to

(%641 — 61||2 = (1 —a,(1- /0)) ll%, — 61||2 + 20ln(f(61) -] (yn — 61))

2(f(q)—q,](yn—q)>.

= (1= a,(1= )%, — qI* + (1= p) - T,

(4.29)

Applying Lemma 2.2 to (4.29), we obtain that x, — ¢ as n — oo. This completes the
proof. O

Corollary 4.1 Let C be a nonempty closed convex subset of a uniformly convex and 2-
uniformly smooth Banach space X. Let Ilc be a sunny nonexpansive retraction from X
onto C. Let the mapping B; : C — X be w;-inverse-strongly accretive for i =1,2. Let f : C —
C be a contraction with coefficient p € (0,1). Let S be a nonexpansive mapping of C into
itself such that F = Fix(S) N §2 # 0, where §2 is a fixed point set of the mapping G. For
arbitrarily given xo € C, let {x,} be a sequence generated by

Yn = of (%) + (1= 00,) ST (I — 1 By) (I — 12 By)xy,
X1 = Buyn + 1= B)SHcI — i B)IIc( — naBy)y,, Yn=>0,

where 0 < u; < :—éfor i =1,2. Suppose that {a,} and {B,} are sequences in (0,1] satisfying
the following conditions:

(i) limyooay =0and Yy o2 oy = 00;

(ii) {Bn} C la,1] for some a € (0,1);

(i) Yoy loty — aya] < 00 or limy, s o0 01 /0ty = 1;

(iv) Z:czl |Bn — Bu-1l < 00 or limy, 0 | By — Bu-1l/aty = 0.
Then {x,} converges strongly to q € F, which solves the following VIP:

{a-f(@,J(g-p)) <0, VpeF.

Remark 4.1 Theorem 4.1 improves, extends, supplements and develops [14, Theorem 3.1]
in the following aspects. The composite iterative algorithm in [14, Theorem 3.1] is ex-
tended to develop the composite iterative algorithm in Theorem 4.1. Compared with the
iterative algorithm in [14, Theorem 3.1], each iteration step in the iterative algorithm of
Theorem 4.1 is very different from the corresponding step in the iterative algorithm of [14,
Theorem 3.1] because each iteration step in the iterative algorithm of Theorem 4.1 involves
the composite operator S, I1c(I — p1B1)I1c(I — 12B;). In the proof of [14, Theorem 3.1],
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Lemma 2.4 was used to derive ||x,,1 —,|| = 0. However, in the proof of Theorem 4.1, we
only use Lemma 2.2 to derive ||x,41 — %,|| — 0. Thus, Theorem 4.1 drops the restriction

limsup,,_, ., B. < 1.

Corollary 4.2 Let C be a nonempty closed convex subset of a real Hilbert space H. Let the
mapping B; : C — H be a;-inverse-strongly monotone for i =1,2. Let f : C — C be a con-
traction with coefficient p € (0,1). Let {S,,}7°, be an infinite family of nonexpansive map-
pings of C into itself such that F = (i<, Fix(S;) N 2 # ¥, where $2 is a fixed point set of the
mapping G. For arbitrarily given x, € C, let {x,} be a sequence generated by

In = pf (%) + (1 = ) S, Pc - m1B1)Pc( — paBy)xy,
Xp+l = ﬁnyn + (1 - ﬁn)SnPC(I - MIBI)PC(I - M2BZ)yn: Vn >0,

where 0 < u; < 2a; for i =1,2. Suppose that {«a,} and {B,} are sequences in (0,1] satisfying
the following conditions:
(i) limy ooy =0andy ooy a, = 00;

(i) {Bn} C la,1] for some a € (0,1);

(i) Do) loy — ty1] < 00 0r limy, s o0 0yt /oty = 1;

() 2% 1By = Buct] < 00 07 limyaoo | Bn = Bl = 0.
Assume that y ., sup,p |S:x — Su_1x|| < 0o for any bounded subset D of C and let S be a
mapping of C into itself defined by Sx = 1im,,_, oo Syx for all x € C and suppose that Fix(S) =
Moo Fix(S:). Then {x,,} converges strongly to q € F, which solves the following VIP:

{a-f(@.J(g-p) <0, VpeF.

Corollary 4.3 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
the mapping B; : C — H be a;-inverse-strongly monotone for i =1,2. Let f : C — C be a
contraction with coefficient p € (0,1). Let S be a nonexpansive mapping of C into itself such
that F = Fix(S) N §2 # 0, where $2 is a fixed point set of the mapping G. For arbitrarily given
x0 € C, let {x,} be a sequence generated by

Y = f (%) + (1 — 0t )SPc(I — p1B1)Pc( — o Bo)xy,
X1 = PBuyn + 1= Bu)SPc( — 1 BY)Pc(I — (2 By)y,, VYn >0,

where 0 < ; < I‘j—éfor i =1,2. Suppose that {a,} and {B,} are sequences in (0,1] satisfying
the following conditions:
(i) limy ooy =0andy ooy a, = 00;
(i) {Bn} Cla,1] for some a € (0,1);
(ii)) Y 07) oty — otyen | < 00 o7 limy,s o0 0yt /0ty = 1;
(iv) 2201 1Bu = Buotl < 00 or limyusoq | By = Byt /0ty = 0.
Then {x,} converges strongly to q € F, which solves the following VIP:

(a-f(@,q-p)<0, VpeF.
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Now, we say thata mapping 7 : C — C has property (x) if there exists a constant k € [0,1)
such that

2

1T - Tyl? < lx—ylI* + k| (I - T)x— (I - T)y|", VxyeC.

Whenever k = 0, then T is nonexpansive. Put A =1 — T, where T : C — C is a mapping
having property (). Then A is (1 — k)/2-inverse-strongly monotone. Indeed, we have

|- A)x— U -Ay|* < lx-yI? + klAx - Ay, ¥x,y€C.
Since H is a real Hilbert space, we have
2
[ = A)x - (I = A)y|” = llx = ylI* + | Ax = Ayl|* = 2(x - y, Ax — Ay),
and hence
1-k 2
(x—y,Ax - Ay) > - [Ax — Ayl

2
= |0-Dx-U-Ty| = 7= lx-vl
2 2 2 1+k\2 )
= =Ty < =y + k|0 = Tho— 0= Ty < ( 1 ) =0l

Thus, if T is a mapping having property (x), then T is Lipschitz continuous with constant
%, ie, ||Tx - Ty|| < % lx — y|| for all x,y € C. We denote by Fix(T) a fixed point set of
T. It is obvious that the class of mappings having property (x) strictly includes the class of
nonexpansive mappings.

Further, utilizing Corollary 4.3 we first derive a strong convergence result for finding a

common fixed point of a nonexpansive mapping and a mapping having property (x).

Corollary 4.4 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C — C be a mapping having property (x) and let S : C — C be a nonexpansive mapping
such that Fix(S) NFix(T) # 0. Let f : C — C be a contraction with coefficient p € (0,1). For
arbitrarily given xy € C, let {x,} be a sequence generated by

Yn = Olnf(xn) + (L= 0,)S((L = M)xy + A Ty),
Xn+l = ,Bnyn + (1 - ﬂn)S((l - )‘)yn + )‘Tyn): Vn > 0;

(4.30)

where 0 < X < 1-k. Suppose that {«,} and {B,} are sequences in (0,1] satisfying the following
conditions:
(i) limyooay =0andy 2 o, = 00;
(il) {Bu} C la,1] for some a € (0,1);
(i) Y_02) loy — y1] < 00 or limy o0 0yt /0ty = 1;
(iv) D021 1Bu = Bual < 00 or limy, o0 By = Bual/aty = 0.
Then {x,} converges strongly to q € Fix(S) N Fix(T), which solves the following VIP:

(¢-f(@),q-p)<0, VpeFix(S)NFix(T).
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Proof In Corollary 4.3, we put By =1 — T, By = 0 and p1 = A. Then GSVI (1.1) is equivalent
to the VIP of finding x* € C such that

(le*,x —x*) >0, VxeC.

In this case, By is (1 — k)/2-inverse-strongly monotone. It is not hard to see that Fix(7') =
VI(C, By). As a matter of fact, we have, for A > 0,

ueVI(C,B) < (Biu,y-u)>0 VyeC
& (u—-ABiu-u,u-y)>0 VyeC
< u=Pc(u—ABu)
& u=Pc(u—riu+ATu)
& (- u+ATu—-uu-y)>0 VyeC
& (u-Tu,u-y)<0 VyeC
& u=Tu
< ueFix(T).

Accordingly, we know that F = Fix(S) N £2 = Fix(S) N Fix(7T),

Pc(I — p1B1)Pc(I — puaBa)xy = Pc(l — pu1Bi)xy,

= Pc((1 = A)xy + ATx,) = (1= M)y + AT,
and

Pc(I = p1B1)Pc(I — poBs)y, = Pc(I — p1iBi)yy,

= Pc((L= M)yn + ATyn) = (1 = M)y + ATy,

So, scheme (4.2) reduces to (4.30). Therefore, the desired result follows from Corol-
lary 4.3. O

Utilizing Corollary 4.3, we also have the following result.

Corollary 4.5 Let H be a real Hilbert space. Let A be an a-inverse-strongly monotone
mapping of H into itself and let S be a nonexpansive mapping of H into itself such that
Fix(S)NNA™0 #@. Let f : H — H be a contraction with coefficient p € (0,1). For arbitrarily
given xo € H, let {x,} be a sequence generated by

Vn = ar(f(xn) + (1 - an)S(xn - )\Axn):
Xn41 = Budn + (1- lgn)S(Yn - }\Ayn)y Vn=>0,

(4.31)

where 0 < A < 2. Suppose that {«,} and {B,} are sequences in (0,1] satisfying the following
conditions:
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(1) hmn—>oo oy = 0 and Z;io o, = 00;
(ii) {Bu} C [a,1] for some a € (0,1);
(iii) Zil |ty — 1| < 00 or limy,_s oo 1/t = 1;

(iV) Zzil |By — Bu-1| < 00 or lim,,_, oo | By — Bu-1l/at,; = 0.
Then {x,} converges strongly to q € Fix(S) N A~10, which solves the following VIP:

({a-f@,q-p)<0, VpeFix@S)nA™o.

Proof In Corollary 4.3, we put C = H, B; = A, By = 0 and p; = A. Then we know that Py, =/
and A~'0 = VI(H,A) = 2. Moreover, we know that F = Fix(S) N £2 = Fix(S) N A0,

Pc(I = pB)Pc(I — paBa)x, = %, — AAx,y,
and
Pc(I = pB)Pc(I = (12B2)yn = Yu — LAY,

So, scheme (4.2) reduces to (4.31). Therefore, the desired result follows from Corol-
lary 4.3. 0
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