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Abstract

In this paper, we introduce the methods for finding a common element of the set of
fixed points of a k-strictly pseudononspreading mapping and a finite family of the set
of solutions of variational inequality problems. The strong convergence theorem of
the proposed method is established under some suitable control conditions.
Moreover, by using our main result, we prove interesting theorem involving an
iterative scheme for finding a common element of the set of fixed points of a
Kk-strictly pseudononspreading mapping and a finite family of the set of fixed points
of a k;-strictly pseudocontractive mappings.
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1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that the map-
ping T': C — C is said to be nonexpansive if | Tx — Ty|| < ||x — y|| for all x,y € C. In 2008,
Kohsaka and Takahashi [1] introduced the nonspreading mapping in Hilbert spaces H
which is defined as follows: 2| Tx — Ty||> < || Tx - y||* + ||x — Ty||?, ¥,y € C. Following the
terminology of Browder and Petryshyn [2], in 2011, Osilike and Isiogugu [3] introduced
that the mapping 7 : C — C is called a «-strictly pseudononspreading mapping if there
exists « € [0,1) such that

1T = TyI1 < =yl + x| (I = T)x = (I = T)y|* + 2(x — T,y — Ty)

forallx,y € C. Clearly every nonspreading mapping is « -strictly pseudononspreading; see,
for example, [3]. A point x € C is called a fixed point of T if Tx = x. The set of fixed points
of T is denoted by F(T') = {x € C: Tx = x}.

Let A: C — H. The variational inequality problem is to find a point u € C such that

(Au,v—u) >0 (1.1)

for all v € C. The set of solutions of (1.1) is denoted by VI(C, A).

The variational inequality has emerged as a fascinating and interesting branch of math-
ematical and engineering sciences with a wide range of applications in industry, finance,
economics, social, ecology, regional, pure and applied sciences; see, e.g., [4-7].
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A mapping A of C into H is called a-inverse strongly monotone (see [8]) if there exists a
positive real number « such that

(x =9, Ax = Ay) > a||Ax - Ay||?

forallx,y € C.

In 2003, Takahashi and Toyoda [9] proved a convergence theorem for finding a common
element of the set of fixed points of nonexpansive mappings and the set of solutions of
variational inequalities for «-inverse strongly monotone mappings as follows.

Theorem 1.1 Let K be a closed convex subset of a real Hilbert space H. Let o > 0. Let A be
an a-inverse strongly monotone mapping of K into H, and let S be a nonexpansive mapping
of K into itself such that F(S) N VI(K,A) # 9. Let {x,} be a sequence generated by xy € K
and

K1 = Uy + (L= a,)SPc( — AA)xy,

for every n = 0,1,2,..., where {\,} C [a,b] for some a,b € (0,2a) and {a,} C [c,d]
for some c,d € (0,1). Then {x,} converges weakly to z = F(S) N VI(K,A), where z =

limy,—, 0o Pr(S)nVI(K,A) %0

Recently, Osilike and Isiogugu [3] proved strong convergence theorems for strictly

pseudononspreading mappings as follows.

Theorem 1.2 Let C be a nonempty closed convex subset of a real Hilbert space and let
T :C — C be a k-strictly pseudononspreading mapping with a nonempty fixed point set
F(T). Let 8 € [k,1) and let {0, }32, be a real sequence in [0,1) such that lim,,_, &, = 0 and
Yoo oy =00. Let u € C and let {x,}32, and {z,)2, be sequences in C generated from an
arbitrary x, € C by

Xl = Autb + (1 =)z, Yn 21,

1 n=1 ek
Zu=15 D k-0 Tgx,, VYn>1,

where Tg = Bl + (1 - B)T. Then {x,};2, and {z,};>, converge strongly to Pr(ryu, where Pr(r) :
H — F(T) is the metric projection of H onto F(T).

Theorem 1.3 Let C be a nonempty closed convex subset of a real Hilbert space and let T :
C — C be a k-strictly pseudononspreading mapping with a nonempty fixed point set F(T).
Let B € [k,1) and let Tg = BI + (1 — B)T. Let {o,}2, be a real sequence in [0,1) satisfying
the conditions

(C1) lim,_, ooty =0 and

(C2) Y 02 oy = 00.
Let u € C be a fixed anchor in C and let {x,}2, be a sequence in C generated from an
arbitrary x, € C by

X1 =0ttt + (L —a,) Tpy, n>1 (1.2)

Then {x,}52, converges strongly to a fixed point p of T
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Inspired and motivated by [3] and the research in the same direction, we prove a
strong convergence theorem of «-strictly pseudononspreading mappings and introduce
the methods for finding a common element of the set of fixed points of a «-strictly
pseudononspreading mapping and a finite family of the set of solutions of variational in-
equality problems. Moreover, by using our main result, we prove an interesting theorem
involving an iterative scheme for finding a common element of the set of fixed points of
Kk -strictly pseudononspreading mappings and a finite family of the set of fixed points of
k;-strictly pseudocontractive mappings.

2 Preliminaries

We need the following lemmas to prove our main result. Let H be a real Hilbert space
and let C be a nonempty closed convex subset of H, let P¢ be the metric projection of H
onto C, i.e., for x € H, Pcx satisfies the property

¥ — Pcx|| = min ||lx - y|l.
yeC

The following characterizes the projection Pc.

Lemma 2.1 (See [10]) Given x € H and y € C. Then Pcx =y if and only if the following
inequality holds:

(x-y3y-2)>0, VzeC.

Lemma 2.2 (See [10]) Let H be a Hilbert space, let C be a nonempty closed convex subset
of H and let A be a mapping of C into H. Let u € C. Then, for 1. > 0,

u=PcI-2Au < uecVICA),
where Pc is the metric projection of H onto C.
Lemma 2.3 (See [11]) Let {s,} be a sequence of nonnegative real numbers satisfying
Sn+l = (1 - an)sn + 5;1; Vn=>0,
where {a,,} is a sequence in (0,1) and {8,} is a sequence such that
(1) o020 =00,
(2) limsup,,_, ., g_z <00rY 2% 18,] < 00.
Then lim,_, 0 S, = 0.
Lemma 2.4 (See [11]) Let {s,} be a sequence of nonnegative real numbers satisfying

Spr1 = (L= 0ty)sy + 0By, V>0,

where {a,,}, {Bn} satisfy the conditions

(1) {2} C[0,1], 152, oty = 00,

(2) limsup,_, o By <0 0r Y o2 lnful < 00.
Then lim,_, s, = 0.
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Lemma 2.5 (See [12]) Let E be a uniformly convex Banach space, let C be a nonempty
closed convex subset of E and let S : C — C be a nonexpansive mapping. Then I — S is

demi-closed at zero.

In 2009, Kangtunykarn and Suantai [13] defined an S-mapping and proved their lemmas

as follows.

Definition 2.1 Let C be a nonempty convex subset of a real Banach space. Let {T;}Y, be

a finite family of nonexpanxive mappings of C into itself. For each j =1,2,...,N, let o; =

(a{,a’z,aé) €I x I x I, wherel €[0,1] and a{ +a+ aé = 1. Define the mapping S: C — C

as follows:

Uy = oy iUy + ayUy + a3,
_ 2 2 2
UQ =0y T2LI1 +oz2L[1 +Ot3[,

Us = Olig) TsU, + C(;’UQ + Olg]; (2.1)
N_ll,

N-1 N-1
uN—l =0 TN_luN_z + oy UN—Z + 03

S=Uy=aNTyUy_1 +ad Uy +all.
This mapping is called an S-mapping generated by T3, Ts, ..., Ty and oy, a0y, . .., oN-

Lemma 2.6 Let C be a nonempty closed convex subset of strictly convex Banach space. Let
(TN, be a finite family of nonexpanxive mappings of C into itself with ﬂﬁl F(T;) #9 and

let a; = (o}, &5, 08) € I x I x 1,j=1,2,3,...,N, where I = [0,1], o] + & + & = 1, &] € (0,1)
forallj=1,2,...,N -1,aN € (0,1], o), os € [0,1) for all j = 1,2,...,N. Let S be a mapping
generated by Ty, T, ..., Ty and oy, 3, ..., an. Then F(S) = ﬂf\il F(T)).

Remark 2.7 It is easy to see that the mapping S is a nonexpansive mapping.

Lemma 2.8 Let C be a nonempty closed convex subset of H. Let T : C — C be a k-strictly
pseudononspreading mapping with F(T) #@. Then F(T) = VI(C,(I - T)).

Proof 1t is easy to see that F(T) C VI(C,(I-T)). PutA=1-T.Letz € VI(C,A) and z* €
F(T). Since z € VI(C,A), we have

y-z,U-T)z)=0, VyeC. (2.2)
Since T is a k-strictly pseudononspreading mapping, we have

”Tz— Tz*”2 = ||(1—A)z—(I—A)z*H2
= |(z-2") - (4z - 42") |

= |z-2* H2 + |Az - Az ||2 -2(z 2", Az - AzZ¥)
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= |z=z|* + 142l - 2(z - 2*, A2)
< ||z—z*H2 + /<||(I— Tz-I-T)z* ||2 + 2(z— Tz,z" - Tz*)

= ”Z—Z*H2+K”([—T)Z 2,

which implies that

1_TKIIZ— Tz|* < (z—2",(I - T)z)
= (" -z, (I-T)z)

<0.

Then we have z € F(T). Therefore VI(C,(I — T)) C F(T). Hence VI(C,(I — T)) = F(T).
O

Remark 2.9 From Lemmas 2.2 and 2.8, we have F(T) = F(Pc(I — A(I - T))), VA > 0.

Example 2.1 Let T: [-1,1] — [-1,1] be defined by

x+4 :
2 ifxe]0,1],
Tee 175 [0,1]
£ ifxe [-1,0).

To see that T is k -strictly pseudononspreading, if for all x, y € [0, 1], then we have Tx = %

and Ty = y%}. From the definition of T, we have

2

4 4
|Tx — Ty|* = e
5 5
1 2
_E|x_y|:

|- Ty = =Ty = 5= Tx = (- T’

x+4 y+4 2
= |x - — —
5 U7 s

2

4x—-4 4y-4
5 5

4x — 4y 2

5

16| 2>0
= — (X —
25 yrz

and

x+4 y+4 4x -4 4y-4
2(x—Tx,y — Ty) = 2(x — - =2

5 775 5 ' 5

= %(x—l)(y—l)zo. (Since 0 <,y <1,(x—-1)(y—1)>0.)
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From the above, then there exists « € [0,1) such that

|x—y|2+/<|(l—T)x—(I—T)y|2+2(x—Tx,y— Ty) > |x—y|?

1 2
%Ix—yl

| Tx — Ty|*.

For every x,y € [-1,0), we have Tx = 45;", Ty = 4%. From the definition of T, we have

4-x 4-y|?
Tx-Ty>=|—> - 2
|Tx - Ty| '5 z

y—x|?

"l 5

1

=—|x—ylz,

|I-T)x— (- T)y| |x = Tx - (y - Ty)|

5
= slx-y=0
and
2x—Tr,y—Ty) =2 4-y
X — 1X, X — ,——
y-Ty = z z
6x 6 4
-2 y >
5

8
S (Gr-2)(3y-2)

_ ;is (3x(3y - 2) - 23y - 2))

—8(9 6x — 6y +4)
= 5z 9%y —6x -6y +

>0. (Since -1 <ux,y<0,9%y,—6x,-6y>0.)
From the above, then there exists « € [0,1) such that

|x—y|2+l<|(1—T)x—(I—T)y|2+2(x—Tx,y—Ty) > |x -y

1 2
%Ix—yl

| Tx — Ty|>.

Page 6 of 15
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x+4

Finally, for every x € [0,1] and y € [-1,0), we have Tx = = and Ty = Ty From the defini-
tion of T, we have

x+4 4-y 2

Tx - Ty|* = -
| Tx - Tyl s =

Ly
= —lx+y
250 T

=D~ (=T = |5~ Tx - (- T)|*

x+4 -y
55t -5)

Jax-4-(6y-4)
- 5

2

—1|4 6y>>0
S5 TR =
and

2(x—Tx,y—Ty) =

x5
2

x46y 4>

16
=2—(x DBy-2)

16
= —(3y(x-1)-2(x-1))

25
= g(By(x—l) +2(1-x)) > 0.

(Since 0 <x <1land -1 <y<0,then3y(x-1),2(1-x)>0.)
From the above, then there exists « € [0,1) such that

= y? +ic|(I = T = (I = TYy|* +2(x - Te,y - T) > |x -y

=« - 2xy +y*

= x% + 2xy +y* — dxy

> (x +y)2 (Since —4xy > 0.)
1
%|x+y|2

| Tx — Ty|*.

Then, for all x,y € [-1,1], we have
|Tx - Ty|* < lx—yI> + k| - T)x - (I - T)y|2 +2(x — Tx,y — Ty)

for some « € [0,1). Hence T is a «-strictly pseudononspreading mapping. Observe that
1€ F(T). From Lemma 2.8, we have 1 € VI([-1,1],1 - T).
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3 Main results

Theorem 3.1 Let H be a real Hilbert space and let C be a nonempty closed convex subset
of H. For every i =1,2,...,N, let B; : C — H be §;-inverse strongly monotone mappings
and let T : C — C be a «-strictly pseudononspreading mapping for some k € [0,1). Let
G;: C — C be defined by Gix = Pc(I — nB;)x for every x € C and n € (0,28;) for every i =

1,2,...,N, and let § = (o, o, o) € I x I x I,j=1,2,3,...,N, where I = [0,1], &, + o, + o} =
Lo, e©1) forallj=1,2,....N -1, al € (0,1], &, € [0,1) forall j = 1,2,...,N. Let
S : C — C be the S-mapping generated by Gy, Ga,...,Gy and 81,8,...,6n. Assume that
F=F(T)N ﬂf\il VI(C,B;) # 0. For everyn € N, i=1,2,...,N, let x1,u € C and {x,} be a

sequence generated by
Kyl = Qplh + ﬂ,,PC(I - A, (I - T))x,, + YuSx,, VneN, (3.1)

where {atu}, {Bu}, {Vu}, {An} C (0,1) such that oy + Bu + yn =1, Bu € [c,d] C (0,1), {As} C
(0,1 - k) and suppose the following conditions hold:
(i) limy ooy =0andy oo ya, =00,
(i) Y07 Ay <00,
WD) 302y s = Anly 2002y [Vt = Vuls 2oy [@n = @l 2020 1Brer = Bul < 00
Then the sequence {x,} converges strongly to z = Pzu.

Proof Let x* € §. First, we show that ||Pc(I — A, A)x, — x*|| < ||x, —x*||, where A=1-T.
From Remark 2.9, we have x* € F(Pc(I — 1,A)). From the nonexpansiveness of Pc, we have
2 2

[P = AuA)xy —x*||” = | PcU = 1pA)xy — Pc = Ay A)x™||

< |t = npA)xy — (I = 2, A)x*| . (3.2)

Since T is a k-strictly pseudononspreading mapping and A = I — T, we have

| T, - Tt |* = || = Ay, — (1 - A)x*|?
= (o %) = (A — A4x7)
= oo =& |* = 20w — &, Axy) + A, |12

< ||xn —x* ||2 +K ||Axn —Ax* ||2 + 2(Axn,Ax*>

= [ —a*|* + e Az, %,
which implies that
(1= 1A% 1> < 2( — 5%, Ax). (3.3)
From (3.3), we have

||(I — A, — (I = 1,A)x" Hz = || (xn - x*) — A (Ax,, —Ax*) ”2
= [t =& [|* = 2000 — &, Ax,) + A2 A, |12

< [0 =& * = 2u@ = )1 A%, I + A2 ]| A, |
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= [t =27 = 2 (@ = 1) = 1) A, 2

< =2 (3.4)
From (3.4) and (3.2), we can imply that
”PC(I — A A)x, —x* H < ||x,, —x* || (3.5)

Next, we will show that the mapping G, is a nonexpansive mapping for everyi=1,2,...,N.
Let x,y € H. Since B; is §;-inverse strongly monotone and 0 < n < 2§;, for every i =
1,2,...,N, we have

| =nB)x— U -nBYy| = |x—y-nBx-By)|
= v =yI* = 20¢x ~ y, Bix ~ Byy) + n*||Byx — Byy|”
< llx = yI1> = 26m|1Bix - Biy||* + n*(|Bix — Biy|)?
= [l = yl1* + n(n - 28))||Bix - Biy|*
< Il —ylI*. (3.6)
Thus (I — nB;) is a nonexpansive mapping for every i =1,2,...,N. The proof of the above
result can be also found in Imnang and Suantai [14]. From the definition of G;, we have G; =

Pc(I — nB;) are nonexpansive mappings forall i =1,2,...,N. Since x* € §, by Lemma 2.2,

we have
x*=Gux* =Pc(I-nB))x*, Vi=1,2,...,N. (3.7)

From Lemma 2.6, we have x* € F(S). Next, we will show that {x,} is bounded. From the
definition of x,, and (3.5), we have

[onar = 2% = [Jotn (6 = &%) + Bu(Pc (I = AnI = T))xn — %*) + ¥ (S — x¥) |
< apllu— x| + Bul|Pc(I = 1nlI = T))xp — % || + v || S — ¥
§an||u—x*|| +(1—otn)||x,,—x* || (3.8)
Put K = max{|lu—«*||, |1 —x*||}. From (3.8) we can show by induction that ||x,, - x*|| < K,

Vn € N. This implies that {x,} is bounded and so are {Sx,,}, {Pc(I — A,(I — T))x,}. Next, we
will show that

1+k

[ Zoen =] = Tl =71 (39)

1-«
Since T is k -strictly pseudononspreading, we have

|| Tx, —x* H2 < Hxn —x* H2 +K || I-Tx, - -T)x* ||2 + Z(x,, — Tx,,x* — Tx*)

= Joa =" i (=) = (T = 27) |

= (= |+ [ T =2 =, T, ),
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which implies that
a- K)” Tx, —x* ||2 <1+ /c)||x,, —x* ||2 + 2k ||xn —x* || || Tx, — x* || (3.10)
Putting A = || Tx,, — x*|| and B = ||x,, — x*|| in (3.10), we have
0> (1-x)A%-(1+«)B*-2«AB
= (1-«)A* ~kAB - ((1 + k)B* + kAB)
= (1-x)A*> ~kAB + AB - ((1+k)B* + kAB + AB)

= (1-«)(A> +AB) - (1 +x)(B* + AB))

= (1-k)A(A + B) - (1 +k)B(B+A)),

which implies that

1+k

A< B. (3.11)

1-«

From (3.11) we have (3.9). Since ||x,, —x*|| < K, Vn € Nand (3.9), we have {Tx,} is bounded.
Next, we will show that

lim %41 = x4l = 0. (3.12)
n—00
From the definition of x,, we have

[%ns1 = %l < ||tuts + BuPc(I = k(I = T))%n + VS

— o1t = BuaPe (I = yer (I = T)) %t = Vi1 Sk |

= |atnts + BuPc(I = AnI = T))%n = BuPc (I = Ana(I = T))%u
+ BuPc(I = Ayt (I = T))on-1 + YuS%n — YuS&no1 + YnSkny
— ottt = Buaa Pe (I = Apa (I = T)) %t = Vo1 S |

< latn = atuaa |l + B || P (I = Aul = T))%n = Pc(I = Apor (I = T)) s |
+1Bn = Buatl| P (I = huea (I = T)) 2t || + ¥l Sx = S
+ Vi = Vn [ Sl

<ty = ol + Bul| (e = 251) = AT = TNty + hon(I = TN
= oI = Ty + Apa (I = T |
1B = Bual|Pc(I = na (I = T)) |
+ Vull%n = Xnoall + 1V = Vaa [ 1% |

<ty = el + B (%0 = %a | + 2 | (L= TNty = (1 = T)atyn |
+ on = dona || (U= T)xpa])) + 180 = Baca | Pe (I = Hea (= T)) |

+ Yulloon = %1l + 1V = Vi 1 Sxp1
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<oty —apa|L + A — )%y — Xpa |l + AL
+ A = A1l + 1B = ButlL + |V = Vi1, (3.13)

where L = maxen{l|ull, |(Z = T)x, — (I = T)xpall, I = T)xnll, 1Pcl = AL = T))xull, [1Sx,01}-
From Lemma 2.3 and conditions (i)-(iii), we have (3.12). Next, we will show that

lim || %, — Pc(I = (I = T))x, | = 0. (3.14)

n—00

From the definition of x,, and (3.5), we have

|1 = 2] * = (= &) + Bu(Pe(I = AT = T)) 2w —%%) + ¥ (S — %) ||
< anlu—a® | + Bul Pe(l = Mnll = T)ow = 5> + v S0 — * |
~ Bu¥u| Pe (I = 2l = )t = St
<apu-a[* + 1 -an) -]
— By | Pe(I = hnll = T))xy = S, ||
< anHu—x*||2 + || % —x*||2

= Bu¥n|Pc(I = 2u = T))x, — St >

’

which implies that

Buvall Pe(l =2l = T))n = Sou|” < e =+ v = | =~ s —°°

< anfue = + ([~ 7]

+ [ =27 las = 2l (3.15)
From (3.15) and (3.12), we have
lim || Pc(I = hn(I = T)) — Sxu| = 0. (3.16)
Since

%pi1 = Pc(I= 2T = T)) %y = u (=P (I = 2T = T)) %) + Y (S = Pc (I = k(I = T)) 1),
from condition (i) and (3.16), we have

Jim |21 = Pe (I = Anll = 1))t | = 0. (317)
Since

”xn _PC(I_)‘n(I_ T))xn” =< ”xn _xn+1|| + Hxn+1 _PC(I_)\n(I_ T))xn

’

from (3.12) and (3.17), we have (3.14). Since

Knsl — X = an(u _xn) + /Sn (PC(I - )\n(] - T))xn - xn) + yn(an _xn):
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from condition (i) (3.12) and (3.14), we have
lim ||Sx, —x,| = 0. (3.18)
n— o0

Next, we will show that

lim sup(u — zo, %, —z0) <O, (3.19)
n—0o0

where zy = Pzu. To show this equality, take a subsequence {x,,,} of {x,} such that

limsup(u — 2z, %, — z0) = lim (u — 2o, %y, — 20)- (3.20)

n— 00 m—0Q

Without loss of generality, we may assume that x,,, — w as m — 0o where w € C. We
shall show that w € F(T). From Remark 2.9, we have F(T) = F(Pc(I — Ay, (I — T))). Assume
that w # Pc(I - A,,,,,(I - T))w. Since x,,, — w as m — 00, by Opial’s property, (3.14) and
condition (ii), we have

liminf ||x,,, — @] < liminf|x,,, — Pc(I = Ay, (I - T))o|
m— 00 m— 00

<liminf(||xy,, — Pc(I = Ay, (I = T))%n,, |

+ | Pc(I = Ay (I = T))%n,, = Pc(I = An, (I = T)) )

<liminf(||xy,, — Pc(I = A, (I = T))%n,, |

m—> 00

+ %y, = @l + Ay, | = Ty, — U = T )

< liminf|x,, —o].
m—> 00
This is a contradiction. Then w € F(T). From (3.18), we have
lim [|Sx,,, —%4,,| = 0.

m—> 00
From the nonexpansiveness of S, x,,,, — @ as m — 0o and Lemma 2.5, we can imply that

w € F(S). (3.21)
Since Pc(I — nB;)x = Gx for everyx € Cand i = 1,2,...,N, by Lemma 2.2, we have

VI(C,B;) = F(Pc(I - nB;)) =F(G;), Vi=1,2,...,N.

By Lemma 2.6, we have

N N
F(S)=(")F(Gi) = VI(C,B). (3.22)
i=1 i=1

From (3.21) and (3.22), we have w € ﬂﬁl VI(C,B;).Hence w € §. Since x,,,, =~ wasm — 00
and w € §, we have

limsup(u — zo, %, — z0) = lim (u — zo, %y, — 20) = (¢ — 20, w —z0) < 0.

Hn— 00 m— 00
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Finally, we show that {x,} converges strongly to zy = Pzu. From the definition of x,, and
(3.5), we have

%01 = 20l = ||t = 20) + Bu(Pe(I = Al = T))&n — 20) + V(S — 20) |*
< |Bu(Pell = 2nll = D)t = 20) + 7S, — 20) |
+ 2{an (4 — 20), %1 — 20)
< Bu|[Pc(l = 2nI = ) = 20| + 7ull S — 2012
+ 20, (U — 20, Xps1 — Z0)

2
< A —ap)llwn —zoll” + 20, (8 — 20, %41 — Z0)-

From (3.19) and Lemma 2.4, we have {x,} converges strongly to zyo = Pzu. This completes
the proof. O

The following result can be obtained from Theorem 3.1. We, therefore, omit the proof.

Corollary 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
B: C — H be a §-inverse strongly monotone mapping and let T : C — C be a k-strictly
pseudononspreading mapping for some « € [0,1). Assume that § = F(T) N VI(C,B) # . For
everyn € N, let x),u € C and {x,} be a sequence generated by

Xna1 = Qth + BuPc (I = A = T)) %y + yuPc = nB)xy, VneN, (3.23)

where {a,,}, {Bn}s {Vn}s {An} C (0,1) such that o, + By + v, =1, B, € [c,d] € (0,1), A, C (0,1—
k), and n € (0,28), and suppose that the following conditions hold:
(i) limyooay =0andy 2 o, =00,
(i) 3, A, < 00,
(i) D02y s = Anls 202y Wt = Vauls 202y 0tan = s 32020 [ Bt = Bl < 00
Then the sequence {x,} converges strongly to z = Pzu.

4 Application
In this section, by using our main result, we prove strong a convergence theorem involving
a strictly pseudononspreading mapping and a finite family of strictly pseudocontractive

mappings. Before proving the next theorem, we need the following definition.

Definition 4.1 The mapping T : C — C is said to be strictly pseudocontractive [2] with
the coefficient x € [0,1) if

2
1Tx - Tyl> < llx =yl +x |- T)x - (I - T)y|~ V¥x,yeC. (4.1)
Remark 4.1 If C is a nonempty closed convex subset of H and T : C — C is a « -strictly

pseudocontractive mapping with F(T) # @, then F(T) = VI(C,(I — T)). To show this, put
A=1-T.Letze VI(C,(I-T))and z* € F(T).Sincez € VI(C,(I-T)), (y—z,(I-T)z) > 0,
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Vy € C. Since T: C — C is a «-strictly pseudocontractive mapping, we have

|7z - 1z H2 = |U-4)z- (I—A)z*”2 =|z-2" - (Az—AZ*)H2
= ||z—z*“2—2<z—z*,Az—Az*)+ ||Az—Az*H2
= |z-2* HZ -2z-zI-T)z)+ ||~ T)zH2

< |z=z|* +« |- Dz
It implies that
1-)|( - D] < 2(z— 2, (I - T)z) < 0.

Then we have z = Tz, therefore z € F(T). Hence VI(C, (I - T)) C F(T). It is easy to see that
F(T) € VI(C,(I - T)).

Remark 4.2 A=7-Tisa 1’T"—inverse strongly monotone mapping. To show this, let

x,y € C, we have

1T - Tyl = | (1= A= (1 - Ay = |-y - (Ax - Ap)|*
= = yl% — 2 -, Ax — Ay) + | Ax — Ay|?
< Ilx =yl + x| (T - T)x— (T - T)y|?

= [l = ylI* + k| Ax — Ay||.
Then we have
1-« 2
(x —y,Ax — Ay) > TIIAx—AyII .

Theorem 4.3 Let H be a real Hilbert space and let C be a nonempty closed convex subset
of H. Let TX : C — C be «;-strictly pseudocontractive mappings for every i = 1,2,...,N,
and let T : C — C be a k-strictly pseudononspreading mapping for some k € [0,1). Let
F;: C — C be defined by Pc(I — n(I — Tik))x = Fix for every x € C and n € (0,1 — k;) for
every i =1,2,...,N, and let §; = (o}, o) € [ x I x I, j = 1,2,3,...,N, where I = [0,1],
a{ + aé + ag =1, a{ €(0,1) forall j=1,2,...,.N -1, &l € (0,1], aé,aé € [0,1) forall j =
1,2,...,N. Let S: C — C be the S-mapping generated by F|,F,,...,Fx and 8,,8,,...,5N.
Assume that § = F(T) N ﬂﬁlF(Tik) #Q. ForeveryneN, i=1,2,...,N, let x1,u € C and
{x.} be a sequence generated by

Kyal = Olyld + ﬂ,,Pc(I =Ml = T))%n + YuSxu,  Vn €N,

where {a,}, {Bu}, {¥n}, {An} C (0,1) such that o, + By + v = 1, By € [c,d] C (0,1), A,, C (0,1 -
k) and suppose that the following conditions hold:
(i) limyooay =0andy . a, =00,
(ii) D02 Ay <00,
(i) Yoy At = Anls Doy [Vt = Yl Do [0ne1 = @uls Yooy | Bt = Bul < 00.
Then the sequence {x,} converges strongly to z = Pzu.
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Proof From Remark 4.2, we have I — T¥ is %—inverse strongly monotone for every i =
1,2,...,N. From Remark 4.1 and Lemma 2.2, we have F(T¥) = VI(C, (I - TX)) = F(Pc(I -
n( - Tl.k))) for everyi=1,2,...,N.Put - Tik =B;and §; = 1’2'(" for everyi=1,2,...,N in
Theorem 3.1. The conclusion of Theorem 4.3 can be obtained from Theorem 3.1 O
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