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1 Introduction and preliminaries
Throughout this paper, by R+, we denote the set of all nonnegative real numbers, while N
is the set of all natural numbers. Let (X,d) be a metric space, D be a subset of X and
f : D → X be a map. We say f is contractive if there exists α ∈ [, ) such that for all
x, y ∈D,

d(fx, fy) ≤ α · d(x, y).

The well-known Banach fixed point theorem asserts that if D = X, f is contractive and
(X,d) is complete, then f has a unique fixed point in X. It is well known that the Banach
contraction principle [] is a very useful and classical tool in nonlinear analysis. Also,
this principle has many generalizations. For instance, in , Boyd and Wong [] in-
troduced the notion of �-contraction. A mapping f : X → X on a metric space is called
�-contraction if there exists an upper semi-continuous function� : [,∞) → [,∞) such
that

d(fx, fy) ≤ �
(
d(x, y)

)
for all x, y ∈ X.

In , Mattews [] introduced the following notion of partial metric spaces.

Definition  [] A partial metric on a nonempty set X is a function p : X ×X →R
+ such

that for all x, y, z ∈ X,

(p) x = y if and only if p(x,x) = p(x, y) = p(y, y);
(p) p(x,x)≤ p(x, y);
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(p) p(x, y) = p(y,x);
(p) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial metric
on X.

Remark  It is clear that if p(x, y) = , then from (p) and (p), x = y. But if x = y, p(x, y)
may not be .

Each partial metric p onX generates a T topology τp onX which has as a base the family
of open p-balls {Bp(x,γ ) : x ∈ X,γ > }, where Bp(x,γ ) = {y ∈ X : p(x, y) < p(x,x) + γ } for all
x ∈ X and γ > . If p is a partial metric on X, then the function dp : X ×X →R

+ given by

dp(x, y) = p(x, y) – p(x,x) – p(y, y)

is a metric on X.
We recall some definitions of a partial metric space as follows.

Definition  [] Let (X,p) be a partial metric space. Then
() a sequence {xn} in a partial metric space (X,p) converges to x ∈ X if and only if

p(x,x) = limn→∞ p(x,xn);
() a sequence {xn} in a partial metric space (X,p) is called a Cauchy sequence if and

only if limm,n→∞ p(xm,xn) exists (and is finite);
() a partial metric space (X,p) is said to be complete if every Cauchy sequence {xn} in X

converges, with respect to τp, to a point x ∈ X such that p(x,x) = limm,n→∞ p(xm,xn);
() a subset A of a partial metric space (X,p) is closed if whenever {xn} is a sequence in

A such that {xn} converges to some x ∈ X , then x ∈ A.

Remark  The limit in a partial metric space is not unique.

Lemma  [, ]
(a) {xn} is a Cauchy sequence in a partial metric space (X,p) if and only if it is a Cauchy

sequence in the metric space (x,dp);
(b) a partial metric space (X,p) is complete if and only if the metric space (X,dp) is

complete. Furthermore, limn→∞ dp(xn,x) =  if and only if
p(x,x) = limn→∞ p(xn,x) = limn→∞ p(xn,xm).

In , Kirk, Srinivasan and Veeramani [] introduced the following notion of the
cyclic representation.

Definition  [] Let X be a nonempty set, m ∈ N and f : X → X be an operator. Then
X =

⋃m
i=Ai is called a cyclic representation of X with respect to f if

() Ai, i = , , . . . ,m are nonempty subsets of X ;
() f (A) ⊂ A, f (A) ⊂ A, . . . , f (Am–)⊂ Am, f (Am) ⊂ A.

Kirk, Srinivasan and Veeramani [] also proved the following theorem.
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Theorem  [] Let (X,d) be a complete metric space, m ∈ N, A,A, . . . ,Am, be closed
nonempty subsets of X and X =

⋃m
i=Ai. Suppose that f satisfies the following condition:

d(fx, fy) ≤ ψ
(
d(x, y)

)
, for all x ∈ Ai, y ∈ Ai+, i ∈ {, , . . . ,m},

where ψ : [,∞) → [,∞) is upper semi-continuous from the right and  ≤ ψ(t) < t for
t > . Then f has a fixed point z ∈ ⋂n

i=Ai.

Recently, the fixed theorems for an operator f : X → X defined on a metric space X with
a cyclic representation of X with respect to f have appeared in the literature (see, e.g.,
[–]). In , Pǎcurar and Rus [] introduced the following notion of a cyclic weaker
ϕ-contraction.

Definition  [] Let (X,d) be a metric space, m ∈ N, A,A, . . . ,Am be closed nonempty
subsets ofX andX =

⋃m
i=Ai. An operator f : X → X is called a cyclicweaker ϕ-contraction

if
() X =

⋃m
i=Ai is a cyclic representation of X with respect to f ;

() there exists a continuous, non-decreasing function ϕ : [,∞) → [,∞) with ϕ(t) > 
for t ∈ (,∞) and ϕ() =  such that

d(fx, fy) ≤ d(x, y) – ϕ
(
d(x, y)

)

for any x ∈ Ai, y ∈ Ai+, i = , , . . . ,m, where Am+ = A.

And Pǎcurar and Rus [] proved the following main theorem.

Theorem  [] Let (X,d) be a complete metric space, m ∈ N, A,A, . . . ,Am be closed
nonempty subsets of X and X =

⋃m
i=Ai. Suppose that f is a cyclic weaker ϕ-contraction.

Then f has a fixed point z ∈ ⋂n
i=Ai.

In the recent years, fixed point theory has developed rapidly on cyclic contraction map-
pings, see [–].
The purpose of this paper is to study fixed point theorems for a mapping satisfying the

cyclical generalized contractive conditions in complete partial metric spaces. Our results
generalize or improve many recent fixed point theorems in the literature.

2 Fixed point theorems (I)
In the section, we denote by� the class of functionsψ :R+ →R

+ satisfying the following
conditions:

(ψ) ψ is an increasing and continuous function in each coordinate;
(ψ) for t ∈R

+, ψ(t, t, t)≤ t, ψ(t, , )≤ t and ψ(, , t)≤ t.

Next, we denote by 	 the class of functions ϕ :R+ → R
+ satisfying the following condi-

tions:

(ϕ) ϕ is continuous and non-decreasing;
(ϕ) for t > , ϕ(t) >  and ϕ() = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/17
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And we denote by � the class of functions φ : R+ → R
+ satisfying the following condi-

tions:

(φ) φ is continuous;
(φ) for t > , φ(t) >  and φ() = .

Wenow state a newnotion of cyclic CW-contractions in partialmetric spaces as follows.

Definition  Let (X,p) be a partial metric space,m ∈N, A,A, . . . ,Am be nonempty sub-
sets of X and Y =

⋃m
i=Ai. An operator f : Y → Y is called a cyclic CW-contraction if

()
⋃m

i=Ai is a cyclic representation of Y with respect to f ;
() for any x ∈ Ai, y ∈ Ai+, i = , , . . . ,m,

ϕ
(
p(fx, fy)

) ≤ ψ
(
ϕ
(
p(x, y)

)
,ϕ

(
p(x, fx)

)
,ϕ

(
p(y, fy)

))
– φ

(
M(x, y)

)
, (.)

where ψ ∈ � , ϕ ∈ 	, φ ∈ �, andM(x, y) =max{p(x, y),p(x, fx),p(y, fy)}.

Theorem  Let (X,p) be a complete partial metric space, m ∈ N, A,A, . . . ,Am be
nonempty closed subsets of X and Y =

⋃m
i=Ai. Let f : Y → Y be a cyclic CW-contraction.

Then f has a unique fixed point z ∈ ⋂m
i=Ai.

Proof Given x and let xn+ = fxn = f nx for n = , , , . . . . If there exists n ∈ N such that
xn+ = xn , then we finished the proof. Suppose that xn+ �= xn for any n = , , , . . . . Notice
that for any n ≥ , there exists in ∈ {, , . . . ,m} such that xn ∈ Ain and xn+ ∈ Ain+.
Step . We will prove that

lim
n→∞p(xn,xn+) = , that is, lim

n→∞dp(xn,xn+) = .

Using (.), we have

ϕ
(
p(xn,xn+)

)
= ϕ

(
p(fxn–, fxn)

)
≤ ψ

(
ϕ
(
p(xn–,xn)

)
,ϕ

(
p(xn–, fxn–)

)
,ϕ

(
p(xn, fxn)

))
– φ

(
M(xn–,xn)

)
= ψ

(
ϕ
(
p(xn–,xn)

)
,ϕ

(
p(xn–,xn)

)
,ϕ

(
p(xn,xn+)

))
– φ

(
M(xn–,xn)

)
,

where

M(xn–,xn) =max
{
p(xn–,xn),p(xn–, fxn–),p(xn, fxn)

}
=max

{
p(xn–,xn),p(xn–,xn),p(xn,xn+)

}
.

IfM(xn–,xn) = p(xn,xn+), then

ϕ
(
p(xn,xn+)

) ≤ ψ
(
ϕ
(
p(xn,xn+)

)
,ϕ

(
p(xn,xn+)

)
,ϕ

(
p(xn,xn+)

))
– φ

(
p(xn,xn+)

)
≤ ϕ

(
p(xn,xn+)

)
– φ

(
p(xn,xn+)

)
,

which implies that φ(p(xn,xn+)) = , and hence p(xn,xn+) = . This contradicts our initial
assumption.

http://www.fixedpointtheoryandapplications.com/content/2013/1/17
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From the above argument, we have that for each n ∈N,

ϕ
(
p(xn,xn+)

) ≤ ϕ
(
p(xn–,xn)

)
– φ

(
p(xn–,xn)

)
, (.)

and

p(xn,xn+) < p(xn–,xn).

And since the sequence {p(xn,xn+)} is decreasing, it must converge to some η ≥ . Taking
limit as n→ ∞ in (.) and by the continuity of ϕ and φ, we get

ϕ(η) ≤ ϕ(η) – φ(η),

and so we conclude that φ(η) =  and η = . Thus, we have

lim
n→∞p(xn,xn+) = . (.)

By (p), we also have

lim
n→∞p(xn,xn) = . (.)

Since dp(x, y) ≤ p(x, y) – p(x,x) – p(y, y) for all x, y ∈ X, using (.) and (.), we obtain
that

lim
n→∞dp(xn,xn+) = . (.)

Step . We show that {xn} is a Cauchy sequence in the metric space (Y ,dp). We claim
that the following result holds.

Claim For every ε > , there exists n ∈ N such that if r,q ≥ n with r – q = modm, then
dp(xr ,xq) < ε.

Suppose the above statement is false. Then there exists ε >  such that for any n ∈ N,
there are rn,qn ∈ N with rn > qn ≥ n with rn – qn = modm satisfying

dp(xqn ,xrn ) ≥ ε.

Now, we let n > m. Then corresponding to qn ≥ n use, we can choose rn in such a way
it is the smallest integer with rn > qn ≥ n satisfying rn – qn = modm and dp(xqn ,xrn ) ≥ ε.
Therefore, dp(xqn ,xrn–m)≤ ε and

ε ≤ dp(xqn ,xrn )

≤ dp(xqn ,xrn–m) +
m∑
i=

dp(xrn–i ,xrn–i+ )

< ε +
m∑
i=

dp(xrn–i ,xrn–i+ ).

http://www.fixedpointtheoryandapplications.com/content/2013/1/17
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Letting n → ∞, we obtain that

lim
n→∞dp(xqn ,xrn ) = ε. (.)

On the other hand, we can conclude that

ε ≤ dp(xqn ,xrn )

≤ dp(xqn ,xqn+ ) + dp(xqn+ ,xrn+ ) + dp(xrn+ ,xrn )

≤ dp(xqn ,xqn+ ) + dp(xqn+ ,xqn ) + dp(xqn ,xrn ) + dp(xrn ,xrn+ ) + dp(xrn+ ,xrn ).

Letting n → ∞, we obtain that

lim
n→∞dp(xqn+ ,xrn+ ) = ε. (.)

Since dp(x, y) = p(x, y) – p(x,x) – p(y, y) and using (.), (.) and (.), we have that

lim
n→∞p(xqn ,xrn ) =

ε


, (.)

and

lim
n→∞p(xqn+ ,xrn+ ) =

ε


. (.)

Since xqn and xrn lie in different adjacently labeled sets Ai and Ai+ for certain  ≤ i ≤ m,
by using the fact that f is a cyclic CW-contraction, we have

ϕ
(
p(fxqn+, fxrn+)

)
= ϕ

(
p(fxqn , fxrn )

)
≤ ψ

(
ϕ
(
p(xqn ,xrn )

)
,ϕ

(
p(xqn , fxqn )

)
,ϕ

(
p(xrn , fxrn )

))
– φ

(
M(xqn ,xrn )

)
= ψ

(
ϕ
(
p(xqn ,xrn )

)
,ϕ

(
p(xqn ,xqn+)

)
,ϕ

(
p(xrn ,xrn+)

))
– φ

(
M(xqn ,xrn )

)
,

where

M(xqn ,xrn ) =max
{
p(xqn ,xrn ),p(xqn ,xqn+),p(xrn ,xrn+)

}
.

Thus, letting n→ ∞, we can conclude that

ϕ

(
ε



)
≤ ψ

(
ϕ

(
ε



)
,ϕ(),ϕ()

)
– φ

(
ε



)
≤ ϕ

(
ε



)
– φ

(
ε



)
,

which implies φ( ε
 ) = , that is, ε = . So, we get a contradiction. Therefore, our claim is

proved.

http://www.fixedpointtheoryandapplications.com/content/2013/1/17
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In the sequel, we will show that {xn} is a Cauchy sequence in themetric space (Y ,dp). Let
ε >  be given. By our claim, there exists n ∈N such that if r,q ≥ n with r – q = modm,
then

dp(xr ,xq)≤ ε


.

Since limn→∞ dp(xn,xn+) = , there exists n ∈N such that

dp(xn,xn+) ≤ ε

m

for any n≥ n.
Let r,q ≥ max{n,n} and r > q. Then there exists k ∈ {, , . . . ,m} such that r – q =

kmodm. Therefore, r – q + j = modm for j =m – k + , and so we have

dp(xq,xr)≤ dp(xq,xr+j) + dp(xr+j,xr+j–) + · · · + dp(xr–,xr)

≤ ε


+ j× ε

m

≤ ε


+m× ε

m
= ε.

Thus, {xn} is a Cauchy sequence in the metric space (Y ,dp).
Step . We show that f has a fixed point ν in

⋂m
i=Ai.

Since Y is closed, the subspace (Y ,p) is complete. Then from Lemma , we have that
(Y ,dp) is complete. Thus, there exists ν ∈ X such that

lim
n→∞dp(xn,ν) = .

And it follows from Lemma  that we have

p(ν,ν) = lim
n→∞p(xn,ν) = lim

n,m→∞p(xn,xm). (.)

On the other hand, since the sequence {xn} is a Cauchy sequence in the metric space
(Y ,dp), we also have

lim
n→∞dp(xn,xm) = .

Since dp(x, y) = p(x, y) – p(x,x) – p(y, y), we can deduce that

lim
n→∞p(xn,xm) = . (.)

Since Y =
⋃m

i=Ai is a cyclic representation of X with respect to f , the sequence {xn} has
infinite terms in each Ai for i ∈ {, , . . . ,m}. Now, for all i = , , . . . ,m, we may take a sub-
sequence {xnk } of {xn} with xnk ∈ Ai– and also all converge to ν . Using (.) and (.),
we have

p(ν,ν) = lim
n→∞p(xn,ν) = lim

n→∞p(xnk ,ν) = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/17
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By (.),

ϕ
(
p(xnk+ , f ν)

)
= ϕ

(
p(fxnk , f ν)

)
≤ ψ

(
ϕ
(
p(xnk ,ν)

)
,ϕ

(
p(xnk , fxnk )

)
,ϕ

(
p(ν, f ν)

))
– φ

(
M(xnk ,ν)

)
= ψ

(
ϕ
(
p(xnk ,ν)

)
,ϕ

(
p(xnk ,xnk+)

)
,ϕ

(
p(ν, f ν)

))
– φ

(
M(xnk ,ν)

)
,

where

M(xnk ,ν) =max
{
p(xnk ,ν),p(xnk ,xnk+),p(ν, f ν)

}
.

Letting k → ∞, we have

ϕ
(
p(ν, f ν)

) ≤ ψ
(
ϕ(),ϕ(),ϕ

(
p(ν, f ν)

))
– φ

(
p(ν, f ν)

)
≤ ϕ

(
p(ν, f ν)

)
– φ

(
p(ν, f ν)

)
,

which implies φ(p(ν, f ν)) = , that is, p(ν, f ν) = . So, ν = f ν .
Step . Finally, to prove the uniqueness of the fixed point, suppose that μ, ν are fixed

points of f . Then using the inequality (.), we obtain that

ϕ
(
p(μ,ν)

)
= ϕ

(
p(fμ, f ν)

) ≤ ψ
(
ϕ
(
p(μ,ν)

)
,ϕ

(
p(μ, fμ)

)
,ϕ

(
p(ν, f ν)

))
– φ

(
M(μ,ν)

)
,

where

M(μ,ν) =max
{
p(μ,ν),p(μ, fμ),p(ν, f ν)

}
= p(μ,ν).

So, we also deduce that

ϕ
(
p(μ,ν)

) ≤ ψ
(
ϕ
(
p(μ,ν), , 

))
≤ ϕ

(
p(μ,ν)

)
– φ

(
p(μ,ν)

)
,

which implies that φ(p(μ,ν)) = , and hence p(μ,ν) = , that is, μ = ν . So, we complete the
proof. �

The following provides an example for Theorem .

Example  Let X = [, ] and A = [, ], B = [,  ], C = [,  ]. We define the partial metric
p on X by

p(x, y) =max{x, y} for all x, y ∈ X,

and define the function f : X → X by

f (x) =
x

 + x
for all x ∈ X.

http://www.fixedpointtheoryandapplications.com/content/2013/1/17
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Now, we let ϕ,φ :R+ →R
+ and ψ :R+ →R

+ be

ϕ(t) = t, φ(t) =
t

( + t)
and ψ(t) =




·max{t, t, t}.

Then f is a cyclic CW-contraction and  is the unique fixed point.

Proof We claim that f is a cyclic CW-contraction.
() Note that f (A) = [,  ]⊂ B, f (B) = [,  ] ⊂ C and f (C) = [, 

 ] ⊂ A. Thus, A∪ B∪C
is a cyclic representation of X with respect to f ;
() For x ∈ A and y ∈ B (or, x ∈ B and y ∈ C), without loss of generality, we may assume

that x≥ y, then we have

ϕ
(
p(fx, fy)

)
= ϕ

(
p
(

x

 + x
,
y

 + y

))
= ϕ

(
x

 + x

)
=

x

 + x
,

ψ
(
ϕ
(
p(x, y)

)
,ϕ

(
p(x, fx)

)
,ϕ

(
p(y, fy)

))

= ψ

(
ϕ
(
p(x, y)

)
,ϕ

(
p
(
x,

x

 + x

))
,ϕ

(
p
(
y,

y

 + y

)))

= ψ
(
ϕ(x),ϕ(x),ϕ(y)

)

= ψ(x, x, y) =
x

,

and

φ
(
max

{
p(x, y),p(x, fx),p(y, fy)

})

= φ

(
max

{
p(x, y),p

(
x,

x

 + x

)
,p

(
y,

y

 + y

)})

= φ
(
max{x,x, y}) = x

( + x)
.

Since

x

 + x
≤ x


–

x
( + x)

,

we have

ϕ
(
p(fx, fy)

) ≤ ψ
(
ϕ
(
p(x, y)

)
,ϕ

(
p(x, fx)

)
,ϕ

(
p(y, fy)

))
– φ

(
max

{
p(x, y),p(x, fx),p(y, fy)

})
.

On the other hand, for x ∈ C and y ∈ A, without loss of generality, we may assume that
x ≤ y, then it is easy to get the above inequality.
Note that Example  satisfies all of the hypotheses of Theorem , and we get that  is the

unique fixed point. �

3 Fixed point theorems (II)
In this article, we also recall the notion of a Meir-Keeler function (see []). A function
φ : [,∞) → [,∞) is said to be a Meir-Keeler function if for each η > , there exists δ > 

http://www.fixedpointtheoryandapplications.com/content/2013/1/17


Chen Fixed Point Theory and Applications 2013, 2013:17 Page 10 of 15
http://www.fixedpointtheoryandapplications.com/content/2013/1/17

such that for t ∈ [,∞) with η ≤ t < η+δ, we have φ(t) < η.We now introduce a new notion
of a weaker Meir-Keeler function φ : [,∞) → [,∞) in a partial metric space (X,p) as
follows.

Definition  Let (X,p) be a partial metric space. We call φ : [,∞) → [,∞) a weaker
Meir-Keeler function in X if for each η > , there exists δ >  such that for x, y ∈ X with
η ≤ p(x, y) < η + δ, there exists n ∈N such that φn (p(x, y)) < η.

In the section, we denote by � the class of weaker Meir-Keeler functions φ : R+ → R
+

in a partial metric space in (X,p) satisfying the following conditions:

(φ) φ(t) >  for t > , φ() = ;
(φ) {φn(t)}n∈N is decreasing;
(φ) for tn ∈ [,∞),

(a) if limn→∞ tn = γ > , then limn→∞ φ(tn) < γ and
(b) if limn→∞ tn = , then limn→∞ φ(tn) = .

Andwe denote by the class� of functionsψ :R+ →R
+ a continuous function satisfying

ψ(t) >  for t > , ψ() = .
First, we state a new notion of cyclic MK-contractions in partial metric spaces as fol-

lows.

Definition  Let (X,p) be a partial metric space,m ∈N, A,A, . . . ,Am be nonempty sub-
sets of X and Y =

⋃m
i=Ai. An operator f : Y → Y is called a cyclic MK-contraction

if
() ⋃m

i=Ai is a cyclic representation of Y with respect to f ;
()

for any x ∈ Ai, y ∈ Ai+, i = , , . . . ,m,

p(fx, fy) ≤ φ
(
p(x, y)

)
–ψ

(
p(x, y)

)
, (.)

where
Am+ = A, φ ∈ � and ψ ∈ � .

Theorem  Let (X,p) be a complete partial metric space, m ∈ N, A,A, . . . ,Am be
nonempty closed subsets of X and Y =

⋃m
i=Ai. Let f : Y → Y be a cyclicMK-contraction.

Then f has a unique fixed point z ∈ ⋂m
i=Ai.

Proof Given x and let xn+ = fxn = f nx, for n = , , , . . . . If there exists n ∈ N such that
xn+ = xn , then we finished the proof. Suppose that xn+ �= xn for any n = , , , . . . . Notice
that for any n ≥ , there exists in ∈ {, , . . . ,m} such that xn ∈ Ain and xn+ ∈ Ain+. Then
by (.), we have

p(xn,xn+) = p(fxn–, fxn) ≤ φ
(
p(xn–,xn)

)
–ψ

(
p(xn–,xn)

)
.

Step . We will prove that

lim
n→∞p(xn,xn+) = , that is, lim

n→∞dp(xn,xn+) = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/17
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Since f is a cyclicMK-contraction, we can conclude that

p(xn,xn+) ≤ φ
(
p(xn–,xn)

)
≤ φ(φ

(
p(xn–,xn–)

)
= φ(p(xn–,xn–))

≤ · · ·
≤ φn(p(x,x)).

Since {φn(p(x,x))}n∈N is decreasing, it must converge to some η ≥ .We claim that η = .
On the contrary, assume that  < η. Then by the definition of a weaker Meir-Keeler func-
tion φ, there exists δ >  such that for x,x ∈ X with η ≤ p(x,x) < δ + η, there exists
n ∈N such that φn (p(x,x)) < η. Since limn→∞ φn(p(x,x)) = η, there exists k ∈N such
that η ≤ φk(p(x,x)) < δ + η, for all k ≥ k. Thus, we conclude that φk+n (p(x,x)) < η.
So, we get a contradiction. Therefore, limn→∞ φn(p(x,x)) = , and so we have

lim
n→∞p(xn,xn+) = . (.)

By (p), we also have

lim
n→∞p(xn,xn) = . (.)

Since dp(x, y) ≤ p(x, y) – p(x,x) – p(y, y) for all x, y ∈ X, using (.) and (.), we obtain
that

lim
n→∞dp(xn,xn+) = . (.)

Step . We show that {xn} is a Cauchy sequence in the metric space (Y ,dp). We claim
that the following result holds.

Claim For every ε > , there exists n ∈ N such that if r,q ≥ n with r – q = modm, then
dp(xr ,xq) < ε.

Suppose the above statement is false. Then there exists ε >  such that for any n ∈ N,
there are rn,qn ∈ N with rn > qn ≥ n with rn – qn = modm satisfying

dp(xqn ,xrn ) ≥ ε.

Now, we let n > m. Then corresponding to qn ≥ n use, we can choose rn in such a way
it is the smallest integer with rn > qn ≥ n satisfying rn – qn = modm and dp(xqn ,xrn ) ≥ ε.
Therefore, dp(xqn ,xrn–m)≤ ε and

ε ≤ dp(xqn ,xrn )

≤ dp(xqn ,xrn–m) +
m∑
i=

dp(xrn–i ,xrn–i+ )

< ε +
m∑
i=

dp(xrn–i ,xrn–i+ ).

http://www.fixedpointtheoryandapplications.com/content/2013/1/17
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Letting n → ∞, we obtain that

lim
n→∞dp(xqn ,xrn ) = ε. (.)

On the other hand, we can conclude that

ε ≤ dp(xqn ,xrn )

≤ dp(xqn ,xqn+ ) + dp(xqn+ ,xrn+ ) + dp(xrn+ ,xrn )

≤ dp(xqn ,xqn+ ) + dp(xqn+ ,xqn ) + dp(xqn ,xrn ) + dp(xrn ,xrn+ ) + dp(xrn+ ,xrn ).

Letting n → ∞, we obtain that

lim
n→∞dp(xqn+ ,xrn+ ) = ε. (.)

Since dp(x, y) = p(x, y) – p(x,x) – p(y, y) and using (.) and (.), we have that

lim
n→∞p(xqn ,xrn ) =

ε


, (.)

and

lim
n→∞p(xqn+ ,xrn+ ) =

ε


. (.)

Since xqn and xrn lie in different adjacently labeled sets Ai and Ai+ for certain  ≤ i ≤ m,
by using the fact that f is a cyclicMK-contraction, we have

p(xqn+ ,xrn+ ) = p(fxqn , fxrn ) ≤ φ
(
p(xqn ,xrn )

)
–ψ

(
p(xqn ,xrn )

)
.

Letting n → ∞, by using the condition φ of the function φ, we obtain that

ε


≤ ε


–ψ

(
ε



)
,

and consequently, ψ( ε
 ) = . By the definition of a function ψ , we get ε =  which is a

contraction. Therefore, our claim is proved.
In the sequel, we will show that {xn} is a Cauchy sequence in themetric space (Y ,dp). Let

ε >  be given. By our claim, there exists n ∈N such that if r,q ≥ n with r – q = modm,
then

dp(xr ,xq)≤ ε


.

Since limn→∞ dp(xn,xn+) = , there exists n ∈N such that

dp(xn,xn+) ≤ ε

m

for any n≥ n.

http://www.fixedpointtheoryandapplications.com/content/2013/1/17
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Let r,q ≥ max{n,n} and r > q. Then there exists k ∈ {, , . . . ,m} such that r – q =
kmodm. Therefore, r – q + j = modm for j =m – k + , and so we have

dp(xq,xr)≤ dp(xq,xr+j) + dp(xr+j,xr+j–) + · · · + dp(xr–,xr)

≤ ε


+ j× ε

m

≤ ε


+m× ε

m
= ε.

Thus, {xn} is a Cauchy sequence in the metric space (Y ,dp).
Step . We show that f has a fixed point ν in

⋂m
i=Ai.

Since Y is closed, the subspace (Y ,p) is complete. Then from Lemma , we have that
(Y ,dp) is complete. Thus, there exists ν ∈ X such that

lim
n→∞dp(xn,ν) = .

And it follows from Lemma  that we have

p(ν,ν) = lim
n→∞p(xn,ν) = lim

n,m→∞p(xn,xm). (.)

On the other hand, since the sequence {xn} is a Cauchy sequence in the metric space
(Y ,dp), we also have

lim
n→∞dp(xn,xm) = .

Since dp(x, y) = p(x, y) – p(x,x) – p(y, y), we can deduce that

lim
n→∞p(xn,xm) = . (.)

Since Y =
⋃m

i=Ai is a cyclic representation of X with respect to f , the sequence {xn} has
infinite terms in each Ai for i ∈ {, , . . . ,m}. Now, for all i = , , . . . ,m, we may take a sub-
sequence {xnk } of {xn} with xnk ∈ Ai– and also all converge to ν . Using (.) and (.), we
have

p(ν,ν) = lim
n→∞p(xn,ν) = lim

n→∞p(xnk ,ν) = .

By (.),

p(xnk+ , f ν) = p(fxnk , f ν)

≤ φ
(
p(xnk ,ν)

)
–ψ

(
p(xnk ,ν)

)
≤ φ

(
p(xnk ,ν)

)
.

Letting k → ∞, we have

p(ν, f ν)≤ ,

and so ν = f ν .

http://www.fixedpointtheoryandapplications.com/content/2013/1/17
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Step . Finally, to prove the uniqueness of the fixed point, let μ be another fixed point of
f in

⋂m
i=Ai. By the cyclic character of f , we have μ,ν ∈ ⋂n

i=Ai. Since f is a cyclic weaker
MK-contraction, we have

p(ν,μ) = p(ν, fμ)

= lim
n→∞p(xnk+ , fμ)

= lim
n→∞p(fxnk , fμ)

≤ lim
n→∞

[
φ
(
p(xnk ,μ)

)
–ψ

(
p(xnk ,μ)

)]

≤ p(ν,μ) –ψ
(
p(ν,μ)

)
,

and we can conclude that

ψ
(
p(ν,μ)

)
= ,

which implies p(ν,μ) = . So, we have μ = ν . We complete the proof. �

The following provides an example for Theorem .

Example  Let X = [, ] and A = [, ], B = [,  ], C = [,  ]. We define the partial metric
p on X by

p(x, y) =max{x, y} for all x, y ∈ X,

and define the function f : X → X by

f (x) =
x

 + x
for all x ∈ X.

Now, we let ψ ,φ :R+ →R
+ be

φ(t) =
t


and ψ(t) =
t

( + t)
.

Then f is a cyclicMK-contraction and  is the unique fixed point.

By Theorem , it is easy to get the following corollary.

Corollary  Let (X,p) be a complete partial metric space, m ∈ N, A,A, . . . ,Am be
nonempty closed subsets of X, Y =

⋃m
i=Ai and let f : Y → Y . Assume that

()
⋃m

i=Ai is a cyclic representation of Y with respect to f ;
() for any x ∈ Ai, y ∈ Ai+, i = , , . . . ,m,

p(fx, fy) ≤ φ
(
p(x, y)

)
,

where Am+ = A and φ ∈ �.
Then f has a unique fixed point z ∈ ⋂m

i=Ai.
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