
Razani and Hosseinzadeh Fixed Point Theory and Applications 2013, 2013:16
http://www.fixedpointtheoryandapplications.com/content/2013/1/16

RESEARCH Open Access

Triple fixed point theorems on FLM algebras
Abdolrahman Razani* and Hasan Hosseinzadeh

*Correspondence: razani@ipm.ir
Department of Mathematics, Karaj
Branch, Islamic Azad University,
Karaj, Iran

Abstract
This paper considers tripled fixed point theorems on unital without of order
semi-simple fundamental locally multiplicative topological algebras (abbreviated by
FLM algebras).
MSC: 46H

Keywords: tripled fixed point; fundamental topological algebras; FLM algebras;
holomorphic function; semi-simple algebras; without of order

1 Introduction
Ansari in [] introduced the notion of fundamental topological spaces and algebras and
proved Cohen’s factorization theorem for these algebras. A topological linear space A is
said to be fundamental if there exists b >  such that for every sequence (xn) of A, the
convergence of bn(xn – xn–) to zero inA implies that (xn) is Cauchy. A fundamental topo-
logical algebra is an algebra whose underlying topological linear space is fundamental.
A fundamental topological algebra is called locally multiplicative if there exists a neigh-

borhood U of zero such that for every neighborhood V of zero, the sufficiently large
powers of U lie in V . The fundamental locally multiplicative topological algebras (FLM)
were introduced by Ansari in []. Some celebrated theorems in Banach algebras were gen-
eralized to FLM algebras in [], and authors investigated some fixed points theorems for
holomorphic functions on these algebras (see Theorems ., . and . of []).
An algebra A is called without of order if for every a,b ∈A, ab = , then a =  or b = .
In [], Bhaskar and Lakshmikantham introduced the notions of amixedmonotonemap-

ping and a coupled fixed point, proved some coupled fixed point theorems for the mixed
monotonemapping and discussed the existence and uniqueness of a solution for a periodic
boundary value problem. Also, Samet and Vetro studied a coupled fixed point of N-order
in []. There are many works on a coupled fixed point of contraction, weak contraction
and generalized contraction mappings on various metric spaces such as [–].
LetA be ametric space and let F :A×A×A –→A be a function. An element (x, y, z) ∈

A × A × A is said to be a tripled fixed point of the mapping F if F(x, y, z) = F(x, z, y) = x,
F(y,x, z) = F(y, z,x) = y and F(z,x, y) = F(z, y,x) = z. Tripled fixed point theorems in par-
tially ordered metric spaces were studied by Berinde and Borcut in [], and this concept
was considered by Aydi et al. for weak compatible mappings in abstract metric spaces [].
In this paper, at first (Section ) we obtain some basic results for FLM algebras, and next

we consider tripled fixed point theorems on FLM algebras.
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2 Some results on FLM algebras
By �A we mean the set of all elements a ∈ A such that ρA(a) < , where ρA(a) is the
spectral radius of a ∈A. We denote the center of topological algebraA by Z(A) such that

Z(A) = {a ∈A : ax = xa for all x ∈A}.

Definition . Let (A,d) be a metrizable topological algebra. We say A is a submulti-
plicatively metrizable topological algebra if

d(,xyz) ≤ d(,x)d(, y)d(, z) and d(,λx) < |λ|d(,x)

for each x, y, z ∈A and λ ∈C. For abbreviation, we denote dA(,x) byDA(x) for any x ∈A.

LetA,B and C bemetric spaceswithmeters dA, dB and dC , respectively. ThenA×B×C
becomes a metric space with the following meter:

d
(
(a,b, c), (a,b, c)

)
= dA(a,a) + dB(b,b) + dC(c, c) (.)

for every a,a ∈ A, b,b ∈ B and c, c ∈ C . When A, B and C are algebras, then by the
usual point-wise definitions for addition, scalar multiplication and product, A × B × C
becomes an algebra.

Proposition . Let A, B and C be complete metrizable FLM algebras with submulti-
plicative meters dA, dB and dC , respectively. Then A × B × C is a complete metrizable
FLM algebra with a submultiplicative meter d.

Proof Let A, B and C be FLM algebras with meters dA, dB and dC , respectively. By the
definition of FLM algebras, obviously, A × B × C is a complete metrizable FLM algebra
with a meter d (the meter defined in (.)). For submultiplicativity, we have

d
(
(, , ), (aa,bb, cc)

)
= dA(,aa) + dB(,bb) + dC(, cc)

≤ dA(,a)dA(,a) + dB(,b)dB(,b) + dC(, c)dC(, c)

≤ dA(,a)dA(,a) + dA(,a)dB(,b) + dA(,a)dC(, c)

+ dB(,b)dA(,a) + dB(,b)dB(,b)

+ dB(,b)dC(, c) + dC(, c)dA(,a)

+ dC(, c)dB(,b) + dC(, c)dC(, c)

= d
(
(, , ), (a,b, c)

)
d
(
(, , ), (a,b, c)

)
(.)

for every a,a ∈A, b,b ∈ B and c, c ∈ C . Also,

d
(
(, , ), (λa,λb,λc)

)
= dA(,λa) + dB(,λb) + dC(,λc)

< |λ|dA(,a) + |λ|dB(,b) + |λ|dC(, c)
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= |λ|(dA(,a) + dB(,b) + dC(, c)
)

= |λ|(d(
(, , ), (a,b, c)

))
. (.)

Therefore, (.) and (.) show that d is submultiplicative. �

Similar to Definition ., we write DA×B×C(a,b, c) as an abbreviation for d((, , ),
(a,b, c)). We recall the following theorem from [].

Theorem . [, Theorem .] Let A be a complete metrizable FLM algebra with a sub-
multiplicative meter dA. Then ρ(x) = limn→∞ DA(xn)/n.

Lemma . LetA, B and C be complete metrizable FLM algebras with submultiplicative
meters dA, dB and dC , respectively. Then

ρ(x, y, z)≤ ρA(x) + ρB(y) + ρC(z)

for any element (x, y, z) ∈A×B × C .

Proof For given a ∈ A, b ∈ B and c ∈ C , we have ρA(a) = limn→∞ DA(an)/n, ρB(b) =
limn→∞ DB(bn)/n and ρC(c) = limn→∞ DC(cn)/n (Theorem .). From Proposition ., it
follows that A × B × C is a complete metrizable FLM algebra with a submultiplicative
meter d. Then again, Theorem . implies that

ρ(x, y, z) = lim
n→∞DA×B×C

(
(x, y, z)n

) 
n = lim

n→∞DA×B×C
((
xn, yn, zn

)) 
n

= lim
n→∞

(
DA

(
xn

)
+DB

(
yn

)
+DC

(
zn

)) 
n

≤ lim
n→∞DA

(
xn

) 
n + lim

n→∞DB
(
yn

) 
n + lim

n→∞DC
(
zn

) 
n

= ρA(x) + ρB(y) + ρC(z) (.)

for every x ∈A, y ∈ B and z ∈ C . �

Similar to �A and Z(A), we define these sets forA×A×A as follows:

�A×A×A =
{
(x, y, z) ∈A×A×A : ρ(x, y, z) < 

}
,

and

Z(A×A×A) =
{
(x, y, z) ∈A×A×A : (x, y, z)(a,b, c) = (a,b, c)(x, y, z),

for every a,b, c ∈A
}

=
{
(x, y, z) ∈A×A×A : (xa, yb, zc) = (ax,by, cz),

for every a,b, c ∈A
}
.

Clearly, if (x, y, z) ∈ Z(A×A×A), then x, y, z ∈ Z(A) and Z(A) ⊆ Z(A×A×A). Also,
if (x, y, z) ∈ �A×A×A, then (x, , ), (, y, ) and (, , z) are in�A×A×A, and by Lemma .
and its proof, we have x, y, z ∈ �A.
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Let E(A) be the set of all elements x ∈ A for which E(x) =
∑∞

n=
xn
n! can be defined. If A

is a complete metrizable FLM algebra, then E(A) =A ([, Theorem .]). Therefore, in
the light of Theorem . of [] and Proposition ., we have the following theorem.

Theorem . Let A be a complete metrizable FLM algebra, then E(A × A × A) = A ×
A×A.

3 Tripled fixed point theorems
In this section, we consider some results about tripled fixed point theorems on unital
complete semi-simple metrizable FLM algebras, and we extend these results to Banach
algebras. By idA, we mean the identity map on A.

Theorem . Let A be a unital without of order complete semi-simple metrizable FLM
algebra with a submultiplicative meter dA. If F : �A×A×A ⊆ A × A × A –→ �A is a
holomorphic map that satisfies the conditions F(, , ) = , ∂F

∂x (, , ) = idA, ∂F
∂y (, , ) =

, ∂F
∂z (, , ) = , ∂F

∂xi ∂yj ∂zk (, , ) = ,where i+ j+k = , i, j,k = , , , and ∂F
∂xi ∂yj ∂zk (, , ) =

, where i + j + k = , i, j,k = , , , , then every (a,b, c) ∈ �A×A×A ∩ Z(A × A × A) is a
tripled fixed point for F .

Proof Fix (a,b, c) ∈ �A×A×A ∩Z(A×A×A) and consider themap f :C×C×C –→ �A

with f (α,β ,γ ) = F(αa,βb,γ c). Clearly, f is a holomorphic function on
{
(α,β ,γ ) ∈C×C×C :

|θ |


<


ρ(a,b, c)
, |θ | =min

{|α|, |β|, |γ |},

ρA(a) <


|α| ,ρB(b) <


|β| ,ρC(c) <


|γ |
}
.

Since F(, , ) = , ∂F
∂x (, , ) = idA, ∂F

∂y (, , ) = , ∂F
∂z (, , ) = , ∂F

∂xi ∂yj ∂zk (, , ) = ,

where i+ j+ k = , i, j,k = , , , and ∂F
∂xi ∂yj ∂zk (, , ) = , where i+ j+ k = , i, j,k = , , , ,

then F has a Taylor expansion about (, , ):

F(x, y, z) =
∞∑
i=

∞∑
j=

∞∑
k=

xiyjzk

i!j!k!

(
∂ i+j+kF

∂xi ∂yj ∂zk

)
(, , )

= x +
∞∑
k=


k!

k∑
j=

(
k
j

) j∑
i=

(
k – j
i

)
xiyjzk–i–j

(
∂kF

∂xi ∂yj ∂zk–i–j

)
(, , )

for every (x, y, z) ∈ �A×A×A ∩ Z(A×A×A). Therefore,

F(αa,βb,γ c) = αa +
∞∑
k=


k!

k∑
j=

(
k
j

) j∑
i=

(
k – j
i

)
αiaiβ jbjγ k–i–jck–i–j

×
(

∂kF
∂xi ∂yj ∂zk–i–j

)
(, , ). (.)

We claim that

k∑
j=

(
k
j

) j∑
i=

(
k – j
i

)
αiaiβ jbjγ k–i–jck–i–j

(
∂kF

∂xi ∂yj ∂zk–i–j

)
(, , ), (.)
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is zero for every k ≥ . Assume towards a contradiction that there exists k ≥  such
that (.) is non-zero. Let l ≥  be an integer such that

k∑
j=

(
l
j

) j∑
i=

(
l – j
i

)
αiaiβ jbjγ l–i–jcl–i–j

(
∂kF

∂xi ∂yj ∂zl–i–j

)
(, , ) 	= . (.)

Suppose that q is an element of A such that ρA(q) = . Now, we consider the following
five cases:
() i = l, j = ,
() i = , j = l,
() i + j = l,
()  ≤ i + j < l,
() i = j = .
Case (). In this case, we have αlal ∂ lF

∂xl (, , ) 	= . Let n≥ , by (.) and (.), we have

F
(
n


l αa + nαlq,βb,γ c

)
= n


l αa + nαlq +


l!
(
n


l αa + nαlq

)l ∂ lF
∂xl

(, , )

= n

l αa + nαlq +


l!
(
nlαlql + ln


l αanl–αl(l–)ql–

+ · · · + nαlal
)∂ lF
∂xl

(, , )

= n

l αa + nαl

(
q +


l!
al

∂ lF
∂xl

(, , )
)
+ P(α)

∂ lF
∂xl

(, , ). (.)

In (.), by P(α), we mean the remaining part of (n

l αa + nαkq)k . Since a ∈ Z(A), there-

fore aq = qa. Then Lemma . and Lemma . of [] imply

ρ
(
n


l αa + nαlq,βb,γ c

) ≤ ρA
(
n


l αa + nαlq

)
+ ρA(βb) + ρA(γ c)

< n

l |α|ρA(a) + |β|ρA(b) + |γ |ρA(c)

< μ
(
ρA(a) + ρA(b) + ρA(c)

)
,

where μ = max{n 
l |α|, |β|, |γ |}. Now, we define a holomorphic function H from {α ∈ C :

 < |α| < 
ρ(a,b,c) } into A as follows:

H(α) =
F(n


l αa + nαlq,βb,γ c) – n


l αa

nαl .

By (.) we conclude that H() = q + 
l!a

l ∂ lF
∂xl (, , ). Vesentini’s theorem ([, Theo-

rem ..]) implies that ρA ◦ H is a subharmonic function on {α ∈ C :  < |α| < 
ρ(a,b,c) }.

Moreover, by the maximum principle, we can write ρA(H()) ≤ max|α|= ρA(H(α)). Then
Lemma . of [] implies that

ρA

(
q +


l!
al

∂ lF
∂xl

(, , )
)

≤ max
|α|=

ρ
(
H(α)

)
<


nl!

ρA
(
al

)
ρA

(
∂ lF
∂xl

(, , )
)

<


nl!|α|l ρA

(
∂ lF
∂xl

(, , )
)
. (.)
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The above inequality holds for every n≥ . Therefore, if n –→ ∞, then

ρA

(
q +


l!
al

∂ lF
∂xl

(, , )
)
= 

for every q ∈ A with ρA(q) = . Hence, Theorem . of [] implies that al ∂ lF
∂xl (, , ) is in

radical of A. Since A is semi-simple, therefore al ∂ lF
∂xl (, , ) = . Since a ∈ �A ∩ Z(A), so

al 	= , and sinceA is without of order, therefore ∂ lF
∂xl (, , ) = , a contradiction. Thus, our

claim is true, and from (.), we conclude that F(a,b, c) = a. Similarly, we have F(a, c,b) = a,
F(b,a, c) = F(b, c,a) = b and F(c,a,b) = F(c,b,a) = c.
Case (). In this case, we have β lbl ∂ lF

∂yl (, , ) 	= . Again, by (.) and (.), we have

F
(
αa + nβ lq,n


l βb,γ c

)
= αa + nβ lq +


l!
nβ lbl

∂ lF
∂yl

(, , )

= αa + nβ l
(
q +


l!
bl

∂ lF
∂yl

(, , )
)
.

Again, by Lemma . and Lemma . of [], we have

ρ
(
αa + nβ lq,n


l βb,γ c

) ≤ ρA
(
αa + nβ lq

)
+ ρA

(
n


l βb

)
+ ρA(γ c)

< |α|ρA(a) + n

l |β|ρA(b) + |γ |ρA(c)

< μ
(
ρA(a) + ρA(b) + ρA(c)

)
,

where μ = max{|α|,n 
l |β|, |γ |}. Now, we define a holomorphic function H from {η ∈ C :

μ < 
ρ(a,b,c) ,μ = |η| =max{|α|,n 

l |β|, |γ |}} into A as follows:

H(α) =
F(αa + nβ lq,n


l βb,γ c) – αa

nβ l .

Then from (.) it follows that H() = q + 
l!b

l ∂ lF
∂yl (, , ). Then ρA ◦H is a subharmonic

function on {η ∈C : μ < 
ρ(a,b,c) ,μ = |η| =max{|α|,n 

l |β|, |γ |}}. Moreover, Lemma . of []
implies that

ρA

(
q +


l!
bl

∂ lF
∂yl

(, , )
)

≤ max
|α|=

ρ
(
H(α)

)

<

nl!

ρA
(
bl

)
ρA

(
∂ lF
∂yl

(, , )
)

<


nl!|β|l ρA

(
∂ lF
∂yl

(, , )
)
. (.)

The above inequality holds for every n≥ . Therefore, if n –→ ∞, then

ρA

(
q +


l!
bl

∂ lF
∂yl

(, , )
)
= 
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for every q ∈ A with ρA(q) = . Hence, Theorem . of [] implies that bl ∂ lF
∂yl (, , ) is in

radical of A. Since A is semi-simple, therefore bl ∂ lF
∂yl (, , ) = . Since b ∈ �A ∩ Z(A), so

bl 	= . By using thatA is without of order, we conclude that ∂ lF
∂yl (, , ) = , a contradiction.

Thus, our claim is true, and from (.), we conclude that F(a,b, c) = a. Similarly, we have
F(a, c,b) = a, F(b,a, c) = F(b, c,a) = b and F(c,a,b) = F(c,b,a) = c.
Case (). In this case, we suppose that i + j = l, i, j ∈ {, , , , . . .} (without loss of gener-

ality, we prove this case for only one i and one j such that i+ j = l). Again by (.) and (.),
we have

F
(
αa + nαiq,n


l–i βb,γ c

)

= αa + nαiq +


(l – i)!i!
(
αa + nαiq

)inβ l–ibl–i
∂ lF

∂xi ∂yl–i
(, , )

= αa + nαiq +


(l – i)!i!
(
ni+αiqiβ l–ibl–i

+ iniαi(i–)+qi–β l–ibl–ia + · · · + nαiaiβ l–ibl–i
) ∂ lF
∂xi ∂yl–i

(, , )

= αa + nαi
(
q +


(l – i)!i!

aiβ l–ibl–i
∂ lF

∂xi ∂yl–i
(, , )

)

+ P(α)
∂ lF

∂xi ∂yl–i
(, , ). (.)

By Lemma . and Lemma . of [], we have

ρ
(
αa + nαiq,n


l–i βb,γ c

) ≤ ρA
(
αa + nαiq

)
+ ρA

(
n


l–i βb

)
+ ρA(γ c)

< |α|ρA(a) + n

l–i |β|ρA(b) + |γ |ρA(c)

< μ
(
ρA(a) + ρA(b) + ρA(c)

)
,

where μ =max{|α|,n 
l–i |β|, |γ |}. Now, we define a holomorphic function H from {η ∈ C :

μ < 
ρ(a,b,c) ,μ = |η| =max{|α|,n 

l–i |β|, |γ |}} into A as follows:

H(λ) =
F(αa + nαiq,n


l–i βb,γ c) – αa

nαi .

Then from (.) it follows that H() = q + 
(l–i)!i!a

iβ l–ibl–i ∂ lF
∂xi ∂yl–i (, , ). Then ρA ◦ H is

a subharmonic function on {η ∈ C : μ < 
ρ(a,b,c) ,μ = |η| =max{|α|,n 

l–i |β|, |γ |}}. Moreover,
Lemma . of [] implies that

ρA

(
q +


(l – i)!i!

aiβ l–ibl–i
∂ lF

∂xi ∂yl–i
(, , )

)

≤ max
|α|=

ρ
(
H(α)

)

<
|β|l–i

n(l – i)!i!
ρA

(
ai

)
ρA

(
bl–i

)
ρA

(
∂ lF

∂xi ∂yl–i
(, , )

)

<


n(l – i)!i!|α|i ρA

(
∂ lF

∂xi ∂yl–i
(, , )

)
. (.)
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The above inequality holds for every n≥ . Therefore, if n –→ ∞, then

ρA

(
q +


(l – i)!i!

aiβ l–ibl–i
∂ lF

∂xi ∂yl–i
(, , )

)
= 

for every q ∈A with ρA(q) = . Hence, aiβ l–ibl–i ∂ lF
∂xi ∂yl–i (, , ) is in radical ofA, therefore

aiβ l–ibl–i ∂ lF
∂xi ∂yl–i (, , ) = . Since β l–i 	=  and a,b ∈ �A ∩ Z(A), so ai 	=  and bl–i 	= .

Again, by using that A is without of order, we conclude that ∂ lF
∂xi ∂yl–i (, , ) = , a contra-

diction. Thus, our claim is true, and from (.), we conclude that F(a,b, c) = a. Similarly,
we have F(a, c,b) = a, F(b,a, c) = F(b, c,a) = b and F(c,a,b) = F(c,b,a) = c.
Case (). Let  ≤ i + j ≤ l. Then we have αiaiβ jbjγ l–i–jcl–i–j ∂ lF

∂xi ∂yj ∂zl–i–j (, , ) 	= . Again,
by (.) and (.), we have

F
(
αa + nαiq,βb,n


l–i–j γ c

)

= αa + nαiq +


i!j!(l – i – j)!

((
αa + nαiq

)i(βb)j(n 
l–i–j γ c

)l–i–j ∂ lF
∂xi ∂yj ∂zl–i–j

(, , )
)

= αa + nαiq +


i!j!(l – i – j)!
(
ni+αiqiβ jbjγ l–i–jcl–i–j + ianiαi(i–)i+qi–β jbjγ l–i–jcl–i–j

+ · · · + nαiaiβ jbjγ l–i–jcl–i–j
) ∂ lF
∂xi ∂yj ∂zl–i–j

(, , )

= αa + nαi
(
q +


i!j!(l – i – j)!

aiβ jbjγ l–i–jcl–i–j
∂ lF

∂xi ∂yj ∂zl–i–j
(, , )

)

+ P(α)
∂ lF

∂xi ∂yj ∂zl–i–j
(, , ). (.)

Then

ρ
(
αa + nαiq,βb,n


l–i–j γ c

) ≤ ρA
(
αa + nαiq

)
+ ρA(βb) + ρA

(
n


l–i–j γ c

)

< |α|ρA(a) + |β|ρA(b) + n


l–i–j |γ |ρA(c)

< μ
(
ρA(a) + ρA(b) + ρA(c)

)
,

where μ =max{|α|, |β|,n 
l–i–j |γ |}. Now, we define a holomorphic functionH from {η ∈C :

μ < 
ρ(a,b,c) ,μ = |η| =max{|α|, |β|,n 

l–i–j |γ |}} into A as follows:

H(α) =
F(αa + nαiq,βb,n


l–i–j γ c) – αa

nαi .

Then from (.) it follows that H() = q + 
i!j!(l–i–j)! (a

iβ jbjγ l–i–jcl–i–j ∂ lF
∂xi ∂yj ∂zl–i–j (, , )).

Then ρA ◦ H is a subharmonic function on {η ∈ C : μ < 
ρ(a,b,c) ,μ = |η| = max{|α|, |β|,

n


l–i–j |γ |}}. Therefore,

ρA

(
q +


i!j!(l – i – j)!

aiβ jbjγ l–i–jcl–i–j
∂ lF

∂xi ∂yj ∂zl–i–j
(, , )

)

≤ max
|α|=

ρ
(
H(α)

)
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<
|β|j|γ |l–i–j

ni!j!(l – i – j)!
ρA

(
ai

)
ρA

(
bj

)
ρA

(
cl–i–j

)
ρA

(
∂ lF

∂xi ∂yj ∂zl–i–j
(, , )

)

<


ni!j!(l – i – j)!|α|i ρA

(
∂ lF

∂xi ∂yj ∂zl–i–j
(, , )

)
. (.)

Therefore, if n –→ ∞, then

ρA

(
q +


i!j!(l – i – j)!

aiβ jbjγ l–i–jcl–i–j
∂ lF

∂xi ∂yj ∂zl–i–j
(, , )

)
= 

for every q ∈ A with ρA(q) = . Hence, aiβ jbjγ l–i–jcl–i–j ∂ lF
∂xi ∂yj ∂zl–i–j (, , ) is in radi-

cal of A. Since A is semi-simple, therefore aiβ jbjγ l–i–jcl–i–j ∂ lF
∂xi ∂yj ∂zl–i–j (, , ) = . Since

β j 	= , γ l–i–j 	=  and a,b ∈ �A ∩ Z(A), so ai 	= , bj and cl–i–j 	= , we conclude that
∂ lF

∂xi ∂yj ∂zl–i–j (, , ) = , a contradiction. Thus, our claim is true, and from (.), we con-
clude that F(a,b, c) = a. Similarly, we have F(a, c,b) = a, F(b,a, c) = F(b, c,a) = b and
F(c,a,b) = F(c,b,a) = c.
Case (). Now, let i = j = . Then we have γ lcl ∂ lF

∂zl (, , ) 	= . Similar to the previous
cases, we have

F
(
αa + nγ lq,βb,n


l γ c

)
= αa + nγ lq +


l!
nγ lcl

∂ lF
∂zl

(, , )

= αa + nγ l
(
q +


l!
cl

∂ lF
∂zl

(, , )
)
. (.)

Then

ρ
(
αa + nγ lq,βb,n


l γ c

) ≤ ρA
(
αa + nγ lq

)
+ ρA(βb) + ρA

(
n


l γ c

)
< |α|ρA(a) + |β|ρA(b) + n


l |γ |ρA(c)

< μ
(
ρA(a) + ρA(b) + ρA(c)

)
,

where μ = max{|α|, |β|,n 
l |γ |}. Now, we define a holomorphic function H from {η ∈ C :

μ < 
ρ(a,b,c) ,μ = |η| =max{|α|, |β|,n 

l |γ |}} into A as follows:

H(α) =
F(αa + nγ lq,βb,n


l γ c) – αa

nγ l .

Then from (.) it follows thatH() = q+ 
l! c

l ∂ lF
∂zl (, , ). Then ρA ◦H is a subharmonic

function on {η ∈C : μ < 
ρ(a,b,c) ,μ = |η| =max{|α|, |β|,n 

l |γ |}}, and

ρA

(
q +


l!
cl

∂ lF
∂zl

(, , )
)

≤ max
|α|=

ρ
(
H(α)

)

<

nl!

ρA
(
cl

)
ρA

(
∂ lF
∂zl

(, , )
)

<


nl!|γ |l ρA

(
∂ lF
∂zl

(, , )
)
. (.)
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Therefore, if n –→ ∞, then

ρA

(
q +


l!
cl

∂ lF
∂zl

(, , )
)
= 

for every q ∈ A with ρA(q) = . Hence, cl ∂ lF
∂zl (, , ) is in radical of A. Therefore,

cl ∂ lF
∂zl (, , ) = . Since c ∈ �A ∩ Z(A), so cl 	= , then ∂ lF

∂zl (, , ) = , a contradiction.
Thus, (.) implies that our claim is true, and from (.), we conclude that F(a,b, c) = a.
Similarly, we have F(a, c,b) = a, F(b,a, c) = F(b, c,a) = b and F(c,a,b) = F(c,b,a) = c.
By gathering the above five cases, we conclude (a,b, c) is a tripled fixed point for F , and

since (a,b, c) was arbitrary, so every point of �A×A×A ∩ Z(A×A×A) is a tripled fixed
point for F . �

Corollary . Let A be a unital without of order semi-simple Banach algebra. If F :
�A×A×A ⊆ A × A × A –→ �A is a holomorphic map that satisfies the conditions
F(, , ) = , ∂F

∂x (, , ) = idA, ∂F
∂y (, , ) = , ∂F

∂z (, , ) = , ∂F
∂xi ∂yj ∂zk (, , ) = , where

i + j + k = , i, j,k = , , , and ∂F
∂xi ∂yj ∂zk (, , ) = , where i + j + k = , i, j,k = , , , , then

every (a,b, c) ∈ �A×A×A ∩ Z(A×A×A) is a tripled fixed point for F .

In the following theorem, we characterize tripled fixed points of holomorphic functions
on FLM algebras.

Theorem . Let A be a unital without of order complete semi-simple metrizable FLM
algebra. For given (a,b, c) ∈ �A×A×A\Z(A × A × A), there is a holomorphic map F :
�A×A×A –→ �A satisfying the conditions F(, , ) = , ∂F

∂x (, , ) = idA, ∂F
∂y (, , ) = ,

∂F
∂z (, , ) = , ∂F

∂xi ∂yj ∂zk (, , ) = ,where i+ j+k = , i, j,k = , , ,and ∂F
∂xi ∂yj ∂zk (, , ) = ,

where i + j + k = , i, j,k = , , , , such that F(a,b, c) 	= a, F(b,a, c) 	= b and F(c,a,b) 	= c.

Proof Let (a,b, c) ∈ �A×A×A\Z(A×A×A). Then there exist (u,u,u) ∈A×A×A such
that

(ua,ub,uc) 	= (au,bu, cu).

Let DA×A×A(u,u,u) < , then DA(u) < . Define U := log(e – u), then

e–UaeU 	= a, e–UbeU 	= b and e–UceU 	= c.

Now, define F :�A×A×A –→ �A as follows:

F(x, y, z) = e–
xzU
ac xe

yzU
bc (.)

for every (x, y, z) in �A×A×A. Clearly, F is a holomorphic function, F(, , ) = ,
∂F
∂x (, , ) = idA, ∂F

∂y (, , ) = , ∂F
∂z (, , ) = , ∂F

∂xi ∂yj ∂zk (, , ) = , where i + j + k = ,

i, j,k = , , , and ∂F
∂xi ∂yj ∂zk (, , ) = , where i + j + k = , i, j,k = , , , , but F(a,b, c) 	= a,

and similarly, we can show that there is a holomorphic map F : �A×A×A –→ �A with the
required conditions such that F(b,a, c) 	= b and F(c,a,b) 	= c. �
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Example . Let X =R be the space of real numbers and let F : X×X –→ X be a function
defined by F(x, y, z) = x that satisfies the conditions of Theorem ..

Example . Let X be a unital without of order complete semi-simple Banach algebra
and let F : X × X –→ X be a function defined by F(x, y, z) = eyzxe–yz that satisfies the
conditions of Theorem .. For example, let X =M(G) be the measure space on a locally
compact Hausdorff space G. Another algebra that we can choose is �(G), where G is a
locally compact discrete group.

Corollary . Let A be a unital without of order semi-simple Banach algebra. For given
(a,b, c) ∈ �A×A×A\Z(A × A × A), there is a holomorphic map F : �A×A×A –→ �A

satisfying the conditions F(, , ) = , ∂F
∂x (, , ) = idA, ∂F

∂y (, , ) = , ∂F
∂z (, , ) = ,

∂F
∂xi ∂yj ∂zk (, , ) = , where i + j + k = , i, j,k = , , , and ∂F

∂xi ∂yj ∂zk (, , ) = , where
i + j + k = , i, j,k = , , , , such that F(a,b, c) 	= a, F(b,a, c) 	= b and F(c,a,b) 	= c.
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