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1 Introduction
The Banach contraction principle is a remarkable result in the metric fixed point theory.
Over the years, it has been generalized in different directions and spaces by several math-
ematicians (see [–]). In , Zamfirescu [] defined Z-operators on metric spaces:
There exist real numbers a, b and c satisfying  < a < ,  < b, c < 

 such that for each
x, y ∈ X, one of the following holds:

(Z) d(Tx,Ty) ≤ ad(x, y);
(Z) d(Tx,Ty) ≤ b[d(x,Tx) + d(y,Ty)];
(Z) d(Tx,Ty) ≤ c[d(x,Ty) + d(y,Tx)].

In , Ćirić [] defined quasi-contraction (Cq) if for some  ≤ h <  and all x, y ∈ X,

d(Tx,Ty) ≤ hmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
. (.)

Clearly, the Zamfirescu operator is quasi-contractive.
In , Naimpally and Singh [] defined a generalized contractive operator as follows:

d(Tx,Ty) ≤ hmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty) + d(y,Tx)

}
(.)

for some  ≤ h <  and for all x, y ∈ X.
A generalized contractive operator in (.) is more general than quasi-contraction.
In [, ] the authors investigated quasi-contractions on cone metric spaces and ob-

tained fixed point theorems for such mappings under a different condition. Recently
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Cvetković et al. [] and Hussain and Shah [] introduced the notion of a cone metric
type space, which is a generalization of a cone metric space, and proved some common
fixed point theorems and KKM-mappings results respectively.
In this paper we consider mappings on a cone metric type space (CMTS) with a solid

cone. We prove new common fixed point theorems involving four mappings satisfying a
generalized contractive and a generalized nonexpansive conditions. Our results are gen-
eralization of theorems proved in [, , , , ] and some other authors. Almost all
of our results are proved without the assumption of the continuity of mappings.
The paper is organized as follows. In Section  we review some definitions and well-

known results which will be needed in the sequel. In Section  and  we prove the exis-
tence of common fixed points of four mappings. We also present some corollaries which
establish the fact that our results are generalization of several recent results in the litera-
ture. In Section , we present an application to integral equations to illustrate the usability
of the obtained results.

2 Definitions and notation
Let E be a real Banach space and P a subset of E. We use the symbol  to denote the zero
element of E and the symbol intP to denote the interior of P. The subset P is called a cone
if and only if:

(I) P is closed, nonempty and P �= {};
(II) a,b ∈R, a,b≥ , and x, y ∈ P such that ax + by ∈ P;
(III) P ∩ (–P) = {}.

For a given cone P, a partial ordering ≤ with respect to P is introduced as follows: x ≤ y
if and only if y – x ∈ P; x < y means x ≤ y but x �= y; if y – x ∈ intP, one writes x � y; if
intP �= ∅, the cone P is called a solid cone.
In this paper we always suppose that E is a real Banach space, P ⊆ E is a solid cone and

≤ is partial ordering with respect to P.

Definition . Let X be a nonempty set and E be a real Banach space with a cone P.
A vector-valued function d : X × X → E is said to be a cone metric type function on X
with the constant k ≥  if:

(d)  ≤ d(x, y) for all x, y ∈ X and d(x, y) =  if and only if x = y;
(d) d(x, y) = d(y,x) for all x, y ∈ X ;
(d) d(x, y)≤ k[d(x, z) + d(z, y)] for all x, y, z ∈ X .

The pair (X,d) is called a cone metric type space (CMTS).

Remark . For k = , the above definition of CMTS reduces to that of a cone metric
space introduced in [].

Definition . Let (X,d) be a CMTS and {xn} be a sequence in X:
(I) {xn} converges to x if for every c ∈ E with � c there exists n ∈N such that

d(xn,x) � c for all n > n. We write limn→∞ xn = x, or xn → x as n→ ∞.
(II) If for every c ∈ E with  � c there exists n ∈N such that d(xn,xm) � c for all

n,m > n, then {xn} is called a Cauchy sequence in X .
(III) If every Cauchy sequence is convergent in X , then X is called a complete CMTS.
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Let E be an ordered real Banach space with a cone P. The following properties hold
(a,b, c ∈ E):

(C) If a ≤ b and b � c, then a � c;
(C) If  ≤ a� c for all c ∈ intP, then a = ;
(C) If a≤ λa, where a ∈ P and  ≤ λ < , then a = ;
(C) Let xn →  in E and  � c.

Then there exists a positive integer n such that xn � c for each n > n.

Definition . Let F ,G : X → X be mappings on a set X:
(i) If y = Fx =Gx for some x ∈ X , then x is called a coincidence point of F and G, and y

is called a point of coincidence of F and G;
(ii) The pair {F ,G} is called weakly compatible if F and G commute at all of their

coincidence points, that is, FGx =GFx for all x ∈ C(F ,G) = {x ∈ X : Fx =Gx}.
(iii) The pair {F ,G} is called occasionally weakly compatible (in brief OWC) [] if

FGx =GFx for some x ∈ C(F ,G).

3 Generalized contractive operators
First we show the existence of a unique fixed point.

Theorem . Let (X,d) be a cone metric type space with the constant k ≥  and let P be a
solid cone. Let T : X → X be a mapping satisfying the contractive condition

d(Tx,Ty) ≤ λ

k
m(x, y), (.)

where

m(x, y) ∈ k
{
d(x, y),d(x,Tx) + d(y,Ty),d(x,Ty) + d(y,Tx)

}
for all x, y ∈ X and for some constant λ ∈ (, 

k+k ). If TX is complete, then T has a unique
fixed point in X.

Proof For x ∈ X, we construct a sequence {xn} in X by

xn+ = Txn for n≥ .

We show that {xn} is a Cauchy sequence in X. For n≥ , we have

d(xn+,xn) = d(Txn,Txn–) ≤ λ

k
m(xn,xn–),

where

m(xn,xn–) ∈ k
{
d(xn,xn–),d(xn,Txn) + d(xn–,Txn–),d(xn,Txn–) + d(xn–,Txn)

}
= k

{
d(xn,xn–),d(xn,xn+) + d(xn–,xn),d(xn,xn) + d(xn–,xn+)

}
= k

{
d(xn,xn–),d(xn,xn+) + d(xn–,xn),d(xn–,xn+)

}
.

Thus we have the following three cases:
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(i) d(xn+,xn) ≤ λd(xn,xn–);
(ii) d(xn+,xn) ≤ λ[d(xn,xn+) + d(xn–,xn)]≤ ( λ

–λ
)d(xn–,xn);

(iii) d(xn+,xn) ≤ λd(xn–,xn+) ≤ λk[d(xn–,xn) + d(xn,xn+)] ≤ ( λk
–λk )d(xn–,xn).

Let α = max{λ, λ
–λ

, λk
–λk }. Then α = max{λ, λ

–λ
, kλ
–kλ } = kλ

–kλ and so kα <  if and only if
kλ
–kλ <  if and only if λ ∈ (, 

k+k ).
Thus

d(xn+,xn) ≤ αd(xn–,xn)≤ · · · ≤ αnd(x,x).

Since k ≥ , form > n, we have

d(xn,xm) ≤ kd(xn,xn+) + kd(xn+,xn+) + · · · + km–n–d(xm–,xm)

≤ (
kαn + kαn+ + · · · + km–n–αm–)d(x,x)

≤
(

k
 – kα

)
αnd(x,x) →  as n→ ∞.

Now, by (C) and (C), it follows that for every c ∈ intP, there exists a positive integer n
such that d(xn,xm) � c for every m > n > n, so {xn}is a Cauchy sequence. Since TX is a
complete subspace of X, there exists p ∈ TX such that limn→∞ xn = p = limn→∞ Txn. We
show that p is a fixed point of T . Consider

d(p,Tp) ≤ k
(
d(p,xn+) + d(xn+,Tp)

)
= kd(p,xn+) + kd(Txn,Tp)

≤ kd(p,xn+) + k
λ

k
m(xn,p),

where

m(xn,p) ∈ k
{
d(xn,p),d(xn,xn+) + d(p,Tp),d(xn,Tp) + d(p,xn+)

}
.

Let  � c. Then at least one of the following three cases holds:
.

d(p,Tp) ≤ kd(p,xn+) + λkd(xn,p) � k
c
k

+ λk
c

λk
= c,

whenever n≥ K.
.

d(p,Tp) ≤ kd(p,xn+) + λkd(xn,xn+) + λkd(p,Tp)

implies

d(p,Tp) ≤ k
 – λk

d(p,xn+) +
λk

 – λk
d(xn,xn+)

� k
 – λk

 – λk
k

c +
λk

 – λk
 – λk
λk

c

= c,

whenever n≥ K.
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.

d(p,Tp) ≤ kd(p,xn+) + λkd(xn,Tp) + λkd(p,xn+)

= kd(p,xn+) + λkd(p,xn+) + λkd(xn,Tp)

≤ kd(p,xn+) + λkd(p,xn+) + λkd(xn,p) + λkd(p,Tp)

or

d(p,Tp) ≤ k
 – λk

d(p,xn+) +
λk

 – λk
d(p,xn+) +

λk

 – λk
d(xn,p)

� k + λk
 – λk

 – λk

(k + λk)
c +

λk

 – λk
 – λk

λk
c

= c,

whenever n≥ K.
Hence, for n≥ max{K,K,K}, d(p,Tp) ≤ c.
Thus Tp = p. Suppose that there exists q ∈ X such that Tq = q; then from (.), we have

d(p,q) = d(Tp,Tq) ≤ λ

k
m(p,q),

where

m(p,q) ∈ k
{
d(p,q),d(p,Tp) + d(q,Tq),d(p,Tq) + d(q,Tp)

}
= k

{
d(p,q), d(p,q)

}
.

Thus we have the following two cases:
(i) d(p,q) = d(Tp,Tq) ≤ λd(p,q), and
(ii) d(Tp,Tq) ≤ λd(p,q).

Since λ ∈ (, 
k+k ), from both the cases we get p = q. �

Remark . In Theorem . we have generalized and unified the fixed point theorems of
Huang and Zhang [] and corresponding results in [].

Now we present some new common fixed point theorems involving four mappings de-
fined on a cone metric type space.

Theorem . Let (X,d) be a cone metric type space with the constant k ≥  and let P be a
solid cone. Suppose that the self-mappings F ,G,S,T : X → X are such that SX ⊂ GX and
TX ⊂ FX. Let x ∈ X, let the sequences {xn} and {zn} be defined by zn = Gxn+ = Sxn
and zn+ = Fxn+ = Txn+ for n ≥  and let O(x) = {zn : n ≥ }. Assume that there exists
x ∈ X such that for some constant λ ∈ (, 

k+k ),

d(Sx,Ty)≤ λ

k
m(x, y), (.)

where

m(x, y) ∈ k
{
d(Fx,Gy),d(Fx,Sx) + d(Gy,Ty),d(Fx,Ty) + d(Sx,Gy)

}
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for all x, y ∈ F–{O(x)} ∪G–{O(x)}. If one of SX, TX, FX, or GX is a complete subspace
of X, then {S,F} and {T ,G} have a point of coincidence in X.

Proof We consider two cases of an odd integer n and of an even n. For n = l+ , l ∈N, we
have d(zl+, zl+) = d(Sxl+,Txl+), and from (.) there exists some

m(xl+,xl+)

∈ k
{
d(Fxl+,Gxl+),d(Fxl+,Sxl+) + d(Gxl+,Txl+),

d(Fxl+,Txl+) + d(Sxl+,Gxl+)
}

= k
{
d(zl+, zl),d(zl+, zl+) + d(zl, zl+),d(zl+, zl)

}
such that

d(zl+, zl+) = d(Sxl+,Txl+) ≤
(

λ

k

)
m(xl+,xl+).

Thus we have the following three cases:
(i) d(zl+, zl+) ≤ λd(zl+, zl);
(ii) d(zl+, zl+) ≤ λd(zl+, zl+) + d(zl, zl+) ≤ ( λ

–λ
)d(zl+, zl);

(iii) d(zl+, zl+) ≤ λd(zl+, zl) ≤ λk[d(zl+, zl+) + d(zl+, zl)]≤ ( λk
–λk )d(zl+, zl).

Let α =max{λ, λ
–λ

, λk
–λk }. It is easy to see that α,kα ∈ (, ), such that

d(zn+, zn) ≤ αd(zn, zn–), n≥ . (.)

For n = l, l ∈N, we have

d(zl, zl+) = d(Sxl,Txl+) ≤ λ

k
m(xl,xl+), (.)

where

m(xl,xl+)

∈ k
{
d(Fxl,Gxl+),d(Fxl,Sxl) + d(Gxl+,Txl+),

d(Fxl,Txl+) + d(Sxl,Gxl+)
}

= k
{
d(zl–, zl),d(zl–, zl) + d(zl, zl+),d(zl–, zl+)

}
.

Thus we have the following three cases:
(i) d(zl, zl+) ≤ λd(zl–, zl);
(ii) d(zl, zl+) ≤ λ[d(zl–, zl) + d(zl, zl+)] ≤ ( λ

–λ
)d(zl–, zl);

(iii) d(zl, zl+) ≤ λd(zl–, zl+) ≤ λk[d(zl–, zl) + d(zl, zl+)]≤ ( λk
–λk )d(zl–, zl).

So, inequality (.) is satisfied in this case, too. Therefore, (.) is satisfied for all n ∈ N,
and by iterating we get

d(zn+, zn) ≤ αnd(z, z). (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/169
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Since k ≥ , form > n we have

d(zn, zm) ≤ kd(zn, zn+) + kd(zn+, zn+) + · · · +Km–n–d(zm–, zm)

≤ (
kαn + kαn+ + · · · +Km–n–αm–)d(z, z)

≤
(

k
 – kα

)
αnd(z, z) →  as n→ ∞.

Now, by (C) and (C), it follows that for every c ∈ intP there exists a positive integer n
such that d(zn, zm) � c for every m > n > n, so {zn}is a Cauchy sequence.
Let us suppose that SX is a complete subspace of X, then there exists z ∈ SX such that

limn→∞ zn = limn→∞ Sxn = z. Then we have

lim
n→∞Gxn+ = lim

n→∞Sxn = lim
n→∞Fxn = lim

n→∞Txn+ = z,

that is, for any  � c, for sufficient large n, we have d(zn, z) � c. Since z ∈ SX ⊂ GX, then
there exists y ∈ X such that z =Gy. Let us prove that z = Ty. From (d) and (.), we get

d(Ty, z) ≤ k
[
d(Ty,Sxn) + d(Sxn, z)

]
≤ λm(xn, y) + kd(zn, z),

where

m(xn, y) ∈ k
[
d(Fxn,Gy),d(Fxn,Sxn) + d(Gy,Ty),d(Fxn,Ty) + d(Sxn,Gy)

]
= k

[
d(zn–, z),d(zn–, zn) + d(z,Ty),d(zn–,Ty) + d(zn, z)

]
.

Therefore we have three cases:
(i) d(Ty, z) ≤ kλd(zn–, z) + kd(zn, z) � kλ c

kλ + k c
k = c as n → ∞;

(ii) d(Ty, z) ≤ kλ[d(zn–, zn) + d(z,Ty)] + kd(zn, z) � k
–λk [λ

–λk
kλ c + –λk

k c] = c as
n→ ∞ (since  ≤ k ≤  and λ ∈ (, 

k+k ), we have λ < 
k , and therefore  – λk > );

(iii)

d(Ty, z) ≤ λk
[
d(zn–,Ty) + d(zn, z)

]
+ kd(zn, z)

≤ λk
[
k
{
d(zn–, z) + d(z,Ty)

}
+ d(zn, z)

]
+ kd(zn, z)

≤ k
 – λk

[
λkd(zn–, z) + λd(zn, z) + d(zn, z)

]
� k

 – λk

[
λk

 – λk

λk
c + λ

 – λk

λk
c +

 – λk

k

]
= c as n→ ∞

(since k ≥  and λ ∈ (, 
k+k ), we have λ < 

k+k <

k , and therefore  – λk > ).

Therefore, d(Ty, z) � c for each c ∈ intP. So, by (C) we have d(Ty, z) = , that is,

Ty =Gy = z,

so, z is a point of coincidence of T and G.
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Since TX ⊂ FX, there exists v ∈ X such that z = Fv. From (d) and (.), we have

d(Sv, z)≤ k
[
d(Sv,Txn+) + d(Txn+, z)

] ≤ λm(v,xn+) + kd(zn+, z),

where

m(v,xn+) ∈ k
{
d(Fv,Gxn+),d(Fv,Sv) + d(Gxn+,Txn+),

d(Fv,Txn+) + d(Sv,Gxn+)
}

= k
{
d(z, zn),d(z,Sv) + d(zn, zn+),d(z, zn+) + d(Sv, zn)

}
.

Therefore we have the following three cases:
(i) d(Sv, z)≤ λkd(z, zn) + kd(zn+, z);
(ii) d(Sv, z)≤ λk[d(z,Sv) + d(zn, zn+)] + kd(zn+, z);
(iii) d(Sv, z)≤ λk[d(z, zn+) + d(Sv, zn)] + kd(zn+, z).

By the same argument as above, we get d(Sv, z) = , that is, Sv = Fv = z. So, z is also a point
of coincidence of S and F . �

Theorem . In addition to the hypothesis of Theorem ., suppose that {S,F} and {T ,G}
are weakly compatible pairs, then F , G, S, and T have a common fixed point.

Proof From Theorem ., we get that the mappings {S,F} and {T ,G} have a point of coin-
cidence in z ∈ X. Now we prove that z is a unique point of coincidence of pairs {S,F} and
{T ,G}. Suppose that there exists z∗ ∈ X such that Fv∗ =Gy∗ = Sv∗ = Ty∗ = z∗, from (.),

d
(
z, z∗) = d

(
Sv,Ty∗) ≤ λ

k
m

(
v, y∗), (.)

where

m
(
v, y∗) ∈ k

{
d
(
Fv,Gy∗),d(Fv,Sv) + d

(
Gy∗,Ty∗),d(

Fv,Ty∗) + d
(
Sv,Gy∗)}

= k
{
d
(
z, z∗),d(

z, z∗) + d
(
z, z∗)} = k

{
d
(
z, z∗), d(

z, z∗)}.
Using (C), we get d(z, z∗) = , that is, z = z∗. Therefore, z is a unique point of coincidence
of the pairs {S,F} and {T ,G}. That is, Sv = Fv = Ty =Gy = z.
The weak compatibility of the pair {S,F} implies SFv = FSv = SSv = FFv = Sz = Fz.
Now we show that z is a common fixed point of S and F .
Consider

d(Sz, z) = d(Sz,Ty) ≤ λ

k
m(z, y),

where

m(z, y) ∈ k
{
d(Fz,Gy),d(Fz,Sz) + d(Gy,Ty),d(Fz,Ty) + d(Sz,Gy)

}
= k

{
d(Sz, z),d(Sz, z) + d(Sz, z)

}
= k

{
d(Sz, z), d(Sz, z)

}
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/169
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Using (C), we get Sz = z = Fz. Similarly, the weak compatibility of the pair {T ,G} implies
Tz = z =Gz. Hence Sz = Fz = Tz =Gz = z. �

Remark . Theorem . is a generalization of Theorem . of [].

If we choose T = S and G = F in Theorems . and ., we get the following results for
two mappings on a cone metric type space.

Corollary . Let (X,d) be a cone metric type space with the constant k ≥  and let P be a
solid cone. Suppose that the self-mappings F ,S : X → X are such that SX ⊂ FX. Let x ∈ X,
let the sequences {xn} and {zn} be defined by zn = Fxn+ = Sxn and zn+ = Fxn+ = Sxn+
for n ≥ , and let O(x) = {zn : n ≥ }. Assume that there exists x ∈ X such that for some
constant λ ∈ (, 

k+k ),

d(Sx,Sy)≤ λ

k
m(x, y),

where

m(x, y) ∈ k
{
d(Fx,Fy),d(Fx,Sx) + d(Fy,Sy),d(Fx,Sy) + d(Sx,Fy)

}
for all x, y ∈ F–{O(x)} ∪ S–{O(x)}. If one of SX or FX is a complete subspace of X, then
S and F have a unique point of coincidence in X.Moreover, if {S,F} is a weakly compatible
pair, then S and F have a common fixed point.

The following example shows that Theorem . is different from Theorem . of
Cvetković et al. [].

Example . Let X = {, , }, and let d(x, y) = |x – y| for each x, y ∈ X. Let T : X → X be
given by T = , T =  and T = . Let S = T and let F = G = I . We first show that we
cannot invoke Theorem . of [] to show the existence of a fixed point for T . On the
contrary, assume that there exists λ ∈ (, ) such that

|Tx – Ty| ≤ λmax

{
|x – y|, |x – Tx|, |y – Ty|, |x – Ty| + |y – Tx|



}

for each x, y ∈ X. Let x =  and y = . Then, from the above, we get  ≤ λ, a contradiction.
Now let x = . Then O(x) = {, } and so F–{O(x)} ∪ G–{O(x)} = {, }. Since for

each x, y ∈ {, }, Tx = Ty, then the assumptions of Theorem . are satisfied by any λ ∈
(,  ). Thus T has a fixed point.

4 Generalized nonexpansive maps
The aim of this section is to present coincidence points results for four mappings without
satisfying the condition of continuity and commutation on cone metric type spaces with a
non-normal cone. Commonfixed point theorems are obtained under theweak compatible
condition. Our results generalize and unify main results in [, ] and many others.
First, we give some common fixed point theorems for generalized nonexpansive map-

pings defined on a cone metric type space.
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Theorem . Let (X,d) be a cone metric type space with the constant k ≥  and let P be a
solid cone. Suppose that the mappings F ,G,S,T : X → X are such that SX ⊂GX, TX ⊂ FX
satisfying

d(Sx,Ty)≤ ad(Fx,Gy) + b
{
d(Fx,Sx) + d(Gy,Ty)

}
+ c

{
d(Fx,Ty) + d(Gy,Sx)

}
(.)

for all x, y ∈ X, where a, b and c ( �= ) are nonnegative constants such that b + (a + b +
c)k + ck < . If one of SX, TX, FX, or GX is a complete subspace of X, then {S,F} and
{T ,G} have a unique point of coincidence in X. Moreover, if {S,F} and {T ,G} are weakly
compatible pairs, then F , G, S, and T have a unique common fixed point.

Proof We define sequences {xn} and {zn} as in the proof of Theorem .. We prove that
{zn} is a Cauchy sequence by considering the cases when n is odd and even, respectively.
For n = l + , l ∈ N, we have

d(zl+, zl+) = d(Sxl+,Txl+)

≤ ad(Fxl+,Gxl+) + b
{
d(Fxl+,Sxl+) + d(Gxl+,Txl+)

}
+ c

{
d(Fxl+,Txl+) + d(Gxl+,Sxl+)

}
= ad(zl+, zn) + b

{
d(zl+, zl+) + d(zl, zl+)

}
+ c

{
d(zl+, zl+) + d(zl, zl+)

}
= (a + b)d(zl+, zn) + cd(zl, zl+) + bd(zl+, zl+)

≤ (a + b)d(zl+, zn) + ck
[
d(zl, zl+) + d(zl+, zl+)

]
+ bd(zl+, zl+)

= (a + b + kc)d(zl+, zn) + (b + ck)d(zl+, zl+).

Therefore

d(zl+, zl+) ≤
(
a + b + ck
 – b – ck

)
d(zl+, zn). (.)

Similarly, for n = l, l ∈N, we have

d(zl, zl+) = d(Sxl,Txl+)

≤ ad(Fxl,Gxl+) + b
{
d(Fxl,Sxl) + d(Gxl+,Txl+)

}
+ c

{
d(Fxl,Txl+) + d(Gxl+,Sxl)

}
= ad(zl–, zn) + b

{
d(zl–, zl) + d(zl, zl+)

}
+ c

{
d(zl–, zl+) + d(zl, zl)

}
= (a + b)d(zl–, zn) + bd(zl, zl+) + cd(zl–, zl+)

≤ (a + b)d(zl–, zn) + bd(zl, zl+)

+ ck
[
d(zl–, zn) + d(zl, zl+)

]
.
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Thus,

d(zl, zl+) ≤
(
a + b + ck
 – b – ck

)
d(zl–, zn).

Let α = a+b+ck
–b–ck . Clearly α < . Hence, inequality (.) holds for both the cases. By the

same arguments as in Theorem ., we conclude that {zn} is a Cauchy sequence. Let
us suppose that SX is a complete subspace of X, then there exists z ∈ SX such that
limn→∞ zn = limn→∞ Sxn = z. Then we have

lim
n→∞Gxn+ = lim

n→∞Sxn = lim
n→∞Fxn = lim

n→∞Txn+ = z, (.)

that is, for any  � c, for sufficient large n, we have d(zn, z) � c. Since z ∈ SX ⊂ GX, then
there exists y ∈ X such that z =Gy. We prove that z = Ty. From (d) and (.), we have

d(Ty, z) ≤ k
[
d(Sxn,Ty) + d(Sxn, z)

]
≤ k

[
ad(Fxn,Gy) + b

{
d(Fxn,Sxn) + d(Gy,Ty)

}
+ c

{
d(Fxn,Ty) + d(Gy,Sxn)

}]
+ kd(Sxn, z)

= k
[
ad(zn–, z) + b

{
d(zn–, zn) + d(z,Ty)

}
+ c

{
d(zn–,Ty) + d(z, zn)

}]
+ kd(zn, z)

≤ k
[
ad(zn–, z) + b

{
d(zn–, zn) + d(z,Ty)

}
+ c

{
k
[
d(zn–, z) + d(z,Ty)

]
+ d(z, zn)

}]
+ kd(zn, z)

= k
[
(a + kc)d(zn–, z) + (c + )d(z, zn) + (b + ck)d(z,Ty) + bd(zn–, zn)

]
.

Since {zn} converges to z, so for each t ∈ intP, there exists n ∈ N such that for every n > n,

d(Ty, z) ≤
(

k
 – bk – ck

)[
(a + kc)d(zn–, z) + (c + )d(z, zn) + bd(zn–, zn)

]

�
(

k
 – bk – ck

)[
(a + kc)t


( – bk – ck)
k(a + kc)

+
(c + )t


( – bk – ck)

k(c + )
+
bt

( – bk – ck)

bk

]
= t.

Now, by (C) it follows that d(z,Ty) = , that is, Ty = z. So, we have Ty = Gy = z, that is, z
is a point of coincidence of T and G.
Since TX ⊂ FX, there exists u ∈ X such that z = Fu. From (d) and (.), we have

d(Su, z) ≤ k
[
d(Su,Txn+) + d(Txn+, z)

]
≤ k

[
ad(Fu,Gxn+) + b

{
d(Fu,Su) + d(Gxn+,Txn+)

}
+ c

{
d(Fu,Txn+) + d(Gxn+,Su)

}
+ d(Txn+, z)

]
= k

[
ad(z, zn) + b

{
d(z,Su) + d(zn, zn+)

}
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+ c
{
d(z, zn+) + d(zn,Su)

}
+ d(zn+, z)

]
≤ k

[
ad(z, zn) + b

{
d(z,Su) + d(zn, zn+)

}
+ c

{
d(z, zn+) + k

[
d(zn, z) + d(z,Su)

]}
+ d(zn+, z)

]
,

so by the same arguments as above, we have d(Su, z) = , that is, Su = Fu = Ty =Gy = z.
Suppose that z∗ is another point of coincidence of these four mappings, that is, Fu∗ =

Su∗ =Gy∗ = Ty∗ = z∗. From (.) we get

d
(
z, z∗) = d

(
Su,Ty∗)

≤ ad
(
Fu,Gy∗) + b

{
d(Fu,Su) + d

(
Gy∗,Ty∗)} + c

{
d
(
Fu,Ty∗) + d

(
Gy∗,Su

)}
≤ (a + ck)d

(
z, z∗),

because of (C), we get z = z∗. Therefore, z is the unique point of coincidence of S, F , G
and T . The weak compatibility of the pair {S,F} implies SFu = FSu = SSu = FFu = Sz = Fz,
and the weak compatibility of the pair {T ,G} gives GTy = TGy = GGy = TTy = Gz = Tz.
Consider

d(z,Sz) = d(Ty,Sz)

≤ ad(Fz,Gy) + b
{
d(Fz,Sz) + d(Gy,Ty)

}
+ c

{
d(Fz,Ty) + d(Gy,Sz)

}
= (a + c)d(Sz, z).

Since b + (a + b + c)k + ck <  and using (C), we get Sz = Fz = z; similarly we have Tz =
Gz = z. This shows that z is a common fixed point ofG, T , F and S. The proof for the cases
in which FX or GX or TX is complete are similar. Hence the theorem follows. �

Choosing k =  in Theorem ., we obtain the following generalized form of the results
in [] and [].

Corollary . Let (X,d) be a cone metric space and P be a solid cone. Suppose that the
mappings F ,G,S,T : X → X are such that SX ⊂ GX, TX ⊂ FX and that there exist non-
negative constants a, b andc satisfying

a + b + c < 

such that for all x, y ∈ X,

d(Sx,Ty)≤ ad(Fx,Gy) + b
{
d(Fx,Sx) + d(Gy,Ty)

}
+ c

{
d(Fx,Ty) + d(Gy,Sx)

}
.

If one of SX,TX, FX, orGX is a complete subspace of X, then {S,F} and {T ,G} have a unique
point of coincidence in X.Moreover, if {S,F} and {T ,G} are weakly compatible pairs, then
F , G, S, and T have a unique common fixed point.

If we choose T = S and G = F in Theorem ., we get the following result for two map-
pings on a cone metric type space.
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Corollary . Let (X,d) be a cone metric type space with the constant k ≥  and let P be a
solid cone. Suppose that the mappings G,T : X → X are such that TX ⊂GX and that there
exist nonnegative constants a, b andc, satisfying b + (a + b + c)k + ck < , such that for all
x, y ∈ X,

d(Sx,Ty)≤ ad(Gx,Gy) + b
{
d(Gx,Tx) + d(Gy,Ty)

}
+ c

{
d(Gx,Ty) + d(Gy,Tx)

}
.

If one of TX or GX is a complete subspace of X, then G and T have a unique point of
coincidence in X. Moreover, if {T ,G} is a weakly compatible pair, then G and T have a
unique common fixed point.

Now, we use the following lemma, that is a consequence of the axiom of choice, to obtain
coincidence point results for two self-mappings defined on a subset of a partially ordered
cone metric type space (see [, ]).

Lemma . Let X be a nonempty set and let g : X → X be a mapping. Then there exists a
subset E ⊆ X such that g(E) = g(X) and g : E → X is one-to-one.

The following result contains properly the recent main result (Theorem .) of Shi and
Xu []. Here we shall establish this result in the set up of a partially ordered cone metric
type space relative to a solid cone P.

Theorem . (Theorem . of []) Let (X,d) be a cone metric type space with the con-
stant k ≥  and let P be a cone having a nonempty interior. Suppose that the mappings
f , g : X → X are such that fX ⊆ gX and fX or gX is a complete subspace of X and that there
exist nonnegative constants a,a,a,a,a ∈ [, )with ka +(k+)(a +a)+(k +k)(a +
a) <  such that, for each x, y ∈ X,

d(fx, fy) ≤ ad(gx, gy) + ad(gx, fx) + ad(gy, fy) + ad(gx, fy) + ad(gy, fx).

Then f and g have a unique point of coincidence in X.Moreover, if f and g are OWC, f and
g have a unique common fixed point.

Recall that if (X,�) is a partially ordered set and f , g : X → X is such that for x, y ∈ X,
x � y implies fx � fy, then the mapping f is said to be nondecreasing. Further, for x, y ∈ X,
gx� gy implies fx � fy, then the mapping f is said to be g-nondecreasing [].
The following result extends Theorem . and corresponding results in Altun et al. [,

] and many others (see also Lemma . []).

Theorem . Let (X,d,�) be a partially ordered cone metric type space relative to a solid
cone P with the constant k ≥ . Suppose that the mappings f , g : X → X are such that f is
g-nondecreasing mapping w.r.t. �, fX ⊆ gX and gX is a complete subspace of X. Suppose
that the following assertions hold:
(a) f is continuous or X has the following property: if a nondecreasing sequence

{gxn} → gx, then gxn � gx for all n≥ ;
(b) there exist nonnegative constants a,a,a,a,a ∈ [, ) with

ka + (k + )(a + a) + (k + k)(a + a) < ;
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(c) for each x, y ∈ X with gy� gx, we have

d(fx, fy) ≤ ad(gx, gy) + ad(gx, fx) + ad(gy, fy)

+ ad(gx, fy) + ad(gy, fx). (.)

If there exists x ∈ X such that g(x) � f (x), then f and g have a coincidence point in X.

Proof Using Lemma ., there exists E ⊆ X such that g(E) = g(X) and g : E → X is one-to-
one. We define a mapping G : g(E)→ g(E) by

G(gx) = f (x) (.)

for all gx ∈ g(E). As g is one-to-one on g(E) = g(X) and f (X) ⊆ g(X), so G is well defined.
Thus, it follows from (.) and (.) that

d(Ggx,Ggy) = d(fx, fy) ≤ ad(gx, gy) +ad(gx, fx) +ad(gy, fy) +ad(gx, fy) +ad(gy, fx)

for all gx, gy ∈ g(X) for which g(y) � g(x). Since f is a g-nondecreasing mapping, for all
gy� gx ∈ g(X), it implies fy � fx, which gives Ggy� Ggx. Thus G is a nondecreasing map-
ping on g(X). Also, there exists x ∈ X such that g(x) � f (x) = G(gx). Suppose that the
assumption (a) holds. Since f is continuous, G is also continuous. Using Theorem . []
to the mapping G, it follows that G has a fixed point u ∈ g(X).
Suppose that the assumption (b) holds.We conclude similarly fromTheorem. [] that

themappingG has a fixed point u ∈ g(X). Finally, we prove that f and g have a coincidence
point. Since u is a fixed point of G, we get u = Gu. Since u ∈ g(X), there exists a point
u ∈ X such that u = gu. It follows that gu = u =Gu =Ggu = fu. Thus, u is a required
coincidence point of f and g . This completes the proof. �

5 Application to the existence of solutions of integral equations
Fixed point theorems for operators in ordered Banach spaces are widely investigated and
have found various applications in differential and integral equations (see [, ] and refer-
ences therein). LetX = C([;T];R) be the set of real continuous functions defined on [;T]
and let d : X × X → [;+∞) be defined by d(x, y) = supt∈[,T] |x(t) – y(t)|. Then (X,d) is a
complete metric type space with the constant k = .
Consider the integral equation

Fu(t) = p(t) +
∫ T


G(t, s)f

(
s,u(s)

)
ds, (.)

and let S : X → X be defined by

(Su)(t) = p(t) +
∫ T


G(t, s)f

(
s,u(s)

)
ds for each t ∈ [,T]. (.)

We assume that
(i) p : [,T]→R is continuous;
(ii) G(t, s) : [,T]× [,T] →R is continuous;
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(iii) |f (s,u(s)) – f (s, v(s))| ≤ μmax{|Fu(s) – Fv(s)|, |Fu(s) – Su(s)| + |Fv(s) – Sv(s)|,
|Fu(s) – Sv(s)| + |Su(s) – Fv(s)|} for each u, v ∈ X and s ∈ [,T], where μ is a
constant such that Tμ supt∈[,T]

∫ T
 |G(t, s)| ds < 

 .

Theorem . Under the assumptions (i)-(iii), the integral equation (.) has a solution in
X = C([;T];R).

Proof Consider the mapping S : X → X defined by (.). Notice first that the existence of
a solution for the integral equation (.) is equivalent to the existence of a common fixed
point for the mappings F and S. For each u, v ∈ X, we have

d(Su,Sv) = sup
t∈[,T]

∣∣Su(t) – Sv(t)
∣∣

≤ sup
t∈[,T]

{∫ T



∣∣G(t, s)∣∣∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣ds}

≤ sup
t∈[,T]

∫ T



∣∣G(t, s)∣∣ ds∫ T



∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣ ds
≤ μ sup

t∈[,T]

∫ T



∣∣G(t, s)∣∣ ds
×

∫ T


max

{∣∣Fu(s) – Fv(s)
∣∣, ∣∣Fu(s) – Su(s)

∣∣ + ∣∣Fv(s) – Sv(s)
∣∣,

∣∣Fu(s) – Sv(s)
∣∣ + ∣∣Su(s) – Fv(s)

∣∣}ds
≤ Tμ sup

t∈[,T]

∫ T



∣∣G(t, s)∣∣ ds
×max

{
d(Fu,Fv),d(Fu,Su) + d(Fv,Sv),d(Fu,Sv) + d(Su,Fv)

}
.

Hence all the hypotheses of Corollary . are satisfied, and so the mappings F and S have
a common fixed point that is a solution in X = C([;T];R) of the integral equation (.).
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