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Abstract
In this paper, we prove a fixed point theorem on a 2-metric space and show that the
main results in Lahiri et al. (Taiwan. J. Math. 15:337-352, 2011) and Singh et al. (J. Adv.
Math. Stud. 5:71-76, 2012) may be obtained easily from the axioms of a 2-metric
space. Examples are given to validate the results.

1 Introduction and preliminaries
There have been some generalizations of ametric space and its fixed point problem such as
-metric spaces, D-metric spaces, G-metric spaces, cone metric spaces, complex-valued
metric spaces. The notion of a -metric space was introduced by Gähler in []. Notice that
a -metric is not a continuous function of its variables, whereas an ordinarymetric is. This
led Dhage to introduce the notion of a D-metric space in []. After that, in [], Mustafa
and Sims showed that most of topological properties of D-metric spaces were not cor-
rect. Then, in [], they introduced the notion of a G-metric space and many fixed point
theorems on G-metric spaces have been obtained. Unfortunately, in [], Jleli and Samet
showed that most of the obtained fixed point theorems on G-metric spaces can be de-
duced immediately from fixed point theorems on metric spaces or quasi-metric spaces.
In [], Huang and Zhang defined the notion of a cone metric space, which generalized a
metric and a metric space, and proved some fixed point theorems for contractive maps
on this space. After that, many authors extended some fixed point theorems on metric
spaces to cone metric spaces. In [], Feng and Mao introduced a metric on a cone met-
ric space and then proved that a complete cone metric space is always a complete metric
space. They verified that a contractive map on a cone metric space is a contractive map
on a metric space, then fixed point theorems on a cone metric space are, essentially, fixed
point theorems on a metric space. In [], Azam, Fisher and Khan introduced the notion of
a complex-valued metric space and some fixed point theorems on this space were stated.
But in [], Sastry, Naidu and Bekeshie showed that some fixed point theorems recently
generalized to complex-valued metric spaces are consequences of their counter parts in
the setting of metric spaces and hence are redundant.
Notice that in the above generalizations, only a -metric space is not topologically equiv-

alent to an ordinary metric. Then there was no easy relationship between results obtained
in -metric spaces and metric spaces. In particular, the fixed point theorems on -metric
spaces andmetric spacesmay be unrelated easily. For the fixed point theorems on -metric
spaces, the readers may refer to [–].
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In this paper, we prove a fixed point theorem on a -metric space and show that the
main results in [] and [] may be obtained easily from the axioms of a -metric space.
Examples are given to validate the results.
Now we recall some notions and lemmas which will be useful in what follows.

Definition . ([]) Let X be a non-empty set and let d : X × X × X −→ R be a map
satisfying the following conditions:
. For every pair of distinct points a,b ∈ X , there exists a point c ∈ X such that

d(a,b, c) �= .
. d(a,b, c) =  only if at least two of three points are the same.
. The symmetry: d(a,b, c) = d(a, c,b) = d(b, c,a) = d(b,a, c) = d(c,a,b) = d(c,b,a) for

all a,b, c ∈ X .
. The rectangle inequality: d(a,b, c)≤ d(a,b,d) + d(b, c,d) + d(c,a,d) for all

a,b, c,d ∈ X .
Then d is called a -metric on X and (X,d) is called a -metric space which will be some-
times denoted by X if there is no confusion. Every member x ∈ X is called a point in X.

Remark .
. Every -metric is non-negative.
. We may assume that every -metric space contains at least three distinct points.

2 Main results
Theorem . Let (X,d) be a -metric space and let T ,F : X −→ X be two maps. If
d(Tx,Fy,x) = d(Tx,Fy, y) =  for all x, y ∈ X, then Tx is a fixed point of T and Fy is a fixed
point of F for all x, y ∈ X.

Proof For all x, y ∈ X, we have

d(Tx,x, y)≤ d(Tx,x,Fy) + d(x, y,Fy) + d(y,Tx,Fy) = d(Fy, y,x).

By interchanging the roles of x and y, T and F , we get d(Fy, y,x) ≤ d(Tx,x, y). So,

d(Tx,x, y) = d(Fy, y,x) (.)

for all x, y ∈ X. Then if Tx plays the role of x in (.), we have d(Tx,Tx, y) = d(Fy, y,Tx) = 
for all x, y ∈ X. Hence Tx = Tx for all x ∈ X. This proves that Tx is a fixed point of T for
all x ∈ X. Similarly, Fy is a fixed point of F for all y ∈ X. �

Corollary . ([], Lemma .) Let (X,d) be a -metric space and let T : X −→ X be a
map. If d(Tx,Ty,x) =  for all x, y ∈ X, then Tx is a fixed point of T for all x ∈ X.

The following examples show that Theorem . is a proper generalization of Corol-
lary ..

Example . Let X = {, , } and d(x, y, z) = min{|x – y|, |y – z|, |z – x|} for all x, y, z ∈ X.
Then (X,d) is a -metric space. Let T ,F : X −→ X be two maps defined by T = , T =
T =  and F = F = , F = . We have d(T,T, ) = d(, , ) �=  and d(F,F, ) =
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Table 1 Calculations for maps in Example 2.3

x y d(Tx,Fy,x) d(Tx,Fy,y)

1 1 d(T1, F1, 1) = d(1, 3, 1) = 0 d(T1, F1, 1) = d(1, 3, 1) = 0
1 2 d(T1, F2, 1) = d(1, 2, 1) = 0 d(T1, F2, 2) = d(1, 2, 2) = 0
1 3 d(T1, F3, 1) = d(1, 3, 1) = 0 d(T1, F3, 3) = d(1, 3, 3) = 0
2 1 d(T2, F1, 2) = d(3, 3, 2) = 0 d(T2, F1, 1) = d(3, 3, 1) = 0
2 2 d(T2, F2, 2) = d(3, 2, 2) = 0 d(T2, F2, 2) = d(3, 2, 2) = 0
2 3 d(T2, F3, 2) = d(3, 3, 2) = 0 d(T2, F3, 3) = d(3, 3, 3) = 0
3 1 d(T3, F1, 3) = d(3, 3, 3) = 0 d(T3, F1, 1) = d(3, 3, 1) = 0
3 2 d(T3, F2, 3) = d(3, 2, 3) = 0 d(T3, F2, 2) = d(3, 2, 2) = 0
3 3 d(T3, F3, 3) = d(3, 3, 3) = 0 d(T3, F3, 3) = d(3, 3, 3) = 0

d(, , ) �= . This proves that Corollary . is neither applicable to T nor F . On the other
hand, Theorem . is applicable to T and F since d(Tx,Fy,x) = d(Tx,Fy, y) =  for all x, y ∈
X as in the Table .

Definition . ([], Definition ) Let (X,d) be a -metric space and let T : X −→ X
be a map. T is said to be contractive if d(Tx,Ty,a) < d(x, y,a) for all x �= y �= a ∈ X, and
d(Tx,Ty,a) =  if any two of x, y,a are equal.

Corollary . Let (X,d) be a -metric space and let T : X −→ X be a contractivemap.Then
T is a constant map, i.e., there exists x ∈ X such that Tx = x for all x ∈ X. In particular,
T has a unique fixed point x and the sequence {Tnx} converges to x for all x ∈ X.

Proof Since d(Tx,Ty,x) =  for all x ∈ X, it follows from Corollary . that Tx is a fixed
point of T for all x ∈ X.
If Tx �= Ty for some x, y ∈ X, then there exists a ∈ X such that d(Tx,Ty,a) �= . Thus,

Tx �= Ty �= a. Notice that Tx = Tx and T is a contractive map, so we have

d(Tx,Ty,a) = d
(
Tx,Ty,a

)
< d(Tx,Ty,a).

It is a contradiction. Therefore Tx = Ty for all x, y ∈ X, i.e., T is a constant map. Let Tx = x
for all x ∈ X. Then x is the unique fixed point of T and the sequence {Tnx} converges
to x for all x ∈ X. �

The following example shows that the contraction of T in Corollary . is essential.

Example . Let (X,d) be a -metric space and letT : X −→ X be the identicalmapwhere
X has at least three points. Then T is a non-contractive map with more than one fixed
point.

In [], Lahiri, Das and Dey established Cantor’s intersection theorem and Baire cate-
gory theorem in -metric spaces, and some fixed point theorems in -metric spaces have
been proved sophisticatedly. By using the assumption of a contractive map, we show that
the main results in [] are direct consequences of Corollary .. Moreover, the assump-
tion of a contractive map is essential by Example ..

Corollary . ([], Theorem ) Let (X,d) be a complete bounded -metric space and
let T : X −→ X be a map such that d(Tx,Ty,a) ≤ α · d(x, y,a) for some  < α <  and all
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x �= y �= a ∈ X, and d(Tx,Ty,a) =  if any two of x, y,a ∈ X are equal. Then T has a unique
fixed point in X.

Corollary . ([], Theorem ) Let (X,d) be a bounded -metric space and let T : X −
→ X be a map such that d(Tx,Ty,a) ≤ α · d(x, y,a) for some  < α <  and all x, y,a ∈ X.
Let there be a point x ∈ X such that the sequence of iterates {Tnx} contains a subsequence
{Tnix} that converges to x ∈ X. Then x is a unique fixed point of T .

Corollary . ([], Theorem ) Let (X,d) be an uncounTable -metric space and let T :
X −→ X be a contractive map. If there exists a point x ∈ X such that the sequence of iterates
{Tnx} contains a subsequence {Tnix} converging to x ∈ X, then x is the unique fixed point
of T .

Recently, Singh, Mishra and Stofile have proved the following result.

Theorem . ([], Theorem .) Let (X,d) be a complete -metric space and T : X −→
X. Define a non-decreasing function θ from [, ) onto (  , ] by

θ (r) =

⎧⎪⎪⎨
⎪⎪⎩

 if  ≤ r ≤
√
–
 ,

–r
r if

√
–
 ≤ r ≤ √

 ,


+r if √
 ≤ r < .

Assume that there exists r ∈ [, ) such that

θ (r) · d(x,Tx,a)≤ d(x, y,a) implies d(Tx,Ty,a)≤ r · d(x, y,a) (.)

for all x, y,a ∈ X. Then there exists a unique fixed point z of T . Moreover, limTnx = z for
any x ∈ X.

In the proof of the above theorem, Singh, Mishra and Stofile claimed that

d(xn,xn+,a)≤ d(xn, z,a) + d(xn+, z,a) + d(xn,xn+,xn) (.)

in lines + and +, page  of []. In fact,

d(xn,xn+,a)≤ d(xn, z,a) + d(xn+, z,a) + d(xn,xn+, z).

The error inequality (.) was pointed out in [].
Now, by choosing a = x in (.), we have θ (r) · d(x,Tx,x) =  ≤ d(x, y,x) = . It implies

that d(Tx,Ty,x) ≤ r · d(x, y,x) =  for all x, y ∈ X. Then, by Corollary ., T has a fixed
point. For the uniqueness, let T have fixed points x, y. We have

θ (r) · d(x,Tx,a) = θ (r) · d(x,x,a) =  ≤ d(x, y,a).

It implies that d(Tx,Ty,a) = d(x, y,a) ≤ r · d(x, y,a) for all a ∈ X. Then d(x, y,a) =  for all
a ∈ X, that is, x = y.
The following example shows that we cannot replace the assumption ‘for all x, y,a ∈ X ’

in the contraction condition (.) by the assumption ‘for all x, y,a ∈ X and a �= x’.
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Table 2 Calculations for maps in Example 2.11

x a θ (r) ·d(x,Tx,a) ≤ d(x,y,a) y d(Tx,Ty,a) ≤ r ·d(x,y,a)
1 2 θ (r) · d(1, T1, 2) = 0≤ d(1, y, 2) 1 d(T1, T1, 2) = 0≤ r · d(1, 1, 2)

2 d(T1, T2, 2) = 0≤ r · d(1, 2, 2)
3 d(T1, T3, 2) = 0≤ r · d(1, 3, 2)

1 3 θ (r) · d(1, T1, 3) = θ (r) · d(1, 2, 3) ≤ d(1, y, 3) 2 d(T1, T2, 3) = 0≤ r · d(1, 2, 3)
2 3 θ (r) · d(2, T2, 3) = 0≤ d(2, y, 3) 1 d(T2, T1, 3) = 0≤ r · d(2, 1, 3)

2 d(T2, T2, 3) = 0≤ r · d(2, 2, 3)
3 d(T2, T3, 3) = 0≤ r · d(2, 3, 3)

2 1 θ (r) · d(2, T2, 1) = θ (r) · d(2, 3, 1) ≤ d(2, y, 1) 3 d(T2, T3, 1) = 0≤ r · d(2, 3, 1)
3 1 θ (r) · d(3, T3, 1) = 0≤ d(1, y, 3) 1 d(T3, T1, 1) = 0≤ r · d(3, 1, 1)

2 d(T3, T2, 1) = 0≤ r · d(3, 2, 1)
3 d(T3, T3, 1) = 0≤ r · d(3, 3, 1)

3 2 θ (r) · d(3, T3, 2) = θ (r) · d(3, 1, 2) ≤ d(2, y, 3) 1 d(T3, T1, 2) = 0≤ r · d(3, 1, 2)

Example . Let X = {, , } and d(x, y, z) =min{|x – y|, |y – z|, |z – x|} for all x, y, z ∈ X.
Then (X,d) is a complete -metric space. Let T : X −→ X be a map defined by T = ,
T = , T = . We see that T has no fixed point. But, for all x, y,a ∈ X and a �= x, the
contraction condition (.) holds as in the Table .
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