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Abstract
The notion of a modular metric on an arbitrary set and the corresponding modular
spaces, generalizing classical modulars over linear spaces like Orlicz spaces, were
recently introduced. In this paper we investigate the existence of fixed points of
modular contractive mappings in modular metric spaces. These are related to the
successive approximations of fixed points (via orbits) which converge to the fixed
points in the modular sense, which is weaker than the metric convergence.
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1 Introduction
The purpose of this paper is to give an outline of a fixed point theory for Lipschitzianmap-
pings defined on some subsets of modularmetric spaces which are natural generalizations
of both function and sequence variants of many important, from applications perspec-
tive, spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, Calderon-
Lozanovskii spaces and many others. Modular metric spaces were introduced in [, ].
The main idea behind this new concept is the physical interpretation of the modular. In-
formally speaking, whereas a metric on a set represents nonnegative finite distances be-
tween any two points of the set, a modular on a set attributes a nonnegative (possibly,
infinite valued) ‘field of (generalized) velocities’: to each ‘time’ λ >  (the absolute value
of ) an average velocity wλ(x, y) is associated in such a way that in order to cover the - ‘dis-
tance’ between points x, y ∈ X, it takes time λ to move from x to y with velocity wλ(x, y).
But the way we approached the concept of modular metric spaces is different. Indeed, we
look at these spaces as the nonlinear version of the classical modular spaces as introduced
by Nakano [] on vector spaces and modular function spaces introduced byMusielack []
and Orlicz [].
In recent years, there was an uptake of interest in the study of electrorheological fluids,

sometimes referred to as ‘smart fluids’ (for instance, lithium polymetachrylate). For these
fluids, modeling with sufficient accuracy using classical Lebesgue and Sobolev spaces,
Lp andW ,p, where p is a fixed constant, is not adequate, but rather the exponent p should
be able to vary [, ]. One of the most interesting problems in this setting is the famous
Dirichlet energy problem [, ]. The classical technique used so far in studying this prob-
lem is to convert the energy functional, naturally defined by a modular, to a convoluted
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and complicated problem which involves a norm (the Luxemburg norm). The modular
metric approach is more natural and has not been used extensively.
The fixed point property in modular function spaces was initiated after the publication

of the paper [] in . More recently, the authors presented a series of fixed point re-
sults for pointwise contractions and asymptotic pointwise contractions acting in modular
functions spaces [, ]. In this paper, we define and investigate the fixed point property in
the framework of modular metric spaces. It seems that a timid start has been going on for
a few years now but it still lacks some generalities. The importance of applications of fixed
points of mappings in modular metric spaces follows the success of such applications in
modular function spaces because of the richness of structure of modular function spaces
that - besides being Banach spaces (or F-spaces in a more general settings) - are equipped
with modular equivalents of norm or metric notions, and also are equipped with almost
everywhere convergence and convergence in submeasure. In many cases, particularly in
applications to integral operators, approximation and fixed point results, modular type
conditions are much more natural as modular-type assumptions can be more easily veri-
fied than their metric or norm counterparts. From this perspective, the fixed point theory
inmodularmetric spaces should be considered as complementary to the fixed point theory
in modular function spaces and in metric spaces. The theory of contractions and nonex-
pansive mappings defined on convex subsets of Banach spaces has been well developed
since the s (see, e.g., Belluce and Kirk [, ], Browder [], Bruck [], DeMarr [],
and Lim []) and generalized to other metric spaces (see, e.g., [–]) andmodular func-
tion spaces (see, e.g., []). The corresponding fixed point results were then extended to
larger classes of mappings like pointwise contractions [, ] and asymptotic pointwise
contractions and nonexpansive mappings [, ].
For more on metric fixed point theory, the reader may consult the book [] and for

modular metric spaces [].

2 Basic definitions and properties
Let X be a nonempty set. Throughout this paper, for a function w : (,∞) × X × X →
(,∞), we write

wλ(x, y) = w(λ,x, y)

for all λ >  and x, y ∈ X.

Definition . [, ] A function w : (,∞)×X ×X → [,∞] is said to be modular metric
on X if it satisfies the following axioms:

(i) x = y if and only if wλ(x, y) =  for all λ > ;
(ii) wλ(x, y) = wλ(y,x) for all λ >  and x, y ∈ X ;
(iii) wλ+μ(x, y) ≤ wλ(x, z) +wμ(z, y) for all λ,μ >  and x, y, z ∈ X .

If instead of (i) we have only the condition (i′)

wλ(x,x) =  for all λ > ,x ∈ X,
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then w is said to be a pseudomodular (metric) on X. A modular metric w on X is said to
be regular if the following weaker version of (i) is satisfied:

x = y if and only if wλ(x, y) =  for some λ > .

Finally, w is said to be convex if, for λ,μ >  and x, y, z ∈ X, it satisfies the inequality

wλ+μ(x, y) ≤ λ

λ +μ
wλ(x, z) +

μ

λ +μ
wμ(z, y).

Note that for a metric pseudomodular w on a set X, and any x, y ∈ X, the function λ →
wλ(x, y) is nonincreasing on (,∞). Indeed, if  < μ < λ, then

wλ(x, y)≤ wλ–μ(x,x) +wμ(x, y) = wμ(x, y).

Definition . [, ] Let w be a pseudomodular on X. Fix x ∈ X. The two sets

Xw = Xw(x) =
{
x ∈ X : wλ(x,x) →  as λ → ∞}

and

X∗
w = X∗

w(x) =
{
x ∈ X : ∃λ = λ(x) >  such that wλ(x,x) < ∞}

are said to be modular spaces (around x).

It is clear that Xw ⊂ X∗
w, but this inclusionmay be proper in general. It follows from [, ]

that if w is a modular on X, then themodular space Xw can be equipped with a (nontrivial)
metric, generated by w and given by

dw(x, y) = inf
{
λ >  : wλ(x, y)≤ λ

}

for any x, y ∈ Xw. Ifw is a convexmodular onX, according to [, ], the twomodular spaces
coincide, X∗

w = Xw, and this common set can be endowed with the metric d∗
w given by

d∗
w(x, y) = inf

{
λ >  : wλ(x, y)≤ 

}

for any x, y ∈ Xw. These distances will be called Luxemburg distances (see example below
for the justification).
Next we give the main example that motivated this paper.

Example . Let� be a nonempty set and� be a nontrivial σ -algebra of subsets of�. Let
P be a δ-ring of subsets of � such that E∩A ∈P for any E ∈P and A ∈ �. Let us assume
that there exists an increasing sequence of sets Kn ∈P such that � = ∪Kn. By E we denote
the linear space of all simple functions with supports fromP . ByM∞ we denote the space
of all extended measurable functions, i.e., all functions f : � → [–∞,∞] such that there
exists a sequence {gn} ⊂ E , |gn| ≤ |f | and gn(ω) → f (ω) for all ω ∈ �. By A we denote the
characteristic function of the setA. Let ρ :M∞ → [,∞] be a nontrivial, convex and even
function. We say that ρ is a regular convex function pseudomodular if:

http://www.fixedpointtheoryandapplications.com/content/2013/1/163
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(i) ρ() = ;
(ii) ρ is monotone, i.e., |f (ω)| ≤ |g(ω)| for all ω ∈ � implies ρ(f )≤ ρ(g), where

f , g ∈M∞;
(iii) ρ is orthogonally subadditive, i.e., ρ(f A∪B) ≤ ρ(f A) + ρ(f B) for any A,B ∈ � such

that A∩ B �= ∅, f ∈M;
(iv) ρ has the Fatou property, i.e., |fn(ω)| ↑ |f (ω)| for all ω ∈ � implies ρ(fn) ↑ ρ(f ),

where f ∈M∞;
(v) ρ is order continuous in E , i.e., gn ∈ E and |gn(ω)| ↓  implies ρ(gn) ↓ .
Similarly, as in the case of measure spaces, we say that a set A ∈ � is ρ-null if ρ(gA) = 

for every g ∈ E . We say that a property holds ρ-almost everywhere if the exceptional set
is ρ-null. As usual, we identify any pair of measurable sets whose symmetric difference is
ρ-null as well as any pair of measurable functions differing only on a ρ-null set. With this
in mind, we define

M(�,�,P ,ρ) =
{
f ∈M∞;

∣∣f (ω)∣∣ < ∞ ρ-a.e.
}
,

where each f ∈ M(�,�,P ,ρ) is actually an equivalence class of functions equal ρ-a.e.
rather than an individual function. Where no confusion exists, we write M instead of
M(�,�,P ,ρ). Let ρ be a regular function pseudomodular.
(a) We say that ρ is a regular function semimodular if ρ(αf ) =  for every α >  implies

f =  ρ-a.e.;
(b) We say that ρ is a regular function modular if ρ(f ) =  implies f =  ρ-a.e.

The class of all nonzero regular convex function modulars defined on � is denoted by �.
Let us denote ρ(f ,E) = ρ(f E) for f ∈M, E ∈ �. It is easy to prove that ρ(f ,E) is a function
pseudomodular in the sense of Def. .. in [] (more precisely, it is a function pseudo-
modular with the Fatou property). Therefore, we can use all results of the standard theory
of modular function space as per the framework defined by Kozlowski in [–]; see
also Musielak [] for the basics of the general modular theory. Let ρ be a convex function
modular.

(a) The associated modular function space is the vector space Lρ(�,�), or briefly Lρ ,
defined by

Lρ =
{
f ∈M;ρ(λf ) →  as λ → 

}
.

(b) The following formula defines a norm in Lρ (frequently called the Luxemburg
norm):

‖f ‖ρ = inf
{
α > ;ρ(f /α) ≤ 

}
.

A modular function space furnishes a wonderful example of a modular metric space.
Indeed, let Lρ be a modular function space. Define the function w by

wλ(f , g) = ρ

(
f – g

λ

)
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for all λ >  and f , g ∈ Lρ . Then w is a modular metric on Lρ . Note that w is convex if and
only if ρ is convex. Moreover, we have

‖f – g‖ρ = d∗
w(f , g)

for any f , g ∈ Lρ .

Other easy examples may be found in [, ].

Definition . Let Xw be a modular metric space.
() The sequence (xn)n∈N in Xw is said to be w-convergent to x ∈ Xw if and only if

wλ(xn,x)→  as n→ ∞ for some λ > .
() The sequence (xn)n∈N in Xw is said to be w-Cauchy if wλ(xm,xn) →  as m,n→ ∞

for some λ > .
() A subset C of Xw is said to be w-closed if the limit of a w-convergent sequence of C

always belongs to C.
() A subset C of Xw is said to be w-complete if any w-Cauchy sequence in C is a

convergent sequence and its limit is in C.
() A subset C of Xw is said to be w-bounded if for some λ > , we have

δw(C) = sup
{
wλ(x, y);x, y ∈ C

}
< ∞.

In general if limn→∞ wλ(xn,x) =  for some λ > , then we may not have limn→∞ wλ(xn,
x) =  for all λ > . Therefore, as it is done in modular function spaces, we say that w
satisfies �-condition if this is the case, i.e., limn→∞ wλ(xn,x) =  for some λ >  implies
limn→∞ wλ(xn,x) =  for all λ > . In [] and [], one can find a discussion about the con-
nection between w-convergence and metric convergence with respect to the Luxemburg
distances. In particular, we have

lim
n→∞dw(xn,x) =  if and only if lim

n→∞wλ(xn,x) =  for all λ > ,

for any {xn} ∈ Xw and x ∈ Xw. And, in particular, we have w-convergence and dw conver-
gence are equivalent if and only if the modular w satisfies the �-condition. Moreover, if
the modular w is convex, then we know that d∗

w and dw are equivalent, which implies

lim
n→∞d∗

w(xn,x) =  if and only if lim
n→∞wλ(xn,x) =  for all λ > ,

for any {xn} ∈ Xw and x ∈ Xw [, ]. Another question that arises in this setting is the
uniqueness of w-limit. Assume that w is regular, then we have the uniqueness of w-limit.
Indeed, let {xn} ∈ Xw be a sequence such that {xn} w-converges to a ∈ Xw and b ∈ Xw. Then
we have

w(a,b)≤ w(a,xn) +w(xn,b)

for any n ≥ . Our assumptions imply w(a,b) = . Since w is regular, we must have a = b
as claimed.

http://www.fixedpointtheoryandapplications.com/content/2013/1/163
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Let us finish this section with the modular metric definitions of Lipschitzian mappings.
The definitions are straightforward generalizations of their norm and metric equivalents
[].

Definition . Let (X,w) be a modular metric space. Let C be a nonempty subset of Xw.
A mapping T : C → C is called a Lipschitzian mapping if there exists a constant k ≥ 
such that

w
(
T(x),T(y)

) ≤ kw(x, y) for any x, y ∈ C.

The smallest such constant k is known as Lipw(T). A point x ∈ C is called a fixed point of
T whenever T(x) = x. The set of fixed points of T is denoted by Fix(T).

In the next definition, we introduce the concept of pointwise contraction mappings in
this setting.

Definition . Let (X,w) be a modular metric space. Let C be a nonempty subset of Xw.
A mapping T : C → C is called

(i) a contraction mapping if there exists a constant k ∈ [, ) such that

w
(
T(x),T(y)

) ≤ kw(x, y) for any x, y ∈ C;

(ii) a pointwise contraction mapping if there exists a function α : C → [, ) such that

w
(
T(x),T(y)

) ≤ α(x)w(x, y) for any x, y ∈ C.

In [, ] the author defined Lipschitzian mappings in modular metric spaces and proved
some fixed point theorems. Our definition is more general. Indeed, in the case of modular
function spaces, it is proved in [] that

wλ

(
T(x),T(y)

) ≤ wλ(x, y) for any λ > 

if and only if

dw
(
T(x),T(y)

) ≤ dw(x, y).

Moreover, an example is given to show that

w
(
T(x),T(y)

) ≤ w(x, y),

but T is not Lipschitzian with respect to dw with constant .

3 Banach contraction principle in modular metric spaces
The statement of Banach contraction principle in modular metric spaces is as follows.

Theorem . Let (X,w) be a modular metric space. Assume that w is regular. Let C
be a nonempty subset of Xw. Assume that C is w-complete and w-bounded, i.e., δw(C) =

http://www.fixedpointtheoryandapplications.com/content/2013/1/163
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sup{w(x, y);x, y ∈ C} < ∞. Let T : C → C be a contraction. Then T has a unique fixed
point x.Moreover, the orbit {Tn(x)} w-converges to x for each x ∈ C.

Proof Since T is a contraction, therefore there exists k ∈ [, ) such that

w
(
T(x),T(y)

) ≤ kw(x, y) for any x, y ∈ C.

First note that T has at most one fixed point. Indeed, let a,b ∈ C be two fixed points of T .
Then we have

w(a,b) = w
(
T(a),T(b)

) ≤ kw(a,b).

Our assumption on C implies w(a,b) < ∞. This forces w(a,b) = , which implies a = b
because w is regular. Next we fix x ∈ C. Then we have

w
(
Tn+h(x),Tn(x)

) ≤ knw
(
Th(x),x

) ≤ knδw(C)

for any n ≥  and h ≥ . This clearly implies that {Tn(x)} is w-Cauchy. Since C is w-
complete, therefore {Tn(x)} w-converges to some point x ∈ C. Next let us show that x is
a fixed point of T . Indeed, we have

w
(
x,T(x)

) ≤ w
(
x,Tn(x)

)
+w

(
T(x),Tn(x)

)
,

which implies

w
(
x,T(x)

) ≤ w
(
x,Tn(x)

)
+ kw

(
x,Tn–(x)

)

for any n ≥ . Since {Tn(x)} w-converges to x, therefore we get w(x,T(x)) = ,
i.e., T(x) = x. Since T has at most one fixed point, we conclude that any orbit of T
w-converges to the only fixed point x of T . �

Remark . In the classical Banach contraction principle, the metric space is not sup-
posed to be bounded. In fact the contractive condition of the mapping implies that any
orbit is bounded. In the case of a modular metric space, due to the failure of the triangle
inequality, it is not true that the contractive condition of the mapping implies the bound-
edness of the orbit. Note that if T has a fixed point, then it is obvious that an orbit of T is
bounded. Conversely, if T has a bounded orbit {Tn(x)} for some x ∈ C, then we have

w
(
Tn+h(x),Tn(x)

) ≤ knw
(
Th(x),x

) ≤ kn sup
n,m≥

w
(
Tn(x),Tm(x)

)

for any n ≥  and h ≥ . This clearly implies that {Tn(x)} is w-Cauchy. Since C is
w-complete, then {Tn(x)} is w-convergent to some x ∈ C. Since

w
(
Tn(x),T(x)

) ≤ kw
(
Tn–(x),x

)
, n = , , . . . ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/163
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we conclude that {Tn(x)}w-converges toT(x). Sincew is regular, wemust haveT(x) = x,
i.e., x is the only fixed point of T . Next, for any z ∈ C such that w(z,x) < ∞, we have

w
(
Tn(z),x

)
= w

(
Tn(z),Tn(x)

) ≤ knw(z,x)

for any n ≥ . Hence the orbit {Tn(z)} w-converges to x as well. In this remark, we show
howone has to be careful when dealingwithmodulars. Indeed, amodularmay take infinite
value. This is the problem that the authors of [] did not pay attention to. This was also
pointed out in the short note []. In fact, the authors of [] did try to fix this problem in
another short note [] but they used the triangle inequality in their proof knowing that
w does not in general satisfy the triangle inequality. Therefore our Theorem . properly
establishes the classical Banach contraction principle in the best possible way in modular
metric spaces and improves a number of earlier known results in this setting.

4 Pointwise contractionmappings inmodular metric spaces
Pointwise contractive behavior was introduced in [] to extend the contractive behavior
in the Banach contraction principle. The central fixed point result in themetric setting for
such mappings is the following theorem.

Theorem . [, ] Let K be a weakly compact convex subset of a Banach space and
suppose that T : K → K is a pointwise contraction. Then T has a unique fixed point x.
Moreover, the orbit {Tn(x)} converges to x for each x ∈ K .

The main focus of this paper is on the fixed point problem, so we would like to make
some observations here. It is easy to prove that a pointwise contraction T : C → C has a
fixed point in the sameway as in the case of contractions. Indeed, let a be a fixed point ofT .
Then the orbit {Tn(x)} w-converges to a for each x ∈ C such that w(x,a) <∞. Indeed, we
have

w
(
a,Tn(x)

)
= w

(
Tn(a),Tn(x)

) ≤ α(a)nw(a,x)

for any x ∈ C. Since α(a) < , we conclude that {Tn(x)} w-converges to a. Moreover, if b is
another fixed point of T , then from w(a,b) < ∞, we must have a = b. But it is not clear
how to prove the existence of the fixed point from the convergence of the orbits, which is
the case in the classical proof of the Banach contraction principle. In this case, we have to
use a different technique than the one used in Theorem ..
Let (X,w) be a modular metric space. In the rest of this work, we assume that w satisfies

the Fatou property, i.e., if {xn} w-converges to x and {yn} w-converges to y, then we must
have

w(x, y) ≤ lim inf
n→∞ w(xn, yn).

For any x ∈ Xw and r ≥ , we define the modular ball

Bw(x, r) =
{
y ∈ Xw;w(x, y)≤ r

}
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/163
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Note that if w satisfies the Fatou property, then modular balls are w-closed. An admissible
subset of Xw is defined as an intersection of modular balls. Denote by Aw(Xw) the family
of admissible subsets of Xw. Note that Aw(Xw) is stable under intersection. At this point
we introduce some notation which will be used in the remainder of this work. For a subset
A of a modular metric space Xw, set

covw(A) = ∩{B : B is a modular ball and A⊂ B}.

Recall that A is w-bounded if δw(A) = sup{w(x, y);x, y ∈ A} <∞.

Definition . Let (X,w) be amodularmetric space.We say thatAw(Xw) is compact if any
family (Aα)α∈� of elements ofAw(Xw) has a nonempty intersection provided

⋂
α∈F Aα �= ∅

for any finite subset F ⊂ �.

Remark . Note that ifAw(Xw) is compact, then Xw isw-complete. Indeed, let {xn} ⊂ Xw

be a w-Cauchy sequence. Set

rn = sup
m,s≥n

w(xm,xs)

for any n ≥ . Since {xn} is a w-Cauchy sequence, then limn→∞ rn = . By the definition
of rn, we get xm ∈ Bw(xn, rn) for any n ≥  and m ≥ n. Hence, for any n,n, . . . ,np ≥ , we
have

xm ∈
⋂
≤i≤p

Bw(xni , rni )

for anym ≥ max{n,n, . . . ,np}. SinceAw(Xw) is compact, then

� =
⋂
n≥

Bw(xn, rn) �= ∅.

If z ∈ �, then we have w(xn, z) ≤ rn for any n ≥ . Hence {xn} w-converges to z, which
completes the proof of our statement.

The main result in [, ] may be stated in modular metric spaces as follows.

Theorem . Let (X,w) be a modular metric space. Let C be a nonempty w-closed w-
bounded subset of Xw. Assume that the family Aw(C) is compact. Let T : C → C be a
pointwise contraction. Then T has a unique fixed point x ∈ C.Moreover, the orbit {Tn(x)}
w-converges to x for each x ∈ C.

Proof Since Aw(C) is compact, therefore there exists a minimal nonempty K ∈ Aw(C)
such that T(K) ⊂ K . It is easy to check that covw(T(K)) = K . Let us prove that δw(K) = ,
i.e., K is reduced to one point. Indeed, since C is w-bounded, then δw(K) < ∞, i.e., K is
also w-bounded. As T is a pointwise contraction, so there exists a mapping α : C → [, )
such that

w
(
T(x),T(y)

) ≤ α(x)w(x, y) for any x, y ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2013/1/163
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For any x ∈ K , set rx(K) = sup{w(x, y); y ∈ K}. We have rx(K) ≤ δw(K) for any x ∈ K .
Moreover, it is easy to check that T(K) ⊂ Bw(T(x),α(x)rx(K)) for any x ∈ K , which im-
plies covw(T(K))⊂ Bw(T(x),α(x)rx(K)). So, rT(x)(K) ≤ α(x)rx(K) for any x ∈ K . Next we fix
a ∈ K and define

Ka =
{
x ∈ K ; rx(K) ≤ ra(K)

}
.

Clearly, Ka is not empty since a ∈ Ka. Moreover, we have

Ka =
⋂
x∈K

Bw
(
x, ra(K)

) ∩K ∈Aw(C).

And since rT(x)(K) ≤ α(x)rx(K) for any x ∈ K , we get T(Ka) ⊂ Ka. The minimality behavior
of K implies Ka = K . In particular, we have rx(K) = ra(K) for any x ∈ K . Hence δw(K) =
supx∈K rx(K) = ra(K) for any a ∈ K . Hence δw(K) ≤ α(a)δw(K). And since α(a) < , we get
δw(K) = , i.e., K is reduced to one point which is fixed by T . Hence the fixed point set of T
is not empty. The remaining conclusion of the theorem follows from the general properties
of pointwise contractions. �
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