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1 Introduction

Ansari in [1] introduced the notion of fundamental topological spaces and algebras and
proved Cohen’s factorization theorem for these algebras. A topological linear space A is
said to be fundamental if there exists b > 1 such that for every sequence (x,) of A, the
convergence of b" (x,, — x,_1) to zero in A implies that (x,,) is Cauchy. A fundamental topo-
logical algebra is an algebra whose underlying topological linear space is fundamental.

A fundamental topological algebra is called locally multiplicative if there exists a neigh-
borhood Uy of zero such that for every neighborhood V' of zero, the sufficiently large
powers of Uj lie in V. The fundamental locally multiplicative topological algebras (FLM)
were introduced by Ansari in [2]. Some celebrated theorems in Banach algebras were gen-
eralized to FLM algebras in [3], and authors investigated some fixed points theorems for
holomorphic functions on these algebras (see Theorems 3.5, 3.6 and 3.7 of [3]).

An algebra A is called without of order if for every a,b € A, ab=0, thena =0 or b = 0.

In [4], Bhaskar and Lakshmikantham introduced the notions of a mixed monotone map-
ping and a coupled fixed point, proved some coupled fixed point theorems for the mixed
monotone mapping and discussed the existence and uniqueness of a solution for a periodic
boundary value problem. Also, Samet and Vetro studied a coupled fixed point of N-order
in [5]. There are many works on a coupled fixed point of contraction, weak contraction
and generalized contraction mappings on various metric spaces such as [6-9].

Let A be a metric space and let F: A x A x A —> Abe a function. An element (x,y,z) €
A x A x Ais said to be a tripled fixed point of the mapping F if F(x,y,z) = F(x,z,y) = x,
F(y,x,2) = F(y,z,x) = y and F(z,%,y) = F(z,y,%) = z. Tripled fixed point theorems in par-
tially ordered metric spaces were studied by Berinde and Borcut in [10], and this concept
was considered by Aydi et al. for weak compatible mappings in abstract metric spaces [11].

In this paper, at first (Section 2) we obtain some basic results for FLM algebras, and next

we consider tripled fixed point theorems on FLM algebras.
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2 Some results on FLM algebras
By Q4 we mean the set of all elements a € A such that p 4(a) < 1, where p4(a) is the
spectral radius of a € A. We denote the center of topological algebra .4 by Z(.A) such that

Z(A)={a € A:ax=xaforall x € A}.

Definition 2.1 Let (A, d) be a metrizable topological algebra. We say A is a submulti-

plicatively metrizable topological algebra if
d(0,xyz) < d(0,x)d(0,9)d(0,z) and d(0,Ax) < |A|d(0,x)
for each x,7,z € Aand X € C. For abbreviation, we denote d 4 (0, x) by D 4 (x) for any x € A.

Let A, B and C be metric spaces with meters d 4, d and d¢, respectively. Then A x B x C
becomes a metric space with the following meter:

d((al»blycl): (ﬂz,bz,cz)) =dalar, ay) +dp(by, by) + dc(cr, 2) (2.1)

for every ay,a; € A, by, by € B and ¢1,¢; € C. When A, B and C are algebras, then by the
usual point-wise definitions for addition, scalar multiplication and product, A x B x C

becomes an algebra.

Proposition 2.2 Let A, B and C be complete metrizable FLM algebras with submulti-
plicative meters d 4, dp and dc, respectively. Then A x B x C is a complete metrizable
FLM algebra with a submultiplicative meter d.

Proof Let A, B and C be FLM algebras with meters d 4, dg and dc, respectively. By the
definition of FLM algebras, obviously, A x B x C is a complete metrizable FLM algebra
with a meter d (the meter defined in (2.1)). For submultiplicativity, we have

d((0,0,0), (a1a2, b1by, c1¢3))
=d (0, masz) + dp(0,b1b2) + dc (0, cica)
<d.a(0,a1)d 4(0,a2) +dp(0,b1)dg(0,b2) + dc(0,¢1)dc(0, ¢,)
<dA(0,a1)d 4(0,a3) + d4(0,a1)dp(0,b3) + d A(0,a1)dc(0, ¢2)
+dg(0,b1)d 4(0,a3) + dp(0,b1)dp(0, by)
+dp(0,b1)dc(0,c3) + de(0,c1)d 4(0,az)
+dc(0,¢1)dp(0,b3) + dc(0,¢1)dc(0, c2)
=d((0,0,0), (a1, b1,¢1))d((0,0,0), (a2, by, c2)) (2.2)

for every ay,a; € A, b1,by € Band ¢;,¢; € C. Also,

d((0,0,0), (xa, b, 1c)) = d4(0, 2a) + dis(0, b) + dc(0, Ac)

< [A1dA(0,a) + |A|dp(0,b) + [A]dc(0, ¢)
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= |A|(d.4(0,a) +dg(0,b) + dc(0,¢))
=|11(4((0,0,0),(a, b,¢))). (2.3)

Therefore, (2.2) and (2.3) show that d is submultiplicative. O

Similar to Definition 2.1, we write D 4x5xc(a,b,c) as an abbreviation for d((0,0,0),
(a, b, c)). We recall the following theorem from [3].

Theorem 2.3 [3, Theorem 3.3] Let A be a complete metrizable FLM algebra with a sub-
multiplicative meter d 4. Then p(x) = lim,_, oo D4 (x")V/".

Lemma 2.4 Let A, B and C be complete metrizable FLM algebras with submultiplicative
meters d 4, dg and dc, respectively. Then

px,,2) < pax) + ps(»y) + pc(2)
for any element (x,y,z) € A x B x C.

Proof For given a € A, b € B and ¢ € C, we have p4(a) = lim,_.o D (@), pg(b) =
lim,,_, oo D (0")V" and pe(c) = lim,—, oo De(c”)V" (Theorem 2.3). From Proposition 2.2, it
follows that A x B x C is a complete metrizable FLM algebra with a submultiplicative
meter d. Then again, Theorem 2.3 implies that

1
n

X

p(x,9,2) = lim D axpxc((%,2)")

n—00

= nli)ngoD.AXBXC ((xn,yn;zn))

1
n

= lim (D.(x") + Ds(y") + De(2"))

n—00

N
=

< lim DA(x”)% + ILH;ODB(J/H) + lim De(2")
n

= pA®) + pB(Y) + pc(2) (2.4)
foreveryx e A,ye BandzeC. O

Similar to 2 4 and Z(A), we define these sets for A x A x A as follows:
Qaxaxa ={xy,2) e Ax Ax A:p(x,y,2) <1},
and
ZAx Ax A) = {(x,y,z) eAx Ax A:(x,9,2)(a,b,c) = (a,b,c)(x,,2),
for every a,b,c € .A}

= {(x,y, z)e Ax A x A:(xa,yb,zc) = (ax, by, cz),
for every a,b,c € A}.
Clearly, if (x,7,z) € Z(A x A x A), then x,y,z € Z(A) and Z(A) € Z(A x A x A). Also,

if (x,9,2) € Qax ax A, then (x,0,0), (0,7,0) and (0, 0, z) are in 2 4x 4x.4, and by Lemma 2.4
and its proof, we have x,y,z € Q 4.
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Let E(A) be the set of all elements x € A for which E(x) = Y 7, —, can be defined. If A
is a complete metrizable FLM algebra, then E(A) = A ([12, Theorem 5.4]). Therefore, in

the light of Theorem 5.4 of [12] and Proposition 2.2, we have the following theorem.

Theorem 2.5 Let A be a complete metrizable FLM algebra, then E(A x A x A) = A x
Ax A

3 Tripled fixed point theorems

In this section, we consider some results about tripled fixed point theorems on unital
complete semi-simple metrizable FLM algebras, and we extend these results to Banach
algebras. By id 4, we mean the identity map on A.

Theorem 3.1 Let A be a unital without of order complete semi-simple metrizable FLM
algebra with a submultiplicative meter d4. If F : QoxaxaA CAXAX A— Qqisa
holomorphic map that satisfies the conditions F(0,0,0) = 0, %(0 0,0) =id 4, E(O 0,0) =

0,%£(0,0,0)=0, =21~ ,Wk(o 0,0) =0, wherei+j+k =2,i,j,k =0,1,2,and ,Wk(o 0,0) =
0, wherei+j+k=3,i,j,k=0,1,2,3, then every (a, b, c)eQAXAXAﬂZ(AXAX.A) isa

tripled fixed point for F.

Proof Fix(a,b,c) € QaxaxaNZ(Ax Ax A)and consider themapf: Cx Cx C— Q4
with f(a, 8,y) = F(aa, Bb, yc). Clearly, f is a holomorphic function on

|| 1 .
{(a pry) €CXCx Cior < —omes, 0] = min{lal, ] Iy I}

1 1 1
pala) < 1o1up(B) < 1 pele) < m},

Since F(0,0,0) =0, 2£(0,0,0) = id4, %(0,0,0) = 0, £(0,0,0) = ,6,3}/“(000)_
wherei+j+k=2,i,j,k=0,1,2,and tay/ak(ooo) 0,wherei+j+k=3,i,j,k=0,1,2,3,
then F has a Taylor expansion about (0,0,0):

oo 0 XX

~ iyjzk 8i+j+kF
Fana) =335 e (Gaiyramt ) @00

i=0 j=0 k=0

| =

= . / inj k—i—j 8kF
e s L

" j=0 =

~

for every (x,9,2) € Qaxaxa NZ(A x A x A). Therefore,
00 1 k j .
— _ i_i k—i—j k—i
F(aa, Bb,yc) = aa+z;k‘122<)120:( ; )aaﬁlb’y I k=i

akF
x | ——— ](0,0,0). (3.1)
dxi 9y 3zk—i-

We claim that

k j ; k
3 k 3 “Notatgivy-ridm( — 2 Y0,0,0), (3.2)
Pl i dxi 3y dzk-i-

i=0
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is zero for every k > 4. Assume towards a contradiction that there exists k > 4 such
that (3.2) is non-zero. Let / > 4 be an integer such that

K j ' k

I TN OkF
3 <I> 3 ( ,])a‘d‘ﬂ’b’yl"‘_’cl_’"’(ﬁ)(0,0,0) 0. (3.3)
pr —\ i oxt 0y 9z~

Suppose that g is an element of A such that p 4(g) = 0. Now, we consider the following
five cases:

(1) i=Lj=0,

) i=0,j=1,

3) i+j=1,

(4) 1<i+j<l,

(5) i=j=0.

Case (1). In this case, we have a‘a —5(0 0,0) #0. Let n> 1, by (3.1) and (3.3), we have

1 d'F
F(n%aa +na'q, b, yc) - nlaa+ nalq + ﬁ(n%aa + nalq)lﬁ(0,0,0)
! x

1 1 2 1 _ _ _
=nlaa+ nalq + E(nlal ql +InTaan o't 1)ql !

5l
d'F
+---+naa) (000)

lala—F(o,o,O))w(a) +(0,0,0). (3.4)
17 9af

1
:nlaa+nal<q+ T

In (3.4), by P(«), we mean the remaining part of (n%om +na*q)*. Since a € Z(A), there-
fore aq = qa. Then Lemma 2.4 and Lemma 3.6 of [3] imply

,o(n%om + nozlq,ﬁb, yc) < pA(n%om + nalq) +pA(Bb) + palyc)
< nllalpa(@ + Blpalb) +1y1palc)
< u(pa@ +pad) + palc),

where u = max{n% ||, 181,17 1}. Now, we define a holomorphic function H from {« € C:

0<|a| < } into A as follows:

abc

H(o) = F(nlouz+n(x q,Bb,yc) - nlom

no!

By (3.4) we conclude that H(0) = g + 1! a? F(O 0,0). Vesentini’s theorem ([13, Theo-
rem 3.4.7]) implies that p4 o H is a subharmomc function on {¢ € C: 0 < || < m}.
Moreover, by the maximum principle, we can write p_4(H(0)) < maxq-; p.4(H(x)). Then

Lemma 3.6 of [3] implies that

[

(q+ ll,a o 20,0, 0)) < m’f’)( (@) < ipA( )PA(a_j(O»O:O))

nl!

1 d'F
l,pr( =00, o>) (3.5)

Page5o0of 11
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The above inequality holds for every n > 1. Therefore, if n —> oo, then

(q+ 11‘ (0 0, 0))

for every q € A with p_4(q) = 0. Hence, Theorem 3.4 of [3] implies that a’ ol F(O 0,0) is in
radical of A. Since A is semi-simple, therefore a’ 0! F(O 0,0) = 0. Since a € Q4 N Z(A), so

al # 0, and since A is without of order, therefore % a F (O 0,0) = 0, a contradiction. Thus, our
claim is true, and from (3.1), we conclude that F (a, b, ¢) = a. Similarly, we have F(a, ¢, b) = a,
F(b,a,c) = F(b,c,a) = b and F(c,a,b) = F(c,b,a) = c.

Case (2). In this case, we have ﬂ’bl" F(O 0,0) #0. Again, by (3.1) and (3.3), we have

1 d'F
F(om + nﬂlq,n%ﬂb, yc) =aa+nBlq+ ﬁnﬁlblw(o, 0,0)

=aa+nf (q+ 'bl (000))

I

Again, by Lemma 2.4 and Lemma 3.6 of [3], we have

plaa+nflqni Bb,yc) < pa(ea+nplq) + pa(nt pb) + palye)
< laloa(@) +nT1Blpa®) +1y1palc)
< p(pa(@) + pab) + palc)),

where pL = max{loe|,n% |81, 1y 1}. Now, we define a holomorphic function H from {n € C:

< abc =1nl= max{|a|,n%|ﬁ|,|y|}} into A as follows:

F(aa + nﬂlq,n%ﬂb, yC) —aa

H(x) = L

Then from (3.7) it follows that H(0) = g + 1bl i F(O 0,0). Then p 4 o H is a subharmonic

functionon {n e C: u < abc =|n| = max{|a|,nl |81,y 1}}. Moreover, Lemma 3.6 of [3]
implies that
d'F
o (q+ i 00 o>) max p(H (@)

1 a'F
nz'|ﬂ|lpA(a_yl(0’O’ 0)>. (3.6)

The above inequality holds for every n > 1. Therefore, if n —> oo, then

PA<q+ l,bl (0 0, 0))

Page6of 11
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for every g € A with p4(q) = 0. Hence, Theorem 3.4 of [3] implies that blg%((), 0,0) is in
radical of A. Since A is semi-simple, therefore bl?’%(o, 0,0) = 0. Since b € Q4 N Z(A), so

b # 0. By using that A is without of order, we conclude that 3175 (0,0,0) = 0, a contradiction.
Thus, our claim is true, and from (3.1), we conclude that F(a, b, ¢) = a. Similarly, we have
F(a,c,b) =a, F(b,a,c) = F(b,c,a) = b and F(c,a,b) = F(c,b,a) = c.

Case (3). In this case, we suppose that i +j =/, i,j € {0,1,2,3,...} (without loss of gener-
ality, we prove this case for only one i and one j such that i + j = /). Again by (3.1) and (3.3),
we have

F(aa+ na'q, nﬁ,Bb, yc)

. 1 I U
=qa+na'q+ - (aa+no'q) npb" o Dy (0,0,0)
. 1 .
=waa+na'q+ o ( il gy g b
DVl il ol vl i O'F
+inta Vg gliplig Ly nala B ) — -(0,0,0)
dxt Jyl-
. o QlF
— i ipl-igl—i
=aa + na <q + = i)!i!ﬂ B b o1 By (0,0, 0))
d'F
0,0,0 3.7
#Pa) g7 7(0,0,0) (3.7)

By Lemma 2.4 and Lemma 3.6 of [3], we have

,o(ota + naiq,nﬁﬂb,yc) < ,oA(om + naiq) + ,oA(nl%f,Bb) + palyc)
< lelpat@) + nT|Blpa(b) + 1y 1p.alc)
< u(pal@)+ pad) + pa©),

where ,u = max{|a|,n% 181,17 1}. Now, we define a holomorphic function H from {5 € C:
< (abc =|n|= max{|a|,nﬁ |81,y }} into A as follows:

F(aa + na'q, nl%i,Bb, yC) —aa
H(\) = - .

Then from (3.7) it follows that H(0) = g + *,i,aiﬁl‘ibl la ,"()Fl -(0,0,0). Then p4 o H is

a subharmonic functionon {n € C: u < ubc S =1n| = max{lal,nl—z |Bl,171}}. Moreover,
Lemma 3.6 of [3] implies that

1 i O'F
iglipt ——(0,0,0
pA (q Yol ey ))

< I‘nleglﬁp(H(a))

|ﬁ|l_i i i alF
< mpA(ﬂ)pA(bl ),OA(W(O 0, O))

1 o'F
n(l—z)'z‘lal’pA<8 9yl ’(0 0 0)) (38)
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The above inequality holds for every n > 1. Therefore, if n —> oo, then

d'F
zalt

1
PA(q+ TR ap'b ———=(0,0, 0))

for every g € .A with p_4(g) = 0. Hence, a' - 'b' o'F (0,0,0) is in radical of A, therefore

313[—
alpt- ’bl’ (0,0,0) = 0. Since B~ #0 and 4, beQAﬂZ(A) soa’ #0 and b~ #0.

P ,a 9L _(0,0,0) = 0, a contra-
diction. Thus, our claim is true, and from (3.1), we conclude that F(a,b,c) = a. Similarly,
we have F(a,c,b) = a, F(b,a,c) = F(b,c,a) = b and F(c,a,b) = F(c,b,a) = c.

Case (4). Let 1 <i+j < /. Then we have aiaiﬁjbjyl‘i‘jcl_i_jW(of 0,0) #0. Again,
by (3.1) and (3.3), we have

Xl () l i
Again, by using that A is without of order, we conclude that

F(aa + na'q, b, nﬁ'*/yc)

a'F

=woa+no'q+ 789&8)//82”1

1 i ((aa + naiq)i(ﬁb)j(nﬁ'*/yc)l_i_j

il —i—j) 0.0 0)>

:Ol(l+l’lOliq+ ( z+1 i qﬂ]b]yl i 1Cl ll+lﬂl’l0{( 1i+1qi—113jbjyl—i—jcl—i—j

1
il —i—j)!
d'F

axay oz 0

+eet naiaiﬂjb’yl’i’/cl’i’j)

a'F

i 0yl 0711 (0.0, 0)>

, 1 . P
=aa+nd'(qg+ ————a'pVyi I
( iyl —i-))!
!

+ P(oc)
Then

p(aa+na'q, Bb,n™yc) < pa(wa+na'q) + pa(Bb) + p.a(n yc)
a1
< lalpala) +|Bloa(d) + n= |y |palc)

< p(pa@) + pad) + palc),

where /L max{|a| |Bl,n ri ly1}. Now, we define a holomorphic function H from {n € C:
< abc = |n| = max{|«|, ||, n- = ly|}} into A as follows:

R 1
Hiq) - Featne'q,pb,nTyc) —aa

no!

Then from (3.9) it follows that H(0) = g + R l_ py (a i)y i JW(O 0,0)).
Then p4 o H is a subharmonic function on {n € C: u < p(“,b,c),u |n| = max{|«|,|Bl,

1
n’== |y |}}. Therefore,

l

1 Lo P
= 4Py I—i—j I-i /7 0, 0 0
'OA(q+i!j!(l—i—j)!aﬂ v ey o 00

< ?1|g§p(H (@)
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< MpA(ai)pA(bj)pA(cl_i_j)pA 17(0 0,0)
niljl(l - i —j)! 0xt 3y 3zt
1 o'F
, 77 0,0,0)). 3.10
< ni!j!(l—i—j)l|a|‘p’4(8x’ 3y 927 )) (310)

Therefore, if 1 — 00, then

palq+ ———ai by O 0,00))=0
iyl —i—)) Ox! 0yl 9z~ »

for every g € A with p4(g) = 0. Hence, aiﬁfﬁyl‘i‘jcl‘i‘/W(O 0,0) is in radi-
cal of A. Since A is semi-simple, therefore a’'g/b/y'~=/cl- ’W(O 0,0) = 0. Since
B #0, yi7 £0 and a,b € Q4 N Z(A), so a’ #0, ¥ and ¢/ # 0, we conclude that
W(0,0, 0) = 0, a contradiction. Thus, our claim is true, and from (3.1), we con-
clude that F(a,b,c) = a. Similarly, we have F(a,c,b) = a, F(b,a,c) = F(b,c,a) = b and
F(c,a,b) = F(c,b,a) =c.

Case (5). Now, let i = j = 0. Then we have y'c 19! F(O 0,0) # 0. Similar to the previous

cases, we have

1 d'F
F(ouz + nqu,,Bb,n% yc) =aa+nylq+ ﬁnylclw(o, 0,0)
! z

1 ,0'F
=aa+ nyl(q + ﬁcl@(o, 0, 0)>. (3.11)

Then
p(aa+ny'q,Bb,nlyc) < pa(aa+ny'q) + pa(Bb) + pa(nlyc)

< llpa(@) +1Bloa®) +nllylpalc)

< u(pa(@)+ pa®d) + palc)),

where [L = max{|a| |ﬁ|,n% |¥|}. Now, we define a holomorphic function H from {n € C:

"< abc =1nl= max{|a|,|ﬁ|,n%|y|}}intoAasfollows:

Flaa + nqu,ﬁb,n% yc)—aa
ny! '

H(x) =

Then from (3.11) it follows that H(0) = q+ J P(O 0,0). Then p 4 o H is a subharmonic
functionon {n e C: u < p(abc =|n| = max{|a|, |,3|,nl lv1}}, and

Ip
(q+ ﬁcla (0,0, 0)) < r‘nlzi)l(,o(H(ot))

l

1 F
< TP.A( ):O.A(a_zl(o’o’ 0))

d
l,llpr(a 10,00). (312)
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Therefore, if 1 —> 00, then

(q+ %c (0 0, 0))

for every q € A with pa(g) = 0. Hence, ¢ ” £ 7(0,0,0) is in radical of A. Therefore,
(11?;71;(0, 0,0) = 0. Since ¢ € Q4 N Z(A), so ¢ ;/ 0, then %(O, 0,0) = 0, a contradiction.
Thus, (3.1) implies that our claim is true, and from (3.1), we conclude that F(a, b,c) = a.
Similarly, we have F(a,c,b) = a, F(b,a,c) = F(b,c,a) = b and F(c,a,b) = F(c, b,a) = c.

By gathering the above five cases, we conclude (4, b, ¢) is a tripled fixed point for F, and
since (a, b, c) was arbitrary, so every point of Q 4x 4x4 N Z(A x A x A) is a tripled fixed
point for F. d

Corollary 3.2 Let A be a unital without of order semi-simple Banach algebra. If F :
QaxaxdA S Ax A x A—> Qyu is a holomorphic map that Satisﬁes the conditions
F(0,0,0) =0, 2£(0,0,0) = id 4, ?—F(o 0,0) =0, 2£(0,0,0) = 0, ale(o 0,0) = 0, where
i+j+k=2,ij,k=0,1,2, and - 13,8,((0 0,0) =0, wherei+j+k=3,ij,k=0,1,2,3, then
every (a,b,c) € Qaxaxa NZ(A x .A x A) is a tripled fixed point for F.

In the following theorem, we characterize tripled fixed points of holomorphic functions
on FLM algebras.

Theorem 3.3 Let A be a unital without of order complete semi-simple metrizable FLM
algebra. For given (a,b,c) € QaxaxA\Z(A x A x A), there is a holomorphic map F :
, ax(O 0, 0)—1dA, (O 0,0) =
%(0,0,0):O 3 tay/ak(o 0,0) =0, wherei+j+k=2,i,j,k=0,1,2, andd Lalaz z(0,0,0) =0,
wherei+j+k=3,1i,j,k=0,1,2,3, such that F(a,b,c) #a, F(b,a,c) # b and F(c,a,b) # c.

QAx AxA —> Q4 satisfying the conditions F(0,0,0) =0

Proof Let (a,b,c) € Qax axA\Z(A x A x A). Then there exist (4, u,u) € A x A x Asuch
that

(ua, ub, uc) # (au, bu, cu).
Let D gx axA(u,u,u) <1, then D 4(u) < 1. Define U := log(e — u), then
eYae +a, eUbe b and e Yce #c.

Now, define F: Q gy ax4 —> 2.4 as follows:

222u  P2U

F(x,9,2) =€ a*2 xe b (3.13)

for every (x,9,z) in Qaxaxa. Clearly, F is a holomorphic function, F(0,0,0) = 0,
Q(OOO):idA, E(OOO) 0, 3F(()00)— 0, d,dy/dk(OOO) 0, where i +j + k =2
i,j,k=0,1,2,and PP 13 a7 k(O 0,0) =0, wherei+j+k=3,4,j,k=0,1,2,3, but F(a,b,c) #a,
and similarly, we can show that there is a holomorphic map F: Q 4x 4x.4 —> Q2.4 with the
required conditions such that F(b,a,c) # b and F(c,a,b) # c. O
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Example 3.4 Let X = R be the space of real numbers and let F : X x X — X be a function
defined by F(x, y,z) = x that satisfies the conditions of Theorem 3.1.

Example 3.5 Let X be a unital without of order complete semi-simple Banach algebra
and let F: X x X — X be a function defined by F(x,y,z) = e”7 xe 7’7 that satisfies the
conditions of Theorem 3.1. For example, let X = M(G) be the measure space on a locally
compact Hausdorff space G. Another algebra that we can choose is ¢£!(G), where G is a
locally compact discrete group.

Corollary 3.6 Let A be a unital without of order semi-simple Banach algebra. For given

(a,b,¢) € Qaxaxa\Z(A x A x A), there is a holomorphic map F : Qaxaxa —> Q4

satisfying the conditions F(0,0,0) = 0, 2£(0,0,0) = id., ";—5(0,0, 0) = 0, %£(0,0,0) = 0,
92 . .. 93

W(0,0,0) =0, where i +j + k =2, i,j,k =0,1,2, and W(0,0,0) = 0, where

i+j+k=3,ij,k=0,1,2,3, such that F(a,b,c) # a, F(b,a,c) # b and F(c,a,b) # c.
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