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Abstract

In this paper we present some (unidimensional and) multidimensional fixed point
results under (Y, p)-contractivity conditions in the framework of G*-metric spaces,
which are spaces that result from G-metric spaces (in the sense of Mustafa and Sims)
omitting one of their axioms. We prove that these spaces let us consider easily the
product of G*-metrics. Our result clarifies and improves some recent results on this
topic because, among other different reasons, we will not need a partial order on the
underlying space. Furthermore, the way in which several contractivity conditions are
proposed imply that our theorems cannot be reduced to metric spaces.

MSC: 46T99; 47H10; 47H09; 54H25

1 Introduction

In the sixties, inspired by the mapping that associated the area of a triangle to its three
vertices, Gahler [1, 2] introduced the concept of 2-metric spaces. Gahler believed that 2-
metric spaces can be interpreted as a generalization of usual metric spaces. However, some
authors demonstrated that there is no clear relationship between these notions. For in-
stance, Ha et al. [3] showed that a 2-metric does not have to be a continuous function
of its three variables. Later, inspired by the perimeter of a triangle rather than the area,
Dhage [4] changed the axioms and presented the concept of D-metric. Different topolog-
ical structures (see [5—7]) were considered in such spaces and, subsequently, several fixed
point results were established. Unfortunately, most of their properties turned out to be
false (see [8-10]). These considerations led to the concept of G-metric space introduced
by Mustafa and Sims [11]. Since then, this theory has been expansively developed, pay-
ing a special attention to fixed point theorems (see, for instance, [12—-28] and references
therein).

The main aim of the present paper is to prove new unidimensional and multidimen-
sional fixed point results in the framework of the G-metric spaces provided with a partial
preorder (not necessarily a partial order). However, we need to overcome the well-known
fact that the usual product of G-metrics is not necessarily a G-metric unless it comes from
classical metrics (see [11], Section 4). Hence, we will omit one of the axioms that define
a G-metric and we consider a new class of metrics, called G*-metrics. As a consequence,
our main results are valid in the context of G-metric spaces.
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2 Preliminaries

Let # be a positive integer. Henceforth, X will denote a non-empty set and X” will denote
the product space X x X x Jox X Throughout this manuscript, m and k will denote
non-negative integers and i,,s € {1,2,...,n}. Unless otherwise stated, ‘for all ' will mean
‘for all m > 0’ and ‘for all i’ will mean ‘for all i € {1,2,...,n}. Let R} = [0, 00).

Definition 1 We will say that < is a partial preorder on X (or (X, X) is a preordered set
or (X, <) is a partially preordered space) if the following properties hold.

+ Reflexivity: x < x for all x € X.

« Transitivity: If x,7,z € X verifyx x yand y < z, then x 5 z.

Henceforth, let {A, B} be a partition of A, = {1,2,...,n}, thatis, AUB=A,and ANB=g
such that A and B are non-empty sets. In the sequel, we will denote

Qap = {a :A,— A,:0(A)CAando(B) C B} and

Qg={0:A,— A,:0(A) SBand o (B) CA}.

From now on, let Y = (01,03, ...,0,) be an n-tuple of mappings from {1, 2,..., n} into itself
verifying o; € Qpp ifi € Aand 0, € Q) 5 if i € B.

If (X, x) is a partially preordered space, x,y € X and i € A,, we will use the following
notation:

x=xy, ifieh,
Xy & .
x =y, ifieB.

Consider on the product space X" the following partial preorder: for X = (x1,%,...,%,),Y =
(yl,yz, e ,_)/n) e X",

XCY <& x;=;y foralli (1)

Notice that C depends on A and B. We say that two points X and Y are C-comparable if
XEYorX3Y.

Proposition2 IfXC Y and o € QagU Q;\,B’ then (X (1), %X6(2)s -+ - %o (n)) ANA Vo (1) Yo (2)r -+ +»
Yo (n)) are T-comparable. In particular,

Ko@) Xo(2)s -+ 1 %) E o) Yo -+ Yot) if 0 € QUnps

(Xo (1) %0 (2)s - ¥ (m) D Vo) Yo@y -+ Yow) 0 € QUpg.

Proof Suppose thatx; <; y; for all i. Hence %, ;) <o) ¥o(;) foralli. Fixo € Qag.Ifi € A, then
o (i) € A, 50 X (i) <o) Vo(y) implies that x5(;) < ¥5(), which means that x5 <; (). If i € B,
then o (i) € B, 50 %,() <o() Yo(i) implies that x,(; = ¥5(), which means that x5 < Yo ().
In any case, if 0 € Qag, then x,(;) <; yo(y for all i. It follows that (x,1), X5(2), - - ¥o(n) E
Wo@rYo(2)--+»Yom)-

Now fix o € Q) 5. If i € A, then 0 (i) € B, 50 %, (i) <o (i) Yo() implies that x, ;) = o), which
means that x5 =; ¥5()- If i € B, then o (i) € A, 50 %5 <o) Vo) implies that %) < Vo),
which means that x,(;) =; y5()- O
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Let F: X" — X be a mapping.

Definition 3 (Rolddn et al. [20]) A point (x1,%3,...,%,) € X" is called an Y-fixed point of
the mapping F if

F(Xo,1)s X;2) - -+ Xym)) = % for all . (2)

Definition 4 (Roldédn et al. [20]) Let (X, <) be a partially preordered space. We say that
F has the mixed monotone property (w.r.t. {A,B}) if F is monotone non-decreasing in
the arguments of A and monotone non-increasing in the arguments of B, i.e., for all

X1,%2,...,%,Y,2 € X and all 4,
yxz = F(xl,...,xi,l,y,xi+1,...,xn) i F(X1y e Xic1, 2 Xigdy o v 3 %K)
We will use the following results about real sequences in the proof of our main theorems.

Lemma5 Let{al },cn,...,{a"}men be n real lower bounded sequences such that {max(al,,
oo dn ) men = 8. Then there exist iy € {1,2,...,n} and a subsequence {“g(k)}kEN such that

{‘l:(:,(k)}keN — 4.

Proof Let by, = max(al,a?,...,a”) for all m. As {b,,} is convergent, it is bounded. As
al, < b, for all m and i, then every {a,} is bounded. As {a, },.cy is a real bounded se-
quence, it has a convergent subsequence {a(ln(m)}meN — a;. Consider the subsequences
{“?rl(m)}meN’ {“zsq(m)}meN’ o {ag1 (m)}meN, that are n — 1 real bounded sequences, and the se-
quence {bg,(m}men that also converges to §. As {51(271 (m)}meN is a real bounded sequence,

%tzo'l(m)}meN — a;. Then the sequences {aim(m)}meN,

{“3261(m)}m€N’ e {“Zzal(m)}meN also are n — 2 real bounded sequences and {”}rzal(m)}meN —

it has a convergent subsequence {a

a; and {bg,s,(m)}men — 6. Repeating this process # times, we can find # subsequences

{a;(m)}meN, {af,(m)}meN,..., {ag(m)}meN (where ¢ =0, ---01) such that {a
all i. And {bo () }men — 8. But

;(m)}meN — a; for

{ba(m)}mEN = {maX(ﬂg(m); “e ;ﬂg(m)) }meN — max(al, e ,a,,),

so 8 = max(ay,...,a,) and there exists iy € {1,2,...,n} such that a;, = 8. Therefore, there
exist ig € {1,2,...,n} and a subsequence {a), }men such that {a), Jen — @iy =8. O

Lemma 6 Let {a,,}men be a sequence of non-negative real numbers which has not any
subsequence converging to zero. Then, for all ¢ > 0, there exist § €]0,¢e[ and mg € N such
that a,, > § for all m > my.

Proof Suppose that the conclusion is not true. Then there exists gy > 0 such that, for all
8 €]0, &9, there exists mg € N verifying a,,, < §. Let ko € N be such that 1/k, < &¢. For all
k € N, take 8 = 1/(k + ko) €10, g0[. Then there exists m(k) € N verifying 0 < @) < 6k =
1/(k + ko). Taking limit when k — oo, we deduce that limy_, » @) = 0. Then {a,,} has a
subsequence converging to zero (maybe, reordering {a,,)}), but this is a contradiction.

O
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Let
V= {¢ :[0,00) — [0,00) : ¢ is continuous, non-decreasing and qb_l({O}) = {0} }
Lemma 7 Ify € ¥ and {a,,} C [0, 00) verifies {{(a,,)} — O, then {a,,} — 0.

Proof If the conclusion does not hold, there exists &y > 0 such that, for all m, € N, there
exists m > my verifying a,, > &¢. This means that {a,,} has a partial subsequence {a,,)}«
such that a,,) > €. As ¥ is non-decreasing, V(o) < ¥ (am) for all k € N. Therefore,
{¥(a,)}m has a subsequence {(a,,x)) }x lower bounded by v/ (g¢) > 0, but this is impossible
since lim,,,_, o ¥ (a,,) = 0. O

Lemma 8 Let {al},{a?},...,{a" },{b. },{b2,},...,{b"} C [0,00) be 2n sequences of non-
negative real numbers and suppose that there exist \, ¢ € V such that

V(a,,) < —)(b,) foralliandallm, and

w<max b‘m> < w(max a@,) for all m.

l<i<n 1<i<n
Then {a',} — O for all i.

Proof Let ¢, = maxj<;<, @', for all m. Then, for all m,

Vo) = (max ab,., ) = max g (a,.,) = max (¥ - 9)(5,)] = max v (b))

1<i< 1<i<n 1<i<n

= w(lrgas);bm) < w(lrglas);am> =Y (cm).
Therefore, {{/(cy)} is a non-increasing, bounded below sequence. Then it is convergent.
Let A > 0 be such that {¢(c,;)} = A and A < ¥(c,,,). Let us show that A = 0. Since

{max w(ain)} = {lp(max a%)} ={v(cm)} — A,

1<i<n 1<i<n

Lemma 5 guarantees that there exist iy € {1,2,...,n} and a partial subsequence {aig(k)}keN
such that {l/f(a:fl(k))} — A. Moreover,

0= w(diBI(k)) = (I// - ‘/’) (bﬁ'(r)l(k)—l) for all k. (3)

Consider the sequence {biSt(k)—l}kEN‘ If this sequence has a partial subsequence converging
to zero, then we can take limit in (3) when k — 0 using that partial subsequence, and we
deduce A = 0. On the contrary, if {big(k)_l}keN has not any partial subsequencg converging
to zero, Lemma 6 assures us that there exist § €]0,1[ and ko € N such that b:‘:,(k)_l > § for
all k > k. Since ¢ is non-decreasing, —(p(bi‘y’,(k)_l) < —¢(8) < 0. Then, by (3), for all k > ko,

0= w(“iﬁ(k)) =(- ‘P)(bi;g(k)-l) = ‘/f(biﬁ(k)-ﬁ - ‘/’(bi2<k>-1) = w(bi(r)l(k)—l) - ¢(9)
<y (113% bin(k),l) -o8) <y (fﬁ% afﬂ(k),l) - @(8) = Y (Cm@p—1) — @(8).
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Taking limit as kK — oo, we deduce A < A — ¢(8), which is impossible. This proves that
A = 0. Since {¥(c;;)} = A =0, Lemma 7 implies that {c,,} — 0, which is equivalent to
{al,} — 0 for all i. O

Corollary 9 If ¥,¢ € ¥V and {a,,},{b,,} C [0,00) verify ¥ (au) < (¥ — ¢)(b,) and
V(b)) < ¥(am) for all m, then {a,,} — 0.

Corollary 10 If ¢, ¢ € V and {a,,} C [0,00) verifies Y (au1) < ¥(am) — ¢(am) for all m,
then {a,,} — 0.

Definition 11 (Mustafa and Sims [11]) A generalized metric (or a G-metric) on X is a
mapping G : X*> — R} verifying, for all x,7,z € X:

(G1) G(x,x,x) =0.

(G2) G(x,x,9)>0ifx#y.

(G3) Gxx,y) < Gx,p,2) if y # 2.
(Ga)

(Gs)

G(x,9,2) = G(x,2,9) = G(¥,2,%) = - - - (symmetry in all three variables).
G(x,9,2) < G(x,a,a) + G(a,y,z) (rectangle inequality).

Let {(X;, G;)}, be a family of G-metric spaces, consider the product space X = Xj x X, x
-+ x X,, and define G” and G* on X® by

Gm(x; Y, Z) = lmax Gi(xi)yi» Zi) and Gs(Xr Yx Z) = ZGi(xi)yi) Zi)
st=n i=1

forall X = (x1,%2,...,%4),Y = V1, Y25 .. > ), Z = (21,22, ..., Zn) € X.

A classical example of G-metric comes from a metric space (X,d), where G(x,y,2) =
dyy + dy, + d, measures the perimeter of a triangle. In this case, property (Gz) has an
obvious geometric interpretation: the length of an edge of a triangle is less than or equal
to its semiperimeter, that is, 2d,, < dy, + d,. + d.,. However, property (G3) implies that, in
general, the major structures G” and G° are not necessarily G-metrics on X; x X X - -+ X
X,,. Only when each G; is symmetric (that is, G(x, x,y) = G(y, y,x) for all x, y), the product is
also a G-metric (see [11]). But in this case, symmetric G-metrics can be reduced to usual
metrics, which limits the interest in this kind of spaces.

In order to prove our main results, that are also valid in G-metric spaces, we will not
need property (Gs). Omitting this property, we consider a class of spaces for which G”
and G* have the same initial metric structure. Then we present the following spaces.

3 G*-metric spaces
Definition 12 A G*-metric on X is a mapping G (X3 > R{ verifying (G1), (Gz), (G4) and
(Gs).

The open ball B(x,r) of center x € X and radius r > 0 in a G*-metric space (X, G) is
B(x,r) = {y €X:Gx,x,y) < r}.

The following lemma is a characterization of the topology generated by a neighborhood
system at each point.
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Lemma 13 Let X be a set and, for all x € X, let B, be a non-empty family of subsets of X
verifying:
1. xeN forallN € B,.
2.  Forall Ni,N; € By, there exists N3 € B such that N3 C Ny N\ Nj.
3. Forall N € By, there exists N' € B, such that for all y € N', there exists N € g,
verifying N" C N.
Then there exists a unique topology T on X such that B, is a neighborhood system at x.

Let (X, G) be a G*-metric space and consider the family 8, = {B(x,r) : r > 0}. It is clear
that x € B(x,r) (by (G1), G(x,%,x) = 0) and N3 = B(x, min(r,s)) € B(x,7) N B(x,s). Next, let
N =N'=B(x,r) € B, and let y € N’ = B(x, r). We have to prove that there exists s > 0 such
that N” = B(y,s) C B(x,r) = N. Indeed, if y = x, then we can take s = r > 0. On the contrary,
if y #x, then 0 < G(x,%,y) < r by (Gz). Let ¥ €]G(x,x,y),r[ arbitrary and let s=r -7 > 0
(thatis, 7 + s = r). Now we prove that B(y,s) C B(x, r). Let z € B(y,s). Then, using (G4) and
(Gs),

G(x,x,2) = G(z,x,x) a;y G(z,,9) + GO, x,x) = G(x,%,9) + G(y,y,2) < ¥ +s=r.

Then z € B(x,r) and, as a consequence, B(y,s) € B(x,r). Lemma 13 guarantees that there
exists a unique topology 7g on X such that 8, = {B(x,r) : r > 0} is a neighborhood system
ateachx € X.

Next, let us show that t¢ is Hausdorff. Let x,y € X be two points such that x # y. By
(Ga), r = G(x,%,y) > 0. We claim that B(x, r/4) N B(y, r/4) = @. We reason by contradiction.
Let z € B(x,r/4) N B(y, r/4), that is, G(x, x,z) < r/4 and G(y,,z) < r/4. Using (G4) and (Gs)
twice

0<r=Gxx9) =Gy,xx) <Gy,z2) + Gz,x,%x) = G(z,2,9) + G(x,%,2)
<G(z,5y) + Gy zYy) + Gxx2) = Gy, y2) + GO, y,2) + Gx,x,2)

r r r 3r
<—+—+4+—=—x<r,

which is impossible. Then B(x, r/4) N B(y,r/4) = & and 15 is Hausdorff.

A subset A C X is G-openifforall x € A there exists r > 0 such that B(x, r) C A. Following
classic techniques, it is possible to prove that there exists a unique topology 7 on X such
that 8, = {B(x,r) : r > 0} is a neighborhood system at each x € X. Furthermore, 75 is a
Hausdorff topology. In this topology, we characterize the notions of convergent sequence
and Cauchy sequence in the following way. Let (X, G) be a G*-metric space, let {x,,} € X
be a sequence and let x € X.

o {x,} G-converges to x, and we will write {x,,} & xif lim,y, ;s 00 G (X, Xy, %) = 0, that
is, for all & > 0, there exists mg € N verifying that G(x,,, x,/,x) < ¢ for all m,m’ e N
such that n, m’' > my.

o {xm} is G-Cauchy if limy, 7 - 00 G(Xus Xy, %) = 0, that is, for all & > 0, there exists
my € N verifying that G(x,,,, X, %) < € for all m, m’,m” € N such that

m,m’,m" > my.

Lemma 14 Let (X, G) be a G*-metric space, let {x,,} C X be a sequence and let x € X. Then
the following conditions are equivalent.
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(@) {x} G-converges to x.

(b) lim,,_ o0 G(x,%,%,,) = 0.

(¢) limy,—s o0 G(xy, Xy x) = 0.

(d) 1imy,,—s 00 G(X, X, %) = 0 and lim,,_, oo G(X,1, X141, %) = 0.
(e) lim,,_ 00 G(x,x,%,,) = 0 and lim,,,_, oo G(%,,;, X1141,%) = 0.

Notice that the condition lim,,—, oo G(%,;, %1,,+1, %) = 0 is not strong enough to prove that

{x,} G-converges to x.
Proposition 15 The limit of a G-convergent sequence in a G*-metric space is unique.

Lemma 16 If (X, G) is a G*-metric space and {x,,} C X is a sequence, then the following
conditions are equivalent.

(@) {x} is G-Cauchy.

(b) 1imy,; 1 — 00 G(Xyp X s Xy ) = 0.

(©) limy, - 00 G(Xus Xs1, Xy ) = 0.

Remark 17 As a consequence, a sequence {x,,} € X is not G-Cauchy if and only if there
exist &9 > 0 and two partial subsequences {x,)}ken and {X, xen such that k < n(k) <
m(k) < n(k + 1), GXnii)» Xn)+1, Xm()) > €0 and G(Xp (), Xu(i)+1, Xm(k)-1) < o for all k.

Definition 18 Let (X, G) be a G*-metric space and let < be a preorder on X. We will say
that (X, G, x) is regular non-decreasing (respectively, regular non-increasing) if for all -
monotone non-decreasing (respectively, non-increasing) sequence {x,,} such that {x,,} 5
zo, we have that x,, < zo (respectively, x,, = zo) for all m. We will say that (X,G,=x) is
regular if it is both regular non-decreasing and regular non-increasing.

Some authors said that (X, G, %) verifies the sequential monotone property if (X, G, %) is
regular (see [20]). The notion of G-continuous mapping F : X" — X follows considering
on X the topology 7¢ and in X” the product topology.

Definition 19 If (X, G) is a G*-metric space, we will say that a mapping F : X" — X is
G-continuous if for all n sequences {a’ },{a%},...,{a’,} € X such that {a’ } 5 a; € X for

all i, we have that {F(a},a2,...,a")} 5 Flay,a,...,a,).
In this topology, the notion of convergence is the following.

(%} 5 x & [VB(x, r),3dmgy € N : (m > mgy = X, € B(x, r))]

& [Ve>0,3mg € N: (m > mo = G, %, %) < ¢)]

& [ lim G(x,x,x,,) = 0].

m— 00

This property can be characterized as follows.

Lemma 20 Let (X, G) be a G*-metric space, let {x,,} C X be a sequence and let x € X. Then
the following conditions are equivalent.
(@) {x} G-converges to x (that is, lim,, .y 0o G(Xp, Xy, %) = 0, Which means that for all
& > 0, there exists ng € N such that G(x,,, Xy, %) for all m,m’ > my).
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(b) lim,,,— o0 G(x,x,%,,) = 0.

(¢) limy,— o0 G(xy, Xy x) = 0.

(d) limy— oo Gy Xy x) = 0 and lim,,—, oo G(X5 Xys1,%) = 0.
(e) lim,,— o0 G(x, x,%,,,) = 0 and lim,,,_, oo G(%,,1, %1141, %) = 0.

Proof [(a) = ()] It is apparent using m = m'.
[(c) = (b)] Using (Gs), G(x,%, %) < G, %y, %) + G (X1 X, X11) = 2G (%11, %11, ).
[(b) = ()] Using (G4) and (Gs),

G Xy X %) < Gy %, %) + G, X, %) < 2max(G(x, x, %), G(X, %, %) ).
[(@) = (d),(e)] It is apparent using m' = m and m' = m + 1.

[(d) = ()]
[(e) = (b)]

It is evident.

=
= It is evident. O

Corollary 21 If (X, G) is a G-metric space, then {x,,} G & if and only if lim,,_, o G(x,,,

Xmi1,%) = 0.

Proof We only need to prove that the condition is sufficient. Suppose that lim,,;— o G(%,
%ms1,%) = 0. In a G-metric space, the following property holds (see [11]):

G(x,y,2) < G(x,a,2) + G(a,y,z) forallx,y,z,ae€X.
Then, using a = x,,41,
G, %, %m) = G, X141, X) + G(Xa1, % X)) = 2G(Xpg, Xigi1, X).
This proves (b) in the previous lemma. O

Proposition 22 The limit of a G-convergent sequence in a G*-metric space is unique.

Proof Suppose that {x,,} 4 xand (%} & y. Then
G(x,x,9) = G(y,%,%) < G, %, ) + G (X, %, %).

By items (a) and (c) of Lemma 20, we deduce that G(x, x, y) = 0, which means that x = y by
(Ga). 0

In the topology g, the notion of Cauchy sequence is the following.
{xm} is G-Cauchy <& [‘v’s >0,3my € N: (m,m’, m" > my = G(Xp, Xty X)) < 8)]
This definition can be characterized as follows.
Lemma 23 If (X, G) is a G*-metric space and {x,,} C X is a sequence, then the following

conditions are equivalent.
(@) {xm} is G-Cauchy.
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(b) 1My 00 G Xty X)) = 0.
(C) limm,m/_wc G(xm,xm+1,xm’) =0.

Proof [(b) = (a)] Using (Gs), Gy, X %) < G(Xps Xt X ) + G(Xppts Xt s Koy

[(@) = (¢)] It is apparent using m” = m + 1.

[(c) = (b)] Let & > 0 and let m( € N be such that G(x,,,, %1, %) < &/2 for all m, m’ > my.
Then

m'ym = mg = GXps X 41, %m) < €12,

l’}’l/,l’l’l/ +1>mg= G(xm’)xm’+17xm’+l) <el2.
Therefore, using (G4) and (Gs),

G Xt s %) = Gt s Xt s %) < G Kot X415 %/ +1) + G X/ 15 Xt s Xom)

<el2+el2=¢.
Therefore, lim,, .,/ 00 G(Xy, X, %) = 0. O

4 Product of G*-metric spaces
Lemma 24 Let {(X;, G;)}, be a family of G*-metric spaces, consider the product space
X=X; x Xy x -+ X X, and define G™ and G"™ on X3 by

n
G (X,Y,Z) = max Gi(x;,¥;,zi) and G"(X,Y,Z) = ZG,-(x,»,y,',zi)
1<i<n P

forall X = (x1,%2,...,%4),Y = V1, Y2s .. »Yu), Z = (21,22, ..., z2u) € X. Then the following state-
ments hold.
1. G and G)"™ are G*-metrics on X.
2. IfA,=(a.,a’,...,a")eX forallmand A = (ay,as,...,a,) €X, then {A,,}
G _converges (respectively, G3*™-converges) to A if and only if each {a'}
G;-converges to a;.
3. {Au}is G™*-Cauchy if and only if each {a',} is G;-Cauchy.
. (X, G (respectively, (X, G3'™)) is complete if and only if every (X;, G;) is complete.
5. Foralli,let =; be a preorder on X; and define X <Y if and only if x; <; y; for all i.
Then (X, GJ™, <) is regular (respectively, regular non-decreasing, regular
non-increasing) if and only if each factor (X;, G;) is also regular (respectively, regular

non-decreasing, regular non-increasing).

Proof Letus denote G = G;;**. Taking into account that G} < G}'™ < nG**, we will only
develop the proof using G.
(1) It is a straightforward exercise to prove the following statements.
o G(X, X, X) = maxi<j<, Gi(x;, %;, %;) = Maxi<j<, 0 = 0.
o IfY #Z, there exists j € {1,2,...,n} such that y; #z;. Then
G(X,Y,Z) = maxi<i<, Gi(x,¥i,2i) = Gj(%),9),2) > 0.
+ Symmetry in all three variables of G follows from symmetry in all three variables of
each G;.
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« We have that

G(X,Y,Z) = max G;(x;,yi,z) < max [Gi(x;, a;,a;) + Gi(ai yirz1) ]

1<i<n 1<i<n

< max Gi(xi,ai,a;) + max Giai,yi-zi) = GX, A, A) + G(AY, Z).
Then G is a G*-metric on X.
(2) We use Lemma 20. Suppose that {4,,} G-converges to A and let ¢ > 0. Then, for all
je{1,2,...,n} and all m,

Gj(a,', aj,a’;n) < 112254 Gi(a,»,a,», ain) =G(A,AA,,).
Therefore, {a’}n} Gj-converges to a;. Conversely, assume that each {al} G;-converges to
a;. Let ¢ > 0 and let m; € N be such that if m > m;, then Gi(a,»,ai,ain) <e If my =
max(my, my,...,my,) and m,m’ > my, then G(A,A,A,;) = maXi<i<y Gi(a,«,ai,ain) < &, SO
{A,,} G-converges to A.
(3) We use Lemma 23. Suppose that {4,,} is G-Cauchy and let ¢ > 0. Then, for all j €

{1,2,...,n} and all m, w,

Gi(d,, d,,a,,) < max Gi(al, alpdy) = G(Au, Ay An).
Therefore, {a';n} is Gj-Cauchy. Conversely, assume that each {al} is G;-Cauchy. Let
& >0 and let m; € N be such that if m,m’ > m;, then Gi(a’;n,a’;n,a’;n,) <e If mg =
max (mm, my, ..., my) and m,m’ > mo, then G(Ay, Ay, Apr) = max<i<, Gilal,, d,a’ ) < &,
so {A,,} is G-Cauchy.
(4) It is an easy consequence of items 2 and 3 since

{A,n}G-Cauchy ¢ each {a!,} G-Cauchy < each {al, } G-convergent
& {A,,}G-convergent.
(5) A sequence {A,,} on X is <-monotone non-decreasing if and only if each sequence
{ain} is <-monotone non-decreasing. Moreover, {A,,} G-converges to A = (a1, 43,...,4,) €
Xifand only if each {a},} G;-converges to a;. Finally, A,, < A ifand onlyif 4!, <; a; for alli.

Therefore, (X, GI'**, <) is regular non-decreasing if and only if each factor (X;, G;) is also

regular non-decreasing. Other statements may be proved similarly. O
Taking (X;, G;) = (X, G) for all i, we derive the following result.
Corollary 25 Let (X, G) be a G*-metric space and consider on the product space X" the

mappings G, and G, defined by

Gn(X’Y: Z) = llnax G(xi;yiyzi) and G;,(X) Y, Z) = ZG(xiryirzi)
St i=1

forall X = (x1,%2,...,%4),Y = V1,92, ., ¥n), Z = (21,22, . . ., Zu) € X"
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. G, and G, are G*-metrics on X".
2. IfA,=(a.,a’,...,a")eX" forallmand A = (ay,ay,...,a,) € X", then {A,,}
G,-converges (respectively, G,-converges) to A if and only if each {a!,} G-converges
to a;.
3. {Au} is G,-Cauchy (respectively, G,-Cauchy) if and only if each {a' } is G-Cauchy.
. (X, G,) (respectively, (X", G,)) is complete if and only if (X, G) is complete.
5. If(X,G) is x-regular, then (X", G,) is C-regular.

5 Unidimensional fixed point result in partially preordered G*-metric spaces
Theorem 26 Let (X, <) be a preordered set endowed with a G*-metric Gandlet T : X — X
be a given mapping. Suppose that the following conditions hold:

(a) (X, Q) is complete.

(b) T is non-decreasing (w.rt. <).

(c) Either T is G-continuous or (X, G, X) is regular non-decreasing.

(d) There exists xg € X such that xy < Txy.

(e) There exist two mappings V¥, ¢ € V such that, for all x,y € X with x <y,

I/f(G(Tx, Ty, sz)) < Il/(G(x,y, Tx)) - (p(G(x,y, Tx)).

Then T has a fixed point. Furthermore, if for all z,z, € X fixed points of T there exists
z € X such that z; X z and z, < z, we obtain uniqueness of the fixed point.

Proof Define x,, = T"x, for all m > 1. Since T is non-decreasing (w.r.t. <), then x,,, < X141
for all m > 0. Then

w(G(me: xm+2’xm+2)) = (G(Txrm Txm+1v szm))

14
1p(G(xm: KXm+l» Txm)) - (p(G(xmr Km+1s Txm))

IA

= w(G(anmerl:xmﬂ)) - w(G(xm’xm+1:xm+l))~

Applying Lemma 10, {G(x,;, X141, Xm+1)} — 0. Let us show that {x,,} is G-Cauchy. Reason-
ing by contradiction, if {x,,} is not G-Cauchy, by Remark 17, there exist gy > 0 and two
partial subsequences {x,)} and {x,,4)} verifying k < n(k) < m(k) < n(k + 1),

G(Xnk)s Xy Xni)+1) > €0 and  G(Xnwy Xm(o)-1, Xnk)+1) < &0 forall k > 1. (4)
Therefore

0 < ¥ (80) < YV (Guirys Xy ¥n11)) = ¥ (G(Txnt-1> Tomit)-1, T*%n(i)-1))
< VU (Gn)-1 %m(-1 Ton(i-1)) = (G -1 Xmii-1> Tn(i-1))
= Y (G )1 Xim(k)-1%n(x))) = (G )1 Xm)-1 %n(h))) - (5)
Consider the sequence of non-negative real numbers {G(X,x)-1, Xm(k)-1, ¥n(k))}. If this se-
quence has a partial subsequence converging to zero, then we can take the limit in (5)

using this partial subsequence and we would deduce 0 < (o) < 0, which is impossible.
Then {G(X,k)-1, ¥m()-1,%n(k))} cannot have a partial subsequence converging to zero. This
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means that there exist § > 0 and ky € N such that
G(Xn()-1, Xm()-1, Xn(iy) = 8 for all k > ko.

Since ¢ is non-decreasing, —(G(X,k)-1, Xm(i)-1, %nk)) < —¢(8) < 0. By (Gs) and (4),

G(Xn(k)-15 Xm(k)-1> Xn(k))
= G(Xn(k)-1 Xn(k)s Xm(k)-1)  [X = Xn()=1oY = Xn(k)s Z = Xm(l)=1, & = Xp(k)+1]
< GEn(k)-1> Xn(k) 11, Xn()+1) + GXnk)+15 Xn(k)» Xm()-1)
= G(Xn(t)—15 Xn(k) +15 Xn(k)+1) + G(En()s Xn()+15 Xm(k)-1)
[% = Xn()-1,Y = Z = Xn(k)+1, @ = Xn(r)]
< GXn)-15 %n(k)» Xnk) + G En(k)r Xn(k) 1 (k) +1) + G Xn(h)s Xk +1, ¥mk)-1)

< GEn()-1, Xn(k)s Xn(k)) + GEn(k)s Xn(k)+15 Fn(k)+1) + E0-

Since ¥ is non-decreasing, it follows from (5) that

0 < ¥ (€0) < Y (Gn)—1> Xim(k)-1%n(x))) — (G En(d)—1» Xm(k)—1> Xn(k)))
< Y (Gu()-1 Xm(-1%n(x))) — 9 (8)

< Y (GEn)-1 %n(k)s Xn (k) + GEn(k)s Xn(k+15 ¥n 1) + €0) — 9(8).

Taking limit when k — oo, we deduce that 0 < ¥/(g9) < ¥ (€0) — ¢(8) < ¥ (&0), which is im-
possible. This contradiction finally proves that {x,,} is G-Cauchy. Since (X, G) is complete,
there exists zg € X such that {x,,} g 20.

Now suppose that T is G-continuous. Then {x,,,1} = {Tx,,} g Tzy. By the unicity of the
limit, Tz = zo and zj is a fixed point of T'.

On the contrary, suppose that (X, G, <) is regular non-decreasing. Since {x,,} 4 zo and
{x,,1} is monotone non-decreasing (w.r.t. %), it follows that x,, < zo for all m. Hence

w(G(xWHl) TzonyHZ)) (G(Txmy TZO’ szm))

=y
< Y (G@&m» 20, Tm)) — ¢(G(&m» 20, Thm))
14

(G(xm, Xm+1» ZO)) - (G(xmr X+l ZO)) .

Since {x,,} 5 2o, then {G (%, X1m+1,20)} — 0. Taking limit when k — oo, we deduce that
(¥ (G(®ps1, T20, %m+2))} — 0. By Lemma 7, {G (%41, %42, T20)} — 0, so {x,,} g Tz and
we also conclude that zy is a fixed point of 7.

To prove the uniqueness, let z;,z; € X be two fixed points of T. By hypothesis, there
exists z € X such that z; < z and z, < z. Let us show that {7z} S z1. Indeed,

V(G(z1,21, T"'2)) = ¥ (G(Tz1, TT"2, T?z1))

IA

¥
v (G(z1, Tz, Tz1)) — ¢(G(z1, Tz, Tz1) )
¥

(G(z1,21, T"2)) — ¢(G(21,21, T"2)).
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By Lemma 10, we deduce {G(z1,z1, T"z)} — 0, that is, {T"z} £ z1. The same reasoning
proves that {77z} 5 23,80 21 = Z3. O

We particularize the previous theorem in two cases. If take ¥ (¢) = ¢ in Theorem 26, then
we get the following results.

Corollary 27 Let (X, <) be a preordered set endowed with a G*-metric G and let T : X —
X be a given mapping. Suppose that the following conditions hold:

(a) (X, G) is complete.

(b) T is non-decreasing (w.r.t. %).

(c) Either T is G-continuous or (X, G, X) is regular non-decreasing.

(d) There exists xq € X such that xq < Txg.

(e) There exists a mapping ¢ € ¥V such that, for all x,y € X with x Xy,

G(Tx, Ty, sz) < G(x,y, Tx) — ¢(G(x,, Tx)).

Then T has a fixed point. Furthermore, if for all zi,z, € X fixed points of T there exists
z € X such that z; X z and z; < z, we obtain uniqueness of the fixed point.

If take ¢(t) = (1 — k)¢ with k € [0,1) in Corollary 27, then we derive the following result.

Corollary 28 Let (X, <) be a preordered set endowed with a G*-metric G and let T : X —
X be a given mapping. Suppose that the following conditions hold:

() (X, G) is complete.

(b) T is non-decreasing (w.r.t. %).

(c) Either T is G-continuous or (X, G, <) is regular non-decreasing.

(d) There exists xq € X such that xq < Txo.

(€) There exists a constant k € [0,1) such that, for all x,y € X with x X y,

G(Tx, Ty, sz) < kG(x,y, Tx).

Then T has a fixed point. Furthermore, if for all z,z, € X fixed points of T there exists
z € X such that z; X z and z; < z, we obtain uniqueness of the fixed point.

6 Multidimensional Y-fixed point results in partially preordered G*-metric
spaces

In this section we extend Theorem 26 to an arbitrary number of variables. To do that, it

is necessary to introduce the following notation. Given a mapping F : X" — X, we define

Fy: X" — X" by

By (1, %2, ..., %)
= (F(X%0y (1) %01(2)s - - 3801 (1)) F Koy (1) Ky (2)s - - 3 %3) s+« 3 F i (1) X (25 - - +» Forn(n)))
and F2 = FoFy : X" — X will be
F%(xl,xz,...,xn)
= F(F(xol(l),xgl(g),...,xol(,,)),F(x@(l),x@(g),...,xoZ(n)),...,F(xan(l),xan(z),...,xan(,,)))

for all X = (x1,%9,...,%,) € X".

Page 13 of 23
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Lemma 29
1. ZeX"isa Y-fixed point of F if and only if Z is a fixed point of Fv (that is, FxZ = Z).
2. If F has the mixed monotone property, then Fy is E-monotone non-decreasing on
X"
3. If(X,G) is a G*-metric space and F is G-continuous, then Fy : X" — X" is
G,,-continuous and F% =FolFy: X" — X is G-continuous.

6.1 A first multidimensional contractivity result
In this subsection we apply Theorem 26 considering T = Fy defined on (X", G,,C). In or-
der to do that, we notice that joining some of the previous results, we obtain the following
consequences.
« If (X, G) is complete, it follows from Corollary 25 that (X", G,) is also complete.
+ Byitem 2 of Lemma 29, if F has the mixed monotone property, then Fy is
C-monotone non-decreasing on X".
« Byitem 3 of Lemma 29, if F is G-continuous, then Fy : X” — X" is G,-continuous
and F2 = F o Fy : X" — X is G-continuous.
« If (X, G, ) is regular, it follows from Corollary 25 that (X", G,, C) is also regular.

o Ifxd,42,...,x € X are such that x) <; F7'",47?, ...,x5") for all i, then

Xo = (%0, %3, ..., x5) € X" verifies Xo T Fr (Xo).
We study how the contractivity condition

Y (Gu(FrX FrY,F5X)) < (¥ — 9)(G4(X,Y,FyX)) forallX,Y € X" such that XT Y

may be equivalently established. Let X = (1, %,...,%,) € X" and let z; = F(%5,1), X6;(2)5 - - -»
%0,m) € X for all i. Then
]F%‘X = IF'T (F(xol(l):xol( 2)s+ -3 %X01(n ) F(xag 1)sXoo(2)r -+ ’xaz(}’l))) ceey
F (6,01 Ko (s - %))
= IE“T(le 22500t ’Zn)
(F(Zal »Z01(2)> - 'rznl(n));F(Zag(l): Zo9(2)s + + + 1 Zoy () ) F(an 1 Zop(2)r v+ ,Zay,(n)))
( (F(xag @)~ ;xagl(l)(n))’ F(xaal(z)( 1)s - rxaal(z)( ) F(xaa m @ "anl(n)(”)))’
F(F(xagz(l)(l)) v ’anz(l)(”))’F(xf’az(z)(l)’ v 7x<702(2)(n))’ v :F(xao2(n)(1)r e ’xagn(,,,)(n)))) ]
F(F(xagn(l)(l)r'-wxag ) F(xag l)) ’chr (2)( ) F(xag (n) 1)) ’xaan(n)(n))))
= (FF (o0 %0y2) -2 %0100 FY (o0 X @) -+ Xery)s -5
F3 (%010 B @) « - 1K) -
It follows that
G (X Y FTX) = max G(xl’yl’F(xU, 1 Xo;(2)0 -xxai(n))) and
Gn (FTX, IFTY, F%X) = max G(F(xoi(l),xg’,(g), ces ,xgi(,,)), F()/gi(l),ygi(z), oo ,yg’,(,,)),

1<i<nm

FY (X0, %0y(2) - -+ X)) )-


http://www.fixedpointtheoryandapplications.com/content/2013/1/158

Roldén and Karapinar Fixed Point Theory and Applications 2013, 2013:158 Page 15 of 23
http://www.fixedpointtheoryandapplications.com/content/2013/1/158

Therefore, a possible version of Theorem 26 applied to (X", G,,C) taking T = Fy is the

following.

Theorem 30 Let (X, G) be a complete G*-metric space and let < be a partial preorder
onX.Let Y =(01,09,...,0,) be an n-tuple of mappings from (1,2, ...,n} into itself verifying
o, € Qupific Aando; € Qg ifi€B. Let F: X" — X be a mapping verifying the mixed
monotone property on X. Assume that there exist , ¢ € V such that

max Y (G (F Ko, 1) X, 2)5 - - %) E Vo0 Voy(2)s - - +» Yori(m)» Fot Koy Xery2) - 2 Korsmy)))

1<i<n

<(- <p)(1rgla<xw G (0> ¥ir F (K, (1) Ky (2): - --,xal.<n>))) (6)

for which x; X; y; for all i. Suppose either F is continuous or (X, G, <) is regular. If there
exist x5,x2,..., %0 € X verifying x <; F™, 5P, ..., x7"™) for all i, then F has, at least,
one Y-fixed point.

6.2 A second multidimensional contractivity result
In this section we introduce a slightly different contractivity condition that cannot be di-
rectly deduced applying Theorem 26 to (X, G, C) taking T = Fy, because the contractivity

condition is weaker. Then we need to show a classical proof.

Theorem 31 Let (X, G) be a complete G*-metric space and let <X be a partial preorder
onX.Let Y =(01,09,...,0,) be an n-tuple of mappings from {1,2, ...,n} into itself verifying
oi€Qupific Aand o, € Qg ifi€B. Let F: X" — X be a mapping verifying the mixed
monotone property on X. Assume that there exist , ¢ € V such that

w(G(F(xler; .. 'rxn);F(yl;_ny .. .,yn),F%(xl,xz, .. .,xn)))

= (¥ = 9)(max Gl i Flkop 21+ -1%o100)) @)

Sfor which (x1,%2,...,%,), Y1, Y2, ..., Yn) € X" are E-comparable. Suppose either F is contin-
uous or (X,G,<) is regular. If there exist xb,x%,...,x1 € X verifying ) <; Fx7, a7,

...,xgi(n))for all i, then F has, at least, one Y -fixed point.

Notice that (6) and (7) are very different contractivity conditions. For instance, (6) would

be simpler if the image of all o; are sets with a few points.

Proof Define Xo = (x5,42,...,x) and let & = F(x3®,x5®, .., 25") for all i. If X; =
(x},x2,...,x7), then xf) <« for all i is equivalent to Xo = X; = Fy(Xo). By recurrence, de-
finex! | = F(xf/}(l),xf,ﬁ(2), ... ,xf,i(n)) for all i and all 71, and we have that X,,, C X,,,.1 = Fy(X,,,).
This means that the sequence {X,,;; = Fy(X,,)} is ©-monotone non-decreasing. Since
(X", Gy, E) is complete, it is only necessary to prove that {X,,} is G,-Cauchy in order to
deduce that it is G,-convergent. By item 3 of Lemma 24, it will be sufficient to prove that

each sequence {x,} is G-Cauchy. Firstly, notice that X,,,1 = Fy(X,,) means that

x = F(xf,;'(l),xf,;'@), .. ,x‘,’,ﬁ(”)) for all i and all .
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Hence

x —F( oi(1) | 0i(2) ffi(n))

m+2 ~ m+1?m+17 0 m+l

-F (F (x%i(l)(l) %0,;(1)(2) x%iu)(n)), r (x"rfi(2)(1) 90,2)(2) x%i(z)(n)),.

m »vm yeeavvm m »Xm yeeervvm (R

F(agi®® et ety 2 (o) i) o)
Furthermore, for all m,
F2 (X )=F%(x1 X er k)
= F(F (x5} 2 a0 F (a2, 2@, x5 ),
F(x n ’ ’x ( )))
F(x +1’xm+1’ m+1) F(Xm+1) (8)
Therefore, for all i and all 1,
w(G(xf’n+1’xf’n+2’xf’n+2))
G0, E D, 2, 0, P 0 .. 0

(7)) oi(j o)D) 5:()(2) () (1)
=(W- (0)(max G, i F (s )))
1<j=n

m+1?
- (‘ﬁ w)(max G( oil) ¢xm-(+]1’xm-(ﬁ)>
Since ¢ is non-decreasing, for all i and all m,

w<max G(« "’(’),xmgl,xmﬂ)) < 1p<max G( %10, +1)>.

1<j<n 1<j<n

Applying Lemma 8 using
@y = Gl o1 %1) and By, = max G0, 2710, 1)
for all i and all m, we deduce that
{G(x, &1, %h,0) ) — 0 foralli, thatis, {Gu(Xpm Xpms1, Xime1)} = 0. 9)

Next, we prove that every sequence {x’, } is G-Cauchy reasoning by contradiction. Sup-
pose that {xL},0,..., (%% }u=o are not G-Cauchy (s > 1) and (x5 }u=0 ..., (%7} =0 are
G-Cauchy, being {i1,...,i,} = {1,...,n}. From Proposition 2, for all r € {1,2,...,s}, there
exist &, > 0 and subsequences {xlyfr(k)}keN and {xi;,(k)}keN such that, for all k € N,

k < n.(k) < m.(k) < n.(k +1), G(x ;’r(k),x (k)+1,x ) =

ir i ir
G(xnr(k)’xnr(k)+1’xm,(k)—1) <&
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Now, let £ = max(ey, ..., &) > 0 and &) = min(ey, ..., &) > 0. Since {x5 =0, - . ., (X" }n=0
are G-Cauchy, for all j € {iss1s--.,in}, there exists # € N such that if m,m’ > #/, then

.....

exists ng € N such that if m, m’ > ng then

(x’ £ X )<80/4 forallj e {isi1,..., i} (10)

m+1?

Next, let g € {1,2,...,s} be such that g, = &9 = max(ey,...,&). Let k; € N be such that
ng < ny(ki) and define n(1) = n,(k;). Consider the numbers n(1) +1,#(1) + 2, ..., m,(k;) until
finding the first positive integer m(1) > n(1) verifying

i ii ii ,
max G( ay* (1)+1’xi:l(1)) > g0, G(x;( 1y 1(1)+1’x (1)-1 ) <& forallje({l,2,...,s}.

1<r<s

Now let k, € N be such that m(1) < n,(k;) and define #(2) = n,(k;). Consider the numbers
n(2) +1,n(2) +2,...,m,(ky) until finding the first positive integer m(2) > n(2) verifying

>
{EfLXSG( P2y Fmy) Z 0

ij i .
G(x rim,x @1 %m2)-1) <€o forallje(1,2,...,s).
Repeating this process, we can find sequences such that, for all k > 1,

ng < n(k) < m(k) < n(k + 1), 1max G( ),xil’(km,xi:l(k)) > &o,

<r=<s

G( Z(k),x W)+ l,x ®-1 )<£0 forallje{1,2,...,s}.

Note that by (10), G}y, % sy.10 %)) GXoriay Xoriiys1r Komy—1) < €074 < €0/2 for all r € {s +
1,s+2,...,n},s0

j j ir ir
]rgi’; G(x]n(k) "/( )+1"‘] (k)) {Ef‘fs G( )’xn(k)+1’xm(k)) >¢o and

(11)
G(xiq(k)’xiﬂ(k)ﬂ'gxlm(k)—l) <é&o

foralli e {1,2,...,n}and all kK > 1. Next, for all k, let i(k) € {1,2,...,s} be an index such that
ik) k) i(k) i i j
G (%10 Kty 1 Xonth) = nax G(x, n(k)’x 041 Fmity) = 2 G("/n 1 P12 %omi) = €0-

Notice that, applying (Gs) twice and (11), for all k and all j,

G("i;(k)-ﬁ‘};(k)’ x];n(k)—l) =

+ G )+1’xln(k)’x/ (1)
L C{CAMETE x](k)) + G(x]n(k)’x/( 1) + Eo- (12)
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Applying Proposition 2 to guarantee that the following points are C-comparable, the con-

tractivity condition (7) assures us for all k

0<¥(eo) < ‘/’( ( ikk)’ ;(f))arl’xig&))) = w(G(xff@),xiik()k)»xfff%+1))

oM o (2) Siky (1) oit@)  oi)(2) Sifk) ()
—1ﬂ( (F ( (k)1 %n(k) 1"“’xn(k)—1)’F( m(k)—l’xm(k)—l’“"xm(k)—l)’

) (2) itk) (1)
F2( ) 1% ((If)) 1,“.,962((,/;)),}; )))

0; k)(/) (k) () r oity D) oi(k) (2) i) (1)

maXG 1% m(k)-17 (xn(k)—l’xnl(k)—l""’xn(k)—l)))

1<j<m

o)) o §) i) ()
(maXG l,xn;( )_l,xn’(k) ))

1<j<m

k)(/) oik) ) i)
maxG 11 % (k) ,xm(k)_l)). (13)

1<j<n

Consider the sequence

{max G v i) | (14)
If this sequence has a subsequence that converges to zero, then we can take limit when
k — oo in (13) using this subsequence, so that we would have 0 < ¥(go) < ¥(0) — ¢(0) = 0,
which is impossible since gy > 0. Therefore, the sequence (14) has no subsequence con-
verging to zero. In this case, taking gy > 0 in Lemma 6, there exist § €]0,&0[ and kyp € N
such that max;<j<, G(x, d‘(k 0 xa’(k)w i k) 0 "1) = 8 for all k > ko. It follows that, for all k > ko,

1’ n(k) X m(k
—p(max; <j<, Glxr "f,xj’g xy) < —go((S).Thus, by (13) and (12),

i

m(k)
L<k 0 o) o0 w0 o) i)

0<W(80)<1/’(max Gy %u) Xm1) )~ {‘lqi’;G( W01 %all) +Fm(i) 1)

0 oir () (j
<1/f<maxG( 1’x:((1<)) ,xm(',?)_l)) o(8)

1<j<n
w(lrg]g Gl -1 %k By 1) ) = 90)
=¥ (g}i’;(G("{akwMQ(k)”‘{uk)) + G (W40 X Duggen)) + 50) —¢(9). (15)

Taking limit in (15) as kK — oo and taking into account (9), we deduce that 0 < ¥ (gg) <
¥ (g0) — ¢(8), which is impossible. The previous reasoning proves that every sequence {x! }
is G-Cauchy.

Corollary 25 guarantees that the sequence {F%(Xo) = X,y = (xL,4%,...,x")} is G,-
Cauchy. Since (X", G,) is complete (again by Corollary 25), there exists Z € X" such that
X} S Z, thatis, if Z = (z1,2,...,2,) then

{G(%,%,,1,21)} = O foralli. (16)
Suppose that F is G-continuous. In this case, item 3 of Lemma 29 implies that Fy is G,-

continuous, so {X,,} S 7 and {X,,;1 = Fr(X,)} Sy Fy(Z). By the unicity of the G,-limit,
Fv(Z) = Z, which means that Z is a Y-fixed point of F.
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Suppose that (X, G, <) is regular. In this case, by Corollary 25, (X", G,,C) is also reg-
ular. Then, taking into account that {X,, = F%{(X,)} is a C-monotone non-decreasing
sequence such that {X,,} Eﬁ Z, we deduce that X,, C Z for all m. From Proposition 2,
since (x},x2,...,x") =X,y T Z = (21,22, ...,2y,), then (xy: oill) (2@ x5 and (20,1)r Z0,(2)»

..»Zs,(n)) are C-comparable for all i and all 7. Notice that for all i and all m,

F( oi(1) _0i(2) a,'(n)) _ F(F(x;lai(l)(l)’ 00,1)(2) %,.(1)(")),'

m+1"m+l7 Y m+l m yee s Xm (]
0o (D) 05 (m)(2) Og;(m) ()
F(oom ™ ™t )

= F2 (x5, 2@, x%i"),
It follows from condition (7) and (8) that, for all i,

Y (G(E(gD,a0®, . x ™), Fa x0iy, i), Fzoyy 2oy -0 Zoitn)) )

= (G a1 ), Faoyy 2oy o Zo0)s F (65 2, 27)))

< - go)(max G(x3 (/) ,zal(,),F( o1l (l),x;f"(j)(z),...,x(:,f"w(n))))

1<j<n

=(y - w)(max G(x7D, 24,5 mill)) < lﬂ(maX G ,xmi’i,zol(n))

1<j<n 1<j<n

< v (max G () ,01.5))-

1<j<n

By (16) we deduce that

{F (x5, x5, x5} > F(zo,0) 20120 - - - Zoyn)  forall i,
which means that

{IE‘TXm = (F(xg ™, a0 @, a0, F (g, x5, a0 )

(F(Zal 1201(2)s -+ 3 Zoy () + -+ F(Zoy(1)s Zon(@)s - - 1 Zow()) = FrZ.

Since {F+ X, = X,41} i; Z, we conclude that FyZ = Z, that is, Z is a Y -fixed point of F. [J
If we take v (£) = t in Theorem 26, then we get the following results.

Corollary 32 Let (X, G) be a complete G*-metric space and let 5 be a partial preorder
onX.Let Y =(01,09,...,0y,) be an n-tuple of mappings from {1,2, ..., n} into itself verifying
oi€Qupific Aand o, € Qg ifi€B. Let F: X" — X be a mapping verifying the mixed
monotone property on X. Assume that there exists ¢ € V such that

G(F(x17x2¢ .. -;xn),F(}’hJ’z» .. ryn)rF%(xthr .. ¢xn))

=< max G(xnqu(xa, 1) X0;(2)s - + »xai(n))) - (P<1H<1f‘<7; G(xiyyi)F(xai(l), Xoj(2)r e yxa,v(n))))

1<i<n

for which (x1,%2,...,%4), Y1,¥2,-..,Yn) € X" are E-comparable. Suppose either F is contin-
uous or (X, G,<) is regular. If there exist xy,x3,...,x4 € X verifying xi) <; F(xgi(l) xgi(z),

xg"(")) forall i, then F has, at least, one Y -fixed point.
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If we take ¢(t) = (1 — k)¢ for all £ > 0, with k € [0,1), in Corollary 32, then we derive the
following result.

Corollary 33 Let (X, G) be a complete G*-metric space and let X be a partial preorder
onX.Let Y =(01,09,...,0,) be an n-tuple of mappings from {1,2, ...,n} into itself verifying
oi€Qupific Aand o, € Qg ifi€B. Let F: X" — X be a mapping verifying the mixed
monotone property on X. Assume that there exists k € [0,1) such that

G(F(xl’x2: . ';xn)!F(yl!_y21 . ';yn)’F%(xliny . ~:xn))

< k max G(xi,yi,F(xai(l),x(,i(z), . ,x(,l.(n))) 17)

1<i<n

for which (x1,%2,...,%4), Y1, Y2, ..., Yn) € X" are E-comparable. Suppose either F is contin-
uous or (X, G, <) is regular. If there exist x},23,...,x € X verifying x <; FxJ'™,25?,

...,ng(”)) for all i, then F has, at least, one Y -fixed point.

Example34 LetX ={0,1,2,3,4}andlet G be the G-metric on X given, forallx, y,z € X, by
G(x,7,2z) = max(|x—y|, |x—z|, |y —z|). Then (X, G) is complete and G generates the discrete
topology on X. Consider on X the following partial order:

xy€X, x<y < «x=y or (x%=(02).
Define F : X" — X by

0, ifwy,x,...,x, €{0,1,2},
F(x1,%0,...,%,) = i
1, otherwise.
Then the following statements hold.
1. Fisa G-continuous mapping.
2. Ify,z e X verify y < z, then either y,z € {0,1,2} or y,z € {3,4}. In particular,
FX1,.. %1, Y, Xis1y - - -» %) = F(X1,.. ., %1, ¥, %141, . . ., %) and F has the mixed
monotone property on X.
3. If(xq,20,..,%0), 01,92, .-, Yy) € X™ are C-comparable, then
F(x1,%,...,%4) = F(91,%2,...,¥x). In particular, (17) holds for k = 1/2.
For simplicity, henceforth, suppose that # is even and let A (respectively, B) be the
set of all odd (respectively, even) numbers in {1,2,...,n}.
4. For a mapping o : A, = A,, we use the notation 0 = (o(1),0(2),...,0(n)) and

consider
o =0i+1,...,n-1,mn1,2,...,i—1) foralli.

Then o; € Qap if i is odd and o; € Q) 5 if i is even. Let YT = (01,03,...,0%).
5. Take! =0 if i is odd and x4 = 2 if i is even. Then x}, <; F(xJ'™, 3@, ..., 25") for
all i.
Therefore, we can apply Corollary 33 to conclude that F has, at least, one T -fixed point.
To finish, we prove the previous statements.
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If {x,,} iy x, then there exists mo € N such that |x,, —x| = G(x,x,x,,) < 1/2 for all m > my.
Since X is discrete, then x,, = x for all m > my. This proves that 7 is the discrete topology
on X.

L Iff{al},{a%},...,{a’} C X are n sequences such that {a’,} & 4, € X forall i, then
there exists mo € N such that a’, = a; for all m > m and all i. Then
{Fd.,a%,...,a")} 5 F(ay,as,...,a,) and F is G-continuous.

2. Ify,z e X verify y < z, the either y = z (in this case, there is nothing to prove) or
(9,2) = (0,2). Then either y,z € {0,1,2} or y,z € {3,4}. In particular,

0 ifxl,...,xi_l,y,xi+1,...,x,, € {0,1,2},
F(xl,...,x,-_l,y,xM,...,x,,)= .
1, otherwise

= F(xl, ey Xi—1:Z, Xigls e e ,xn).
Hence F has the mixed monotone property on X.
3. Suppose that (x1,%5,...,%,), W1, ¥2,--.,¥n) € X" are T-comparable, and we claim

that F(x1,xo,...,%,) = F(y1,¥2, ..., ¥»). Indeed, assume, for instance, that x; <; y; for
all i. By item 2, for all i, either x;,y; € {0,1,2} or x;,y; € {3,4}. Then

0 ifxq,x9,...,%, €{0,1,2},
F(xl¢x2)"-1xn)= .
1, otherwise

_ O ifyl,yZ;'H)yn € {01 112}1
|1, otherwise

= F(yl’yb v ,)’n)~

If x; =; y; for all i, the proof is similar. Next, we prove that (17) holds using k = 1/4. If
(%1, %2, ..., %) € X", then F(Xo,1), X6,(2)5 - - - s %o;m)) € {0,1} C {0,1,2}. Therefore

F%(xl,xz,...,xn)
:F(F(xa'l(l)fxa'l(z))"'1x01(}4))’F(xO'Z(l)’xUQ(Z)}"'rxﬂz(}’l))I""

F(X0,,(1)s Xon(2)s - - - Fon(n))

=0.
Suppose that (x1,%,...,%,), %1, Y2, - .,¥n) € X" are C-comparable. It follows that

G(F@1, %25+ os %), FQ1, 025« s V) F3 (1, %2, .., %))

= max (|F®1, %2, .., %) = FO1 Y20+ > )
F(yl)yb« . 1yn) - 0|)

= max(F(x11x2) . »;xn):F()/l;yb oo ryrl))

)

’

|F(x1,x2,...,xn) -0

0 ifF(xbxz,m,xn)=F()’1»)’2,---,yn)=0,
1, otherwise.
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It is clear that (17) holds if the previous number is 0. On the contrary, suppose that

G(F(xl,xz, e ®n), F(1, y2, - ..,y,,),F?f(xl,xz, . ..,x,,)) =1.

Then F(x1,%2,...,%,) =1 0or F(y1,¥2,...,¥4) =1 (both cases are similar). Assume, for
instance, that F(x1,%2,...,%,) = 1. Then there exists iy € {1,2,...,#} such that
%iy € {3,4}. In particular

‘xio - F(xoio(l):xaio(Z): e ’inO (n))| > 3-1=2.
Therefore

112?5); G(xi,yirp(xai(l)rxa'i(Z)r oo ,xai(n))) = G(xio »yiorF(xa'io (1)rx¢7,'0 (2)r+¢- ’xaio (n)))

> [ig = Foiy ) Xorg 213 -2 ¥y )| = 2.
This means that

G(F@1, %2 s %), D1, Y25+« 0 )y ¥ (61,52, .., %))

1 1
=1= 52 < — max G(xi,yi,F(xai(l),xgi(z),.‘.,xgi(,,))).

— 21<i<n
Therefore, in this case, (17) also holds.
It is evident.
Since x4 € {0,1,2} for all i, then F(xJ'®, x5, ..., x%1") = 0 for all i. If i is odd, then
xh=0=;0= F(xgi(l),xgi(z), ...,xgi(")). If i is even, then

xh =25 0=FIW x0@, L xl"), soxd < FaeW, a0, 25,

@
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