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Abstract
Very recently, Samet et al. (Int. J. Anal. 2013:917158, 2013) and Jleli-Samet (Fixed Point
Theory Appl. 2012:210, 2012) noticed that some fixed point theorems in the context
of a G-metric space can be deduced by some well-known results in the literature in
the setting of a usual (quasi) metric space. In this paper, we note that the approach of
Samet et al. (Int. J. Anal. 2013:917158, 2013) and Jleli-Samet (Fixed Point Theory Appl.
2012:210, 2012) is inapplicable unless the contraction condition in the statement of
the theorem can be reduced into two variables. For this purpose, we modify some
existing results to suggest new fixed point theorems that fit with the nature of a
G-metric space. The expressions in our result, the contraction condition, cannot be
expressed in two variables, therefore the techniques used in (Int. J. Anal. 2013:917158,
2013; Fixed Point Theory Appl. 2012:210, 2012) are not applicable.
MSC: 47H10; 54H25
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1 Introduction
The concept ofG-metric space was introduced byMustafa and Sims [] in order to extend
and generalize the notion of metric space. In this paper, the authors characterized the Ba-
nach contraction mapping principle [] in the context of a G-metric space. Following this
initial report, a number of authors have characterized many well-known fixed point the-
orems in the setting of G-metric space (see, e.g., [, –]). Since one is adapted from the
other, there is a close relation between a usual metric space and aG-metric space (see, e.g.,
[, –]). In fact, the nature of a G-metric space is to understand the geometry of three
points instead of two points via perimeter of a triangle. However, most of the published
papers dealing with aG-metric space did not give much importance to these details. Con-
sequently, a great majority of results were obtained by transforming the contraction con-
ditions from the usual metric space context to a G-metric space without carrying enough
of the characteristics of the G-metric.
Very recently, Samet et al. [] and Jleli-Samet [] observed that some fixed point theo-

rems in the context of aG-metric space in the literature can be concluded by some existing
results in the setting of a (quasi-)metric space. In fact, if the contraction condition of the
fixed point theorem on a G-metric space can be reduced to two variables instead of three
variables, then one can construct an equivalent fixed point theorem in the setup of a usual
metric space. More precisely, in [, ], the authors noticed that d(x, y) =G(x, y, y) forms
a quasi-metric. Hence, if one can transform the contraction condition of existence results
in a G-metric space in such terms, G(x, y, y), then the related fixed point results become
the known fixed point results in the context of a quasi-metric space.
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In this paper, we notice that the techniques used in [, ] are valid if the contraction
condition in the statement of the theorem can be expressed in two variables. Furthermore,
we prove some fixed point theorems in the context of a G-metric space for which the
techniques in [, ] are inapplicable.

2 Preliminaries
In this section we recollect basic definitions and a detailed overview of the fundamental
results. Throughout this paper, N is the set of nonnegative integers, and N

∗ is the set of
positive integers.

Definition. (See []) LetX be a non-empty set and letG : X×X×X →R
+ be a function

satisfying the following properties:
(G) G(x, y, z) =  if x = y = z,
(G)  <G(x,x, y) for all x, y ∈ X with x �= y,
(G) G(x,x, y)≤ G(x, y, z) for all x, y, z ∈ X with y �= z,
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables),
(G) G(x, y, z) ≤ G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality).

Then the function G is called a generalized metric or, more specifically, a G-metric on X,
and the pair (X,G) is called a G-metric space.

Every G-metric on X defines a metric dG on X by

dG(x, y) =G(x, y, y) +G(y,x,x) for all x, y ∈ X. ()

Example . Let (X,d) be a metric space. The functionG : X×X×X → [, +∞), defined
as

G(x, y, z) =max
{
d(x, y),d(y, z),d(z,x)

}
or

G(x, y, z) = d(x, y) + d(y, z) + d(z,x)

for all x, y, z ∈ X, is a G-metric on X.

Definition . (See []) Let (X,G) be a G-metric space, and let {xn} be a sequence of
points of X. We say that {xn} is G-convergent to x ∈ X if

lim
n,m→+∞G(x,xn,xm) = ,

that is, for any ε > , there exists N ∈ N such that G(x,xn,xm) < ε for all n,m ≥ N . We call
x the limit of the sequence and write xn → x or limn→+∞ xn = x.

Proposition . (See []) Let (X,G) be a G-metric space. The following are equivalent:
() {xn} is G-convergent to x,
() G(xn,xn,x)→  as n → +∞,
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() G(xn,x,x)→  as n→ +∞,
() G(xn,xm,x)→  as n,m → +∞.

Definition . (See []) Let (X,G) be a G-metric space. A sequence {xn} is called a
G-Cauchy sequence if, for any ε > , there is N ∈ N such that G(xn,xm,xl) < ε for all
m,n, l ≥ N , that is, G(xn,xm,xl) →  as n,m, l → +∞.

Proposition . (See []) Let (X,G) be a G-metric space. Then the following are equiva-
lent:
() the sequence {xn} is G-Cauchy,
() for any ε > , there exists N ∈N such that G(xn,xm,xm) < ε for all m,n≥ N .

Definition . (See []) A G-metric space (X,G) is called G-complete if every G-Cauchy
sequence is G-convergent in (X,G).

We will use the following result which can be easily derived from the definition of a
G-metric space (see, e.g., []).

Lemma . Let (X,G) be a G-metric space. Then

G(x,x, y)≤ G(x, y, y) for all x, y ∈ X.

Definition . (See []) Let (X,G) be aG-metric space. AmappingT : X → X is said to be
G-continuous if {T(xn)} isG-convergent to T(x) where {xn} is anyG-convergent sequence
converging to x.

In [], Mustafa characterized the well-known Banach contraction mapping principle
in the context of G-metric spaces in the following ways.

Theorem . (See []) Let (X,G) be a complete G-metric space and let T : X → X be a
mapping satisfying the following condition for all x, y, z ∈ X:

G(Tx,Ty,Tz) ≤ kG(x, y, z), ()

where k ∈ [, ). Then T has a unique fixed point.

Theorem . (See []) Let (X,G) be a complete G-metric space and let T : X → X be a
mapping satisfying the following condition for all x, y ∈ X:

G(Tx,Ty,Ty) ≤ kG(x, y, y), ()

where k ∈ [, ). Then T has a unique fixed point.

Remark . The condition () implies the condition (). The converse is true only if k ∈
[,  ). For details, see [].
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Theorem . (See []) Let (X,G) be a G-metric space. Let T : X → X be a mapping such
that

G(Tx,Ty,Tz) ≤ aG(x, y, z) + bG(x,Tx,Tx) + cG(y,Ty,Ty) + dG(z,Tz,Tz) ()

for all x, y, z,where a, b, c, d are positive constants such that k = a+b+ c+d < . Then there
is a unique x ∈ X such that Tx = x.

Theorem . (See []) Let (X,G) be a G-metric space. Let T : X → X be a mapping such
that

G(Tx,Ty,Tz) ≤ k
[
G(x,Tx,Tx) +G(y,Ty,Ty) +G(z,Tz,Tz)

]
()

for all x, y, z, where k ∈ [,  ). Then there is a unique x ∈ X such that Tx = x.

Theorem . (See []) Let (X,G) be a G-metric space. Let T : X → X be a mapping such
that

G(Tx,Ty,Tz) ≤ aG(x, y, z) + b
[
G(x,Tx,Tx) +G(y,Ty,Ty) +G(z,Tz,Tz)

]
()

for all x, y, z,where a, b are positive constants such that k = a+b < . Then there is a unique
x ∈ X such that Tx = x.

Theorem . (See []) Let (X,G) be a G-metric space. Let T : X → X be a mapping such
that

G(Tx,Ty,Tz) ≤ aG(x, y, z) + bmax
{
G(x,Tx,Tx),G(y,Ty,Ty),G(z,Tz,Tz)

}
()

for all x, y, z,where a, b are positive constants such that k = a+b < . Then there is a unique
x ∈ X such that Tx = x.

Theorem . (See []) Let (X,G) be a G-metric space. Let T : X → X be a mapping such
that

G(Tx,Ty,Tz) ≤ kmax
{
G(x, y, z),G(x,Tx,Tx),G(y,Ty,Ty),G(z,Tz,Tz),

G(z,Tx,Tx),G(x,Ty,Ty),G(y,Tz,Tz)
}

()

for all x, y, z, where k ∈ [,  ). Then there is a unique x ∈ X such that Tx = x.

Theorem . (See, e.g., []) Let (X,G) be a complete G-metric space and let T : X → X
be a given mapping satisfying

G(Tx,Ty,Tz) ≤ G(x, y, z) – ϕ
(
G(x, y, z)

)
()

for all x, y ∈ X, where ϕ : [,∞) → [,∞) is continuous with ϕ–({}) = . Then there is a
unique x ∈ X such that Tx = x.
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Definition . (See, e.g., []) A quasi-metric on a nonempty set X is a mapping p : X ×
X → [,∞) such that

(p) x = y if and only if p(x, y) = ,
(p) p(x, y) ≤ p(x, z) + p(z, y),

for all x, y, z ∈ X. A pair (X,p) is said to be a quasi-metric space.

Samet et al. [] and Jleli-Samet [] noticed that p(x, y) = pG(x, y) =G(x, y, y) is a quasi-
metric whenever G : X ×X ×X → [,∞) is a G-metric. It is well known that each quasi-
metric induces ametric. Indeed, if (X,p) is a quasi-metric space, then the function defined
by

d(x, y) = dG(x, y) =max
{
p(x, y),p(y,x)

}
for all x, y ∈ X

is a metric on X.

Theorem . Let (Xd) be a complete metric space and let T : X → X be a mapping with
the property

d(Tx,Ty) ≤ qmax
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
()

for all x ∈ X, where q is a constant such that q ∈ [, ). Then T has a unique fixed point.

Samet et al. [] proved that Theorem .-Theorem . are the consequences of Theo-
rem . by using the following proposition.

Proposition .
(A) If (X,G) is a complete G-metric space, then (X,d) is a complete metric space.
(B) If (X,G) is a sequentially G-compact G-metric space, then (X,d) is a compact metric

space.

3 Main results
We first state the following theorem about the existence and uniqueness of a common
fixed point, which is a generalization of Theorem .. Furthermore, the techniques of the
papers [, ] are not applicable to this theorem.

Theorem . Let (X,G) be a G-metric space. Let T : X → X be a mapping such that

G(Tx,Ty,Tz) ≤ kM(x, y, z) ()

for all x, y, z, where k ∈ [,  ) and

M(x, y, z) = max
{
G(x,Tx, y),G

(
y,Tx,Ty

)
,G

(
Tx,Tx,Ty

)
,G(y,Tx,Ty),G(x,Tx, z),

G
(
z,Tx,Tz

)
,G

(
Tx,Tx,Tz

)
,G(z,Tx,Ty),G(x, y, z),G(x,Tx,Tx),

G(y,Ty,Ty),G(z,Tz,Tz),G(z,Tx,Tx),G(x,Ty,Ty),G(y,Tz,Tz)
}
.

Then there is a unique x ∈ X such that Tx = x.

http://www.fixedpointtheoryandapplications.com/content/2013/1/154
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Proof Let x ∈ X. We define a sequence {xn} in the following way:

xn+ = Txn, n ∈N. ()

Taking x = xn, z = y = xn+ in (), we find

G(Txn,Txn+,Txn+) ≤ kM(xn,xn+,xn+), ()

where

M(xn,xn+,xn+) = max
{
G(xn,Txn,xn+),G

(
xn+,Txn,Txn+

)
,G

(
Txn,Txn,Txn+

)
,

G(xn+,Txn,Txn+),G(xn,Txn,xn+),G
(
xn+,Txn,Txn+

)
,

G
(
Txn,Txn,Txn+

)
,G(xn+,Txn,Txn+),G(xn,xn+,xn+),

G(xn,Txn,Txn),G(xn+,Txn+,Txn+),G(xn+,Txn+,Txn+),

G(xn+,Txn,Txn),G(xn,Txn+,Txn+),G(xn+,Txn+,Txn+)
}

= max
{
G(xn,xn+,xn+),G(xn+,xn+,xn+),G(xn+,xn+,xn+),

G(xn+,xn+,xn+),G(xn,xn+,xn+),G(xn+,xn+,xn+),

G(xn+,xn+,xn+),G(xn+,xn+,xn+),G(xn,xn+,xn+),

G(xn,xn+,xn+),G(xn+,xn+,xn+),G(xn+,xn+,xn+),

G(xn+,xn+,xn+),G(xn,xn+,xn+),G(xn+,xn+,xn+)
}

= max
{
G(xn,xn+,xn+),G(xn+,xn+,xn+),

G(xn+,xn+,xn+),G(xn,xn+,xn+)
}
. ()

Now, we have to examine four cases in (). For the first case, assume that M(xn,xn+,
xn+) =G(xn+,xn+,xn+). Then the expression () turns into

G(xn+,xn+,xn+) =G(Txn,Txn+,Txn+)

≤ kM(xn,xn+,xn+)

= kG(xn+,xn+,xn+). ()

It is a contradiction since  ≤ k < 
 . For the second case, assume that M(xn,xn+,xn+) =

G(xn+,xn+,xn+). Regarding (G) together with the inequality (), we derive that

G(xn+,xn+,xn+) =G(Txn,Txn+,Txn+)

≤ kG(xn+,xn+,xn+)

≤ k
[
G(xn+,xn+,xn+) +G(xn+,xn+,xn+)

]
, ()

a contradiction since  ≤ k < 
 .
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For the third case, assume that M(xn,xn+,xn+) = G(xn,xn+,xn+). By (G) and the in-
equality (), we have

G(xn+,xn+,xn+) =G(Txn,Txn+,Txn+)

≤ kG(xn,xn+,xn+)

≤ k
[
G(xn,xn+,xn+) +G(xn+,xn+,xn+)

]
, ()

which is equivalent to

G(xn+,xn+,xn+) ≤ hG(xn,xn+,xn+), ()

where h = k
–k <  since  ≤ k < 

 .
For the last case, assume thatM(xn,xn+,xn+) =G(xn,xn+,xn+). Then the inequality ()

turns into

G(xn+,xn+,xn+) ≤ kG(xn,xn+,xn+), ()

where  ≤ k < 
 .

As a result, from ()-() we conclude that

G(xn+,xn+,xn+) ≤ rn+G(x,x,x), ()

where r ∈ {h,k} and hence r < . We show that the sequence {xn} is G-Cauchy. By the
rectangle inequality (G), we have form > n

G(xm,xm,xn) ≤ G(xn+,xn+,xn) +G(xn+,xn+,xn+)

+ · · · +G(xm–,xm–,xm–) +G(xm,xm,xm–)

≤ rnG(x,x,x) + rn+G(x,x,x)

+ · · · + rm–G(x,x,x) + rm–G(x,x,x)

≤
(m–∑

i=n

ri
)
G(x,x,x). ()

Letting n,m → ∞ in (), we get that G(xm,xm,xn) → . Hence, {xn} is a G-Cauchy se-
quence in X. Since (X,G) is G-complete, then there exists x∗ ∈ X such that {xn} is G-
convergent to x∗. We shall show that x∗ = Tx∗. Suppose, on the contrary, that x∗ �= Tx∗. On
the other hand, we have xn+ = Txn and hence

G
(
xn+,Tx∗,Tx∗) =G

(
Txn,Tx∗,Tx∗)

≤ kM
(
xn,x∗,x∗), ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/154
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where

M
(
xn,x∗,x∗) = max

{
G

(
xn,Txn,x∗),G(

x∗,Txn,Tx∗),G(
Txn,Txn,Tx∗),

G
(
x∗,Txn,Tx∗),G(

xn,Txn,x∗),G(
x∗,Txn,Tx∗),

G
(
Txn,Txn,Tx∗),G(

x∗,Txn,Tx∗),G(
xn,x∗,x∗),

G(xn,Txn,Txn),G
(
x∗,Tx∗,Tx∗),G(

x∗,Tx∗,Tx∗),
G

(
x∗,Txn,Txn

)
,G

(
xn,Tx∗,Tx∗),G(

x∗,Tx∗,Tx∗)}
= max

{
G

(
xn,xn+,x∗),G(

x∗,xn+,Tx∗),G(
xn+,xn+,Tx∗),

G
(
x∗,xn+,Tx∗),G(

xn,xn+,x∗),G(
x∗,xn+,Tx∗),

G
(
xn+,xn+,Tx∗),G(

x∗,xn+,Tx∗),G(
xn,x∗,x∗),

G(xn,xn+,xn+),G
(
x∗,Tx∗,Tx∗),G(

x∗,Tx∗,Tx∗),
G

(
x∗,xn+,xn+

)
,G

(
xn,Tx∗,Tx∗),G(

x∗,Tx∗,Tx∗)}.
Letting n → ∞ in () and using the fact that themetricG is continuous, we get that either

G
(
x∗,Tx∗,Tx∗) ≤ kG

(
x∗,Tx∗,Tx∗) ()

or

G
(
x∗,Tx∗,Tx∗) ≤ kG

(
x∗,x∗,Tx∗) ≤ k

[
G

(
x∗,Tx∗,Tx∗)] ()

by the rectangular property (G). Since  ≤ k < 
 , the inequalities above yield contradic-

tions. Hence we have G(x∗,Tx∗,Tx∗) = , that is, x∗ = Tx∗.
Finally, we shall show that x∗ is the unique fixed point of T . Suppose that contrary to

our claim, there exists another common fixed point t∗ ∈ X with t∗ �= x∗. From () we have

G
(
t∗, t∗,x∗) =G

(
Tt∗,Tt∗,Tx∗) ≤ kM

(
t∗, t∗,x∗), ()

where

M
(
t∗, t∗,x∗) =max

{
G

(
t∗, t∗,x∗),G(

t∗,x∗,x∗)}.
Hence, the inequality () is equal to either

G
(
t∗, t∗,x∗) ≤ kG

(
t∗, t∗,x∗) ()

or

G
(
t∗, t∗,x∗) ≤ kG

(
t∗,x∗,x∗) ≤ kG

(
t∗, t∗,x∗). ()

Since  ≤ k < 
 , the expressions () and () yield contradictions. Thus, x∗ is the unique

fixed point of T . �
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In Theorem ., the interval of constant of the contractive condition can be extended
to the interval [, ) by eliminating the same terms. Since the proof is the mimic of Theo-
rem ., we omit it.

Theorem . Let (X,G) be a G-metric space. Let T : X → X be a mapping such that

G(Tx,Ty,Tz) ≤ kM(x, y, z) ()

for all x, y, z, where k ∈ [, ) and

M(x, y, z) = max
{
G(x,Tx, y),G

(
y,Tx,Ty

)
,G

(
Tx,Tx,Ty

)
,G(x,Tx, z),

G
(
z,Tx,Tz

)
,G

(
Tx,Tx,Tz

)
,G(x, y, z),G(x,Tx,Tx),G(y,Ty,Ty),

G(z,Tz,Tz),G(z,Tx,Tx),G(y,Tz,Tz)
}
.

Then there is a unique x ∈ X such that Tx = x.

Remark . Theorem .-Theorem . are the consequences of Theorem . and Theo-
rem ..

Inspired by Theorem ., we state the following theorem for which the methods in [,
] are not applicable.

Theorem . Let (X,G) be a complete G-metric space and let T : X → X be a given map-
ping satisfying

G
(
Tx,Tx,Ty

) ≤ G(x,Tx, y) – ϕ
(
G(x,Tx, y)

)
()

for all x, y ∈ X, where ϕ : [,∞) → [,∞) is continuous with ϕ–({}) = . Then there is a
unique x ∈ X such that Tx = x.

Proof We first show that if the fixed point of the operator T exists, then it is unique.
Suppose, on the contrary, that z, w are two fixed points of T such that z �= w. Hence,
G(z, z,w) �= . By (), we have

G
(
Tz,Tz,Tw

) ≤ G(z,Tz,w) – ϕ
(
G(z,Tz,w)

)
, ()

which is equivalent to

G(z, z,w) ≤ G(z, z,w) – ϕ
(
G(z, z,w)

)
, ()

a contradiction. Hence, T has a unique fixed point.
Let x ∈ X. We define a sequence {xn} in the following way:

xn+ = Txn, n ∈N. ()
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If xn = xn+ for some n ∈ N, then we get the desired result. From now on, we assume
that xn = xn+ for some n ∈N. Taking x = xn, z = y = xn+ in (), we find

G(xn+,xn+,xn+) =G(Txn,Txn+,Txn+)

≤ G(xn,Txn,xn+) – ϕ
(
G(xn,Txn,xn+)

)
=G(xn,xn+,xn+) – ϕ

(
G(xn,xn+,xn+)

)
<G(xn,xn+,xn+). ()

Hence, {G(xn,xn+,xn+)} is a positive decreasing sequence. Thus, the sequence {G(xn,xn+,
xn+)} converges to L ≥ . We shall show that L = . Suppose, on the contrary, that L > .
Letting n → ∞ in (), we find that

L ≤ L – ϕ(L). ()

It is a contradiction. Hence, we conclude that

lim
n→∞

{
G(xn,xn+,xn+)

}
= . ()

Moreover, by Lemma ., we derive that

lim
n→∞

{
G(xn,xn,xn+)

}
= . ()

Now, we demonstrate that the sequence {xn} is G-Cauchy. Suppose that {xn} is not G-
Cauchy. So, there exists ε >  and subsequences {xn(k)} and {xm(k)} of {xn} with n(k) >
m(k) > k such that

G(xn(k),xm(k),xm(k)) ≥ ε for all k ∈N. ()

Furthermore, corresponding to m(k), one can choose n(k) such that it is the smallest in-
teger with n(k) >m(k) satisfying (). Thus, we have

G(xn(k)–,xm(k),xm(k)) < ε for all k ∈N. ()

By the triangle inequality, we get

ε ≤ G(xn(k),xm(k),xm(k)) ≤ G(xn(k),xn(k)–,xn(k)–) +G(xn(k)–,xm(k),xm(k)). ()

Letting k → ∞ in the expression () and keeping () in mind, we find

lim
n→∞G(xn(k),xm(k),xm(k)) = ε. ()

On the other hand, we have

G(xn(k)+,xm(k)+,xm(k)+) ≤ G(xn(k)+,xn(k),xn(k))

+G(xn(k),xm(k),xm(k)) +G(xm(k),xm(k)+,xm(k)+) ()
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and

G(xn(k),xm(k),xm(k)) ≤ G(xn(k),xn(k)+,xn(k)+)

+G(xn(k)+,xm(k)+,xm(k)+) +G(xm(k)+,xm(k),xm(k)). ()

Letting k → ∞ in the expression ()-() and regarding (), () and (), we derive

lim
n→∞G(xn(k)+,xm(k)+,xm(k)+) = ε. ()

Further, we have

G(xn(k),xm(k),xm(k)) ≤ G(xn(k),xm(k),xm(k)+)

≤ G(xn(k),xm(k),xm(k)) +G(xm(k),xm(k),xm(k)+) ()

by (G) and the triangle inequality. Letting k → ∞ in () and using (), () and (),
we conclude that

lim
n→∞G(xn(k),xm(k),xm(k)+) = ε. ()

Analogously, we have

G(xn(k)+,xm(k)+,xm(k)+) ≤ G(xn(k)+,xm(k)+,xm(k)+)

≤ G(xn(k)+,xm(k)+,xm(k)+) +G(xm(k)+,xm(k)+,xm(k)+) ()

by (G) and the triangle inequality. Letting k → ∞ in () and using (), () and (),
we conclude that

lim
n→∞G(xn(k)+,xm(k)+,xm(k)+) = ε. ()

Due to () and regarding (G), we obtain

G
(
Txm(k),Txm(k),Txn(k)

)
=G(xm(k)+,xm(k)+,xn(k)+)

=G(xn(k)+,xm(k)+,xm(k)+)

≤ G(xn(k),xm(k),xm(k)+) – ϕ
(
G(xn(k),xm(k),xm(k)+)

)
()

for all k ∈ N. Letting k → ∞ in the inequality () and keeping () and () in mind, we
get

ε ≤ ε – φ(ε), ()

a contradiction. Hence, {xn} is a G-Cauchy sequence. Since (X,G) is G-complete, there is
z ∈ X such that xn → z.
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We claim that Tz = z. From (), we have

G(xn+,xn+,Tz) =G
(
Txn,Txn,Tz

)
≤G(xn,Txn, z) – ϕ

(
G(xn,Txn, z)

)
=G(xn,xn+, z) – ϕ

(
G(xn,xn+, z)

)
. ()

Letting k → ∞ in (), regarding the continuity of G, we get that

G(z, z,Tz) ≤ G(z, z, z) – ϕ
(
G(z, z, z)

)
= .

Hence G(z, z,Tz) = , that is, Tz = z. �

Remark . Let X be a nonempty set. We define functions p,d : X × X → [,∞) in the
following way:

d(x, y) =
(
y,Tx,Ty

)
and p(x, y) =G

(
Tx,Tx,Ty

)
for all x, y ∈ X. It is easy to see that both mappings p and q do not satisfy the conditions
of Definition .. Hence, Theorem . and Theorem . cannot be characterized in the
context of quasi-metric as it is suggested in [, ].

Example . Let X = [,∞), G : X ×X ×X →R be defined by

G(x, y, z) =

⎧⎨
⎩ if x = y = z,

max{x, y, z} otherwise.

Then (X,G) is a G-complete G-metric space. Let T : X → X be defined by

Tx =

⎧⎨
⎩


x if  ≤ x < /,

x

 if / ≤ x≤ 

and ϕ(t) = 
 t for all t ∈ [, +∞).

Proof For the proof the Example ., we examine the following cases:
• Let  ≤ x, y < /. Then

G
(
Tx,Tx,Ty

)
= max

{


x,




x,


y
}

≤ 

max

{
x,



x, y

}

= G(x,Tx, y) – ϕ
(
G(x,Tx, y)

)
.

• Let /≤ x, y < . Then

G
(
Tx,Tx,Ty

)
= max

{


x,




x,


y

}
≤ 


max

{
x,



x, y

}

= G(x,Tx, y) – ϕ
(
G(x,Tx, y)

)
.
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• Let  ≤ x < /≤ y < . Then

G
(
Tx,Tx,Ty

)
= max

{


x,




x,


y

}
≤ 


max

{
x,



x, y

}

= G(x,Tx, y) – ϕ
(
G(x,Tx, y)

)
.

• Let  ≤ y < /≤ x < . Then

G
(
Tx,Tx,Ty

)
= max

{


x,




x,


y
}

≤ 

max

{
x,



x, y

}

= G(x,Tx, y) – ϕ
(
G(x,Tx, y)

)
.

Then

G
(
Tx,Tx,Ty

) ≤ G(x,Tx, y) – ϕ
(
G(x,Tx, y)

)
.

Then the conditions of Theorem . hold and T has a unique fixed point. Notice that
(, , ) is the desired fixed point of T . �
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