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Abstract

In this paper, we introduce a new iterative algorithm for finding a common element
of the set of fixed points of a finite family of «;-strictly pseudo-contractive mappings
and the set of solutions of new variational inequalities problems in Hilbert space. By
using our main results, we obtain an interesting theorem involving a finite family of
K -strictly pseudo-contractive mappings and two sets of solutions of the variational
inequalities problem.
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1 Introduction
Let H be a real Hilbert space whose inner product and norm are denoted by || - || and (-, -),
respectively. Let C be a nonempty closed convex subset of H. A mapping S: C — C is

called nonexpansive if
1S = Syll = llx = yll,

forallx,y € C.
A mapping S is called a «-strictly pseudo-contractive mapping if there exists « € [0,1)
such that

1Sx = SYII> < llx = yI1% + 1| (I = T)x = (I = Ty,

forallx,y € C.

It is easy to see that every noexpansive mapping is a k -strictly pseudo-contractive map-
ping.
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Let A: C — H. The variational inequality problem is to find a point u € C such that

(Au,v—u) >0 (1.1)

for all v € C. The set of solutions of (1.1) is denoted by VI(C, A).

Variational inequalities were initially studied by Kinderlehrer and Stampacchia [1] and
Lions and Stampacchia [2]. Such a problem has been studied by many researchers, and
it is connected with a wide range of applications in industry, finance, economics, social
sciences, ecology, regional, pure and applied sciences; see, e.g., [3-9].

A mapping A of C into H is called a-inverse-strongly monotone, see [10], if there exists

a positive real number « such that

(x -y, Ax - Ay) > a|Ax - Ay|*

forallx,y € C.
Let Dy, D, : C — H be two mappings. In 2008, Ceng et al. [11] introduced a problem for
finding (x*,z*) € C x C such that

(MDD z* +x* —z",2x—x*) >0, VxeC,

(AaDox™ + 2" —x*,x—2*) >0, VxeC(C,

(1.2)

which is called a system of variational inequalities where 11, 1, > 0. By a modification of

(1.2), we consider the problem for finding (x*,z*) € C x C such that

(x* = (I = MDy)(ax* + (1 —a)z"),x—x*) >0, VxeC,
(z" — (I = MDy)x*,x—z*) >0, VxeC,

1.3)

which is called a modification of system of variational inequalities, for every A1, Ap > 0 and
a €[0,1].If a = 0, (1.3) reduce to (1.2).

In 2008, Ceng et al. [11] introduce and studied a relaxed extragradient method for find-
ing solutions of a general system of variational inequalities with inverse-strongly mono-

tone mappings in a real Hilbert space as follows.

Theorem 1.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let the
mappings A,B: C — H be a-inverse-strongly monotone and B-inverse-strongly monotone,
respectively. Let S : C — C be a nonexpansive mapping such that F(S) N Q, where Q is the
set of fixed points of the mapping G : C — C, defined by G(x) = Pc(Pc(x — uBx) — AMAPc(x —
uBx)), for all x € C. Suppose that x; = u € C and {x,} is generated by

w = Pc(x, — uBxy,),
Yn = Pc(x, — uBxy,) 14)

X1 = Qulh + By + YuPc(x, — AMAx,),
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where A € (0,2a), u € (0,28) and {a,,}, {Bu}, {vu} are three sequences in [0,1] such that
(1) an+ﬁn+)’n=1, VVIZL
o0
(ii) nli)rgloan =0 and Za,, =00,
n=1

(iii) 0 <liminf B, <limsuppf, <1.
n—00

n—00

Then {x,} converges strongly to % = Ppsynqu and (%,7) is a solution of problem (1.2), where
y = Pc(x — uBX).

In the last decade, many author studied the problem for finding an element of the set of
fixed points of a nonlinear mapping; see, for instance, [12-14].

From the motivation of [11] and the research in the same direction, we prove a strong
convergence theorem for finding a common element of the set of fixed points of a finite
family of «;-strictly pseudo-contractive mappings and the set of solutions of a modified
general system of variational inequalities problems. Moreover, in the last section, we prove
an interesting theorem involving the set of a finite family of «;-strictly pseudo-contractive
mappings and two sets of solutions of variational inequalities problems by using our main
results.

2 Preliminaries
In this section, we collect and give some useful lemmas that will be used for our main
result in the next section.
Let C be a closed convex subset of a real Hilbert space H, let P be the metric projection
of H onto C, i.e., for x € H, Pcx satisfies the property
¥ — Pcx|| = min ||lx — y|l.
yeC
It is well known that P¢ is a nonexpansive mapping and satisfies
(x =3, Pcx = Pcy) = ||Pcx = Peyl?,  Va,y € H.
Obviously, this immediately implies that
2
|G =9) = (Pex = Pey)||” < llx = yI* = |Pcx = Peyl®, Vx5 € H.

The following characterizes the projection Pc.

Lemma 2.1 (See [15]) Given x € H and y € C. Then Pcx =y if and only if the following
inequality holds:

x—y,y-2)>0, VzeC.
Lemma 2.2 (See [16]) Let {s,} be a sequence of nonnegative real numbers satisfying

Spr1 = (L= 0y)sy + 0uBy, V=0,
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where {a,.}, { B} satisfy the conditions

1) {a}clo, D a,=oo,
n=1

n—00

o0
(2) limsupB, <0 or Z oty Bl < 00.
n=1

Then lim,,_, o s, = 0.

Lemma 2.3 (See [17]) Let {x,} and {z,} be bounded sequences in a Banach space X and
let {B,} be a sequence in [0,1] with 0 < liminf,_, o B, <limsup,_, ., B, < 1. Suppose that

Xn+l = ﬁnxn + (1 - ,Bn)zn

for all integer n > 0 and

limsup(||zns1 — zall = 101 = %4l1) < O.

n—0o0

Then lim,,_, o ||x, — z,|| = 0.

Definition 2.1 (See [18]) Let C be a nonempty convex subset of a real Hilbert space.
Let {T;}¥, be a finite family of «;-strict pseudo-contractions of C into itself. For each
j=12,...,N,leta; = (a{,aé,aé) el x1IxI,wherel €[0,1] andoz{ +a£ +o¢é =1. Define the
mapping S: C — C as follows:

1 1 1
U1 =0 T1U0 +C(2U() +0l31,
U, = a12T2u1 + a%LIl +a§1,

Us = a3 T3l + a3l + 31, (2.1)

N-1 N-1 N-1
UN_1 =0; TN—IUN—Z t o, UN—Z + 03 1,

S=Uy=alTyUy_1 + o) Uy +al 1.

This mapping is called S-mapping generated by 71, Ts, ..., Ty and o4, &g, ..., aN-

Lemma 2.4 (See [18]) Let C be a nonempty closed convex subset of a real Hilbert space.
Let {T;}Y, be a finite family of k-strict pseudo-contractive mappings of C into C with
ﬂf\ilF(Ti) # 0 and k = max{k; : i = 1,2,...,N} and let oj = (a{,a’é,a’g) elxIxIj=
1,2,3,...,N, where = [0,1], &, + &y + oy = 1, o}, &y € (ic,1) for all j=1,2,...,N = 1 and
(x{\’ € (k,1], aé‘[ € [«,1), aé € [«k,1) forallj=1,2,...,N. Let S be a mapping generated by

T, Ts,...,Tn and oy, s, ...,ay. Then F(S) = ﬂfil F(T;) and S is a nonexpansive mapping.
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Lemma 2.5 (See [19]) Let E be a uniformly convex Banach space, C be a nonempty closed
convex subset of E and let S : C — C be a nonexpansive mapping. Then I — S is demi-closed
at zero.

Lemma 2.6 [n a real Hilbert space H, the following inequality holds:

e+ yI% < llell® + 20y, + )
forallx,y e H.
Lemma 2.7 Let C be a nonempty closed convex subset of a Hilbert space H and let
Dy, Dy : C — H be mappings. For every A,Ay > 0 and a € [0,1], the following statements
are equivalent:

(@) (x*,z*) € C x C is a solution of problem (1.3),
(b) x* is a fixed point of the mapping G : C — C, i.e., x* € F(G), defined by

G(x) = Pc(I - }Dy)(ax + (1 — a)Pc(I — A2D>)x),
where z* = Pc(I — Ay Dy)x*.

Proof (a) = (b) Let (x*,z*) € C x C be a solution of problem (1.3). For every A1, A, > 0 and
a € [0,1], we have

x* = (I = Dy)(ax* + (1 -a)z*),x—x*) >0, VxeC,
(¥ = (I = AoDy)x*,x —2z*) >0, VxeC.

From the properties of Pc, we have

x* = Pc(I — MDq)(ax* + (1 — a)z*),
¥ = Pc(I - )»2D2)x*.

It implies that
x* =Pc(l - AlDl)(ax* +(1—a)Pc(I - A2D2)x*) = G(x*)

Hence, we have x* € F(G), where z* = Pc(I — Ay D;)x*.
(b) = (a) Let x* € F(G) and z* = Pc(I — A,D,)x*. Then, we have

x* = G(x*) =Pc(I - AIDI)(ax* + (1 -a)Pc( - ngg)x*)

=Pc(I - AlDl)(ax* +(1- a)z*).
From the properties of Pc, we have

(x* — (I = MDy)(ax* + (1 -a)z*),x—x*) >0, VxeC,
(z" = (I = AyDy)x*,x —2*) >0, VxeC.

Hence, we have (x*,z*) € C x C is a solution of (1.3). O
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3 Main results

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H and
let D1,Dy : C — H be d,, dy-inverse strongly monotone mappings, respectively. Define the
mapping G : C — C by G(x) = Pc(I — MD1)(ax + (1 — a)Pc(I — XaDy)x) for all x € C,
A, A2 >0 and a € [0,1). Let {T;}Y, be a finite family of i -strict pseudo-contractive map-
pings of C into C with F = ﬂfilF(Ti) NF(G) #? and k = max{x;:i=1,2,...,N} and let
o= (o, d),al) eI xIx1,j=1,23,...,N, where = [0,1], &} + &, + & =1, o}, &} € (i, 1)
forallj=1,2,...,N =1 and o € («,1], &l € [k, 1), 0/2 € [k,1) forallj=1,2,...,N. Let S
be a mapping generated by Ty, Ty, ..., Tn and oy, aa, ..., an. Suppose that x1,u € C and let
{x,} be the sequence generated by

Yn =Pl = Ay Dy)xy,
Xpe1 = Qulh + Buy + YuSPc(ax, + (1 — a)y, — MDi(ax, + (1 — a)y,)), (3.1)
Vn>1,

where A € (0,2d,), Ay € (0,2d,) and {a,}, {B.}, {vn} are sequences in [0,1]. Assume that
the following conditions hold:

(1) an+/3n+yn:1:
[09)

(ii) nan;o a,=0 and Zan =00,
n=1

(iii) O <liminfB, <limsuppB, < 1.
n—>00 H—s 00

Then {x,} converges strongly to xo = Pru and (xo, o) is a solution of (1.3), where yo = Pc(I -
KzDz)xo.

Proof First, we show that Pc(I — A1D;) and Pc(I — A,D;) are nonexpansive mappings for
every A1 € (0,2d,), Ay € (0,2d,). Letx, y € C. Since D is d; -inverse strongly monotone and

M < 2d;, we have

| = 2Dy)x— (I - )\1D1)y||2 = |x -y - A (D1x - Dry) ||2
= |lx = ylI> = 21 (x — y, Dyx — D1y) + ?»% | Dyx — Dyy|)?
< llx = ylI> = 2d1 11 |D1x — Dyy||* + A7 || Dyx — Dy |?
= llx = y11* + A1 (A1 — 2d1) | D1x ~ Dy
< -yl (3.2)
Thus (I — A.D,) is a nonexpansive mapping. By using the same method as (3.2), we have
(I — A2D,) is a nonexpansive mapping. Hence, Pc(I — A1D1), Pc(I — A, D,) are nonexpansive

mappings. It is easy to see that the mapping G is a nonexpansive mapping. Let x* € F.

Then we have x* = Sx* and

&* = G(x*) = Pc(I = MDy)(ax" + (1 - a)Pc(l — 12Dy)x").
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Put w,, = Pc(I — A Ds)(ax, + (1 — a)y,) and y* = Pc(I — AyD5)x*, we can rewrite (3.1) by
Xpsl = Oplh + By + YuSwy, Vn>1,

and x* = Pc(I — M D) (ax™ + (1 — a)y*).

From the definition of x,,, we have

|omer =" = [otn (2 = &%) + Bu(3n — &%) + yi(Swu — x*) |

< apllu—x*| + Bullwn — x| + v || wa — x|

= oty || = x*|| + Bu|wn = x*|| + || PcU = 2iD1) (ax, + (1 - a)y,)
= Pc(I = MDy)(ax™ + (1 - a)Pc(I — 1aDy)x") ||

< o |u = x*|| + Bul|on — ¥ || + yi|| @(n — x%)
+ (1= a)(Pc( = AaDa)xy — Pc(I = AaDo)x™) ||

< anu=a"| + Bullxn =27 + yulalon -] + (1= @), - 27])

= ol —a* || + (1= o) || — 27

< max{ ||u—x*

-],
By induction we can conclude that |, — x*|| < max{|lu — x*||, [|[x; — x|} for all n € N. It
implies that {x,} is bounded and so are {y,} and {w,}.

Next, we show that lim,,_, o ||%,,41 — %, || = O.

Let
Xn+l = (1 - ,Bn)zn + Iannr (33)
where z,, = xiwll_‘é"""

Since x,,41 — BuXn = Ayt + ¥,Sw,, and (3.3), we have

Xn+2 — /3n+1xn+l Xp+l — ,ann

V4 —Zy =
! " 1- ﬂr&l 1- ,Bn
Oplh + J/n+ISWn+1 _ ol + VnSWn
1- :Bn+1 1- lgn

_ yn+ISWn " Vn+1$wn
1- ﬂnﬂ 1- ﬂn+1

Oyl oy Y+l
= - U+ (Swy1 — Swy,)
(1—ﬁn+1 1—/3,) 1=y "

( Vn+1 Vn )
+ - Swy,
1- :3n+1 1- /3;1

Uyt oy Yn+1
= - u+ (SWye1 — Swy)
(l_lgnﬂ 1_,371) 1_,3n+1 " "

( oy Ayl )
+ - — | Sw,.
1- :Bn 1- ﬂn+1

Page 7 of 19
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It follows that

Oyl oy VYn+l
1zui1 = zull < ‘— = —— lull + ——— [ISWys1 — Swill
" " 1- :3n+1 1- ,Bn 1- ,3n+1 " !
+ ‘ Tl S Sw,
1- ﬁrHl 1- ﬁn
Ayl oy Vn+1
= - llzell + [l Swall) + 1Wie1 — wall
’1—/3,“1 1—ﬂn’( )+ g e =
Oyl ay
= - llzell + [1Swall
‘1_/3;'&1 1_,Bn|( Vl)
Vi
+ || Pl = D) (@1 + (1= @)y
1- :6;1+1
—Pc(I - AlDl)(ax,, +(1- a)y,,) H
Oyl ay
< - llzell + [1Swall
‘1_/3;'&1 1_1871( Vl)
Vi
+ el ”ﬂ(xm—l - xn) + (1 - ﬂ)(ynﬂ _yn) ||
1- :Bn+1
Oyl ay
< - lzell + [1Swall
‘l_ﬁnﬂ l_IBn( n)
Vi
s (all%nir — %ull + (1= @) | Pc( = AaD2)%us1 — Pc(I = A2 D2)x4 )
1- :8n+1
Oyl Ay
e llzell + 1| Swall
’1_:3;“1 l_an( n)
+ %1 = %l

From conditions (ii) and (iii), we have

lim Sup(”ZVHI _Zn” - ”xn+1 _xn”) <0.
n—00

From Lemma 2.3 and (3.3) we have lim,,_,  ||z,, — %, || = 0. Since x,,,1 —x, = (1 - B,.) (2, —%,),
then we have

lim (%41 = x4l = 0. (3.4)
n—00
From the definition of w,, we have

[Wii1 = wall < [Pl = MDy)(a%ni1 + (1= @)ynar) — Pc — MDy)(ax, + (1 - a)y,) |
< allxp1 = xull + 1 = @) [Yns1 = Yl
= allxn — %l + (1= @) | Pcl = 2aD2)s — Pl = haDa)ay |
< allxns1 = xull + (1= @)1 — %l
= [|%ne1 — Xl

From (3.4), we obtain

lim [ W1 — wyl| = 0. 3.5)
n—00
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From the definition of x,,, we have
Kpel — X = 0 (U — %) + Vi (SWyy — ).
From (3.4), conditions (ii) and (iii), we have
lim || Sw, —x,| = 0. (3.6)
n— o0
From the definition of y,,, we have
1941 = yull = | Pcl = 22D2)%ui1 — Pe = 2aD2)u | < 1%us1 — %l (3.7)
From (3.4) and (3.7), we derive
lim ||yn41 = yull = 0. (3.8)
n—oQ
From the nonexpansiveness of Pc(I — A;D;) and Pc(I — A, D,), we have

et = | * < )t =% |* 4 B =% |* 4y Swin — 2|
< otn||u—x*||2 + B % —x*”2 + V|| Wn —x*”2
= a,Ju=2"" + By Ju - 2"
+ Yl Pell = 2aD1) (ax, + (1 - @)y,) = Pell = 2aDy) (ax” + (1 - a)y") |
< &l =" 4 Bullon =2 + ya(almn = 2" + A= @) 3 = 57[)
= i = | + B n — x|
+ yul@] e — 2| * + (= @) Pell = 2aD2)x, — Pe(l - 20D)x* %)
EanHu—x*||2+ﬂn”xn—x*”2
+ yula] o — 2| + A= @[ (I = 22D2)x — (I = 22D5)x*||?)
= oz,q||u—x*||2+/3n||xn—x"‘||2
+ vu(a|xn =% + (0 = @) | (%0 — %*) = Ao (Do, — Dox®) %)
= otnnu—x*”Z + B xn — x* ||2
+ Yu(a|x, — 2 H2 + (1 - a)(||x, —x* ||2 = 222y — %, Dy — Dyx™)
+ 33| Dx, - D))
Eothu—x*Hz+ﬁn”xn—x*”2
+ V(@)% —x*“2 +(1—a)([xn —x* ||2—2/\2¢12||D2x,,—sz*||2
+ 33| D, - D)%)
= wn||u—x*||2 + B[ xn — x* ||2
+y,1(anxn—x*||2+(1—¢z)(||x,q—x"‘||2

—Xa(2dy — 1) HDan - Dox” HZ))

Page 9 of 19
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= anflu—a"" + Buflxa 27|
+ )/,,(”x,, —x* ”2 — (1 —a)2dy — Ay) ”szn — Dyx* ”2)

< ayfJu = |° + 200 = x| * = Aoyl — @) (2 — 1) | Do — Do .
It implies that

MVl —a)(2dy — Aa) ||D2xn —Dyx* ||2 <ay, ||u —x* H2 + ||xn —x* ||2 - ||xn+1 —x* ||2
< =P (en =] + [0 = 27))

X ”xn+1 _xn||~ (39)
From (3.4), (3.9) conditions (ii) and (iii), we have
lim || Dyx, — Dax*|| = 0. (3.10)
n—oQ
Put #* = ax* + (1 — a)y* and h, = ax, + (1 — a)y,. From the definition of x,, we have

|1 = 2| * < = 2| + Bu 2w = 2| + | w0 — %
= || —a|* + Bu|%n — 2| + yiu| Pl = MDYy — Pl = Dy
< ayllu—x|* + Bulxw — x| + v | (L = 1Dy = (I = 2 DI
= o= | + Bl 5" + 3| (= ) = 20 (Duhy — DuI") |
= oty ||u - x* ||2 + Bu|2n — x* ”2
+ Vu([|n = 1 |* = 20a{h — ¥, Dihy, — Dyk*) + 32| Dy, — Dy || %)
<ayfu-a"|" + Bullwn =" + v (|1 = B* | ~ 201 | Dik - D117 |
+ 22| Dyh,, - Dyi*|?)
= anHu—x*Hz + Bu|2n — x* ”2
+ Yl n = 1| > = 212y = 1) | D1k, — Dyi* %)
= ol ="+ Ba = + (e - 27) + = D) (0= 5") [
— 2a(2d; = 11)|| ik, — Dyk* %)
< othu—x*”2 + B[ n — x* ||2 + V(| % —x*”2
+ (1= a)|Pc(l = Do), — Pl — o Dy)x*||?
— 3a(2dy = 11)|| Dihy - Dyk* %)

< ayl|lu— x| + [0 = &||* = 2ayu(2ds = 11)|| Dik, - Dii* |,

which implies that

a2y~ 1) | Dy~ DU [ < = [+ = = [t |
<o a2+ (I =] + - #'])

X ||xn+1 _xn”' (311)

Page 10 of 19
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From (3.4), (3.11), conditions (ii) and (iii), we can conclude
lim || Dk, — Dih*|| = 0. (312)
n—00

Next, we show that
lim ||Sw, —w,]| = 0. (3.13)
n—0oQ

From the definition of y,, we have

|y =5[> = [Pl = 2aD2)x, = Pe(l = 2o Ds)x*||?

< {0 = A2Daxy — (2" = A2 Dax™), ¥, — ¥7)

= (= 2aDam — (& = 22023) [+ [ =" |
= 2D (= 12D2) = (=) |)
(=22, (= 22D2) |+ [ ="
o= (& = 57) = 2o D))
(50 = 72Da = (5" = 12D | + [ =5
%0 =30 = (= = 5)||” + 242 — 30 — (" = ¥*), Doy — Do)

— )»% ”szn - Dgx* ”2)
It implies that

9= | < 6 = 22D = (" = 22Do) |* = [ = 3 = (5" = 37) |
+ 2)\.2(96,, - Y= (x* —y*),szn —sz*) - kf ||D2x,, — Dyx* ”2
< s = * = Jon =3 = (" = 57) |
+ 22X — yu — (&% = %), Daxyy — Dox*)

— 32| Dy, — Dox*||”. (3.14)
From the nonexpansiveness of Pc(I — A D;) and (3.14), we have

[mer =2 * < atnJ =2 + B n = || + y | Sw — 27|
< otn||u—x*||2 +ﬁn||xn—x*||2 + )/n”Wn—x*”Z
= aylu—x*|* + Bufxn —x*|?
+ V|| Pell = 2aDy) (ax, + (1 @)y,) = Pe(l = 1Dy)(ax* + (1 - a)y*) ||
< &=+ Bullon =2 + ya(afn =2 + A= @) 3 = 57[)
<ay|u-x ||2 + B[ xn — x* ||2

+yulalon =2+ A= @) (=2 =~ fn =30 = (" =) |7
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+ 200 (% = Y — (8 = ¥*), Doy — Dox™) = 32| Doy — Dox* %))

< othu—x*”2 + Bo|2n — x* ||2
G R e R A s ]
+ 20220 = 3 = (6" =) [ Dan = Do)

< o flu=a"|” + Jan =2 | = val = @) s 30— (" =57 |

+ 2o [n = 3 = (" = %) || Do — Dox” .
It follows that

1=t == (" ~57) P < a2+ = = s |
231, =3, (=) | [P, - Do’
P N (P P e

Bl = (5" =) | |Das, - Dar'].
From condition (ii), (3.4) and (3.10), we have

lim || %, -y, — (" —¥")|| = 0. (3.15)

n—00

From the definition of w,,, x*, h,,, h*, we have

wy = Pc(I = MDy)(ax, + (1 - a)y,) = Pc( - 21 Dy)hy,
and

&* = Pc(I = MDy)(ax* + (1 - a)y*) = Pc( - M Dy)h*.

From the properties of Pc, we have

I

9 = wa+ (& =) |* = = 5" = (wu =)

= ||lyn — axy + ax, — ay, + ay, — }aDi(ax, + (1 - a)y,)
+ MmDy(ax, + (1 - a)y, — y* + ax* — ax* + ay* — ay*
+ MDDy (ax* + (1 - a)y”)
— Dy (ax* + (1 - a)y*) - (w, —x*) |

= |ax, + 1 - @)y, — Dy (ax, + 1 - a)y,)
— (ax* + (1 - a)y* = MDy(ax" + (1 - a)y*)) — (W, — x%)
+M(D1(ax, + (1 - a)y,) — Di(ax™ + (1 - a)y*))
+a(y—x, -y +2)|

= | = 1Dy (ax, + (- @)y,) — (I = 1Dy)(ax" + (1 - a)y")

— (Wn = x*) + A1(D1(axy + (1= @)y,) — Dy (ax* + (1 - a)y*))
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ra(y,—x, -y +2") |’
= || = MD1)hy — (I = MDDy
— (Pc = MDy)hy, = Pc(I = MDy)K*) + Ay (Dihy, — Dih*)
+a(yn—xa—y* +2)|
< |t = \Dy)hy = (I = MD)H* = (Pc(I = A Dy)hy,
— Pl - DK |
+2(A1 (D1l — DiH*) + a(yn — %0 — y* +57),
T =W+ (x* = 5"))
< | = Dk, — (I = 24 D)i*|?
— |Pc(t = 1aDy)hy, = Pe(l = 1 Dy)R |
+2(A | Dihy — Dil* || + a|yn — %4 — y* +x7||)
X yn=wu+ (" =7)|
= |t = D), — (1 = DK | = W — 2|
+2(M||Diky — Dil*|| + al|yn — 2 — " + 27 )
< Ly (5" =)
< |t = D)k, = (I = 2a DK |* = || Sw,, — Sx*|)?
+2(M|| Dk — Dil* | + al|yn — %0 =y + 27
x L=+ (2 =5°)|
< (||t =MDy — (I = MD)R*|| + || Swy — Sx*||)
x || (I =MDy — (I = MDy)H* = (Swy — %) |
+2(M | Dk = Dib*|| + al|yn — %0 =y + 5%
Xy =wn+ (5" =) |
= (| =MDk, — (I =MD || + || Swy — Sx* )
x |y = H* = 21 (Dihy — Dik*) = (Swy, — x7) |
+2(M||Drky — Dik*|| + al|yn — % — " +5%)
X [ym=wa+ (& =57
= (||t =MDk, — (I =MD | + | Swy — Sx*|)
X |90 = Swi + (8% = B*) = (% = hy) = A1 (Drhy — Dil*)) ||
+2(A | Dihy — Dil* || + a|yn — %4 — y* +x7||)
X yn = wn + (5" = 7) |
< (||t =MDy — (I = MD)R*|| + || Swy — Sx*||)
X (Il = Swall + || (8% = H*) = (60 — ) |
+ A1 |Dihy, - Dik*|)
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+ 2()»1 ||D1hn — Dih* || + a”yn —x, =y +x* ||)
X [|yn = wa + (5" = 5*) |
= (|t = D)y — (I = MDV)K | + || Sw, — Sx*|)
X (Hxn - Sw, H +(1-a) ||x* -y =Xy + Yy ||
+ )\1 ”Dlhn - Dlh*) ||
+ Z(Al ”Dlh,, - D" ” + aHy,, —xy =y +x* ”)
X ||yn —w, + (x* —y*)”.
From (3.6), (3.12) and (3.15), we have
lim ||y, — wy + (x* = 5*)|| = 0. (3.16)

n—00

Since
1% = Wall < [|%n = 70 = (" = 5%) || + |y + (&% = ") = wa |
and (3.15), (3.16), then we have
lim ||x, —w,]| = 0. (3.17)
From (3.6) and (3.17), we can conclude that
lim || Sw, —w,| = 0.
n—oQ
Next we show that

lim sup(u — xg,x, —x9) <O, (3.18)

n—00

where xo = Pru. To show this inequality, take a subsequence {x,, } of {x,} such that

lim sup (e — x9,%,; — %) = lim {1 — xo, %, —Xo).
k— 00

n—00

Without loss of generality, we may assume that x,,, — w as k — 00, where w € C. From

(3.17), we have w,, — w as k — oo. From Lemma 2.5 and (3.13), we have
w € F(S).

From Lemma 2.4, we have F(S) = ﬂf\il F(T;). Then we obtain
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From the nonexpansiveness of the mapping G and the definition of w,,, we have

Wy — Gw, || = | Pc = 2Dy)(axy, + (1 — @)Pc — 2aD2)xy) — G(wi) |
= ”Gxn - Gwn”

=< [l%n = wall.
From (3.17), we have
lim ||w, — Gw,]|| = 0. (3.19)
n— 00
From w,, — w as k — 00, (3.19) and Lemma 2.5, we have
w € F(G).

Hence, we can conclude that w € F.

Since x,, = w as k — oo and w € F, we have

limsup(u — x9,%, —xo) = lim (© — %o, %, — %0) = (¥ — %o, w — %) < 0. (3.20)
n—00 k— 00

From the definition of x,, and xg = Pru, we have

%01 — %0 1> = || ot (2t = 0) + B (% — %0) + Y (Sw —xo)H2
< || Bun = %0) + Y (Swis = x0) | + 200 (4 — %0, 21 = x0)
< Bullxn = %0 )1> + Yl G — %0 1> + 2000 (1t — %0, X1 — %0)
< Bull%n = %0l1> + Vull%n — 201> + 20, (16 = %0, %11 — Xo)

2
< (@ —a)llxn —x0ll” + 20, {1 — X0, %41 — X0)-

From condition (ii), (3.18) and Lemma 2.2, we can conclude that the sequence {x,} con-

verges strongly to xy = Pru. This completes the proof. O

Remark 3.2 (1) If we take a = 0, then the iterative scheme (3.1) reduces to the following

scheme:
x, uecC,
Yu =Pl = XaDo)xy, (3.21)

Xpl = OulU + ,ann + ynSPC(I - )\lDl)ym Vn = 1;

which is an improvement to (1.4). From Theorem 3.1, we obtain that the sequence {x,}
generated by (3.21) converges strongly to xg = Pﬂﬁ\il F(rnE(G)H» Where the mapping G : C —
C defined by Gx = Pc(I — A D;)Pc(I — ApD;)x for all x € C and (xo, yo) is a solution of (1.2)
where yo = Pc(I — ApDy)xyg.
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(2) If we take N =1, of =1 and T; = T, then the iterative scheme (3.1) reduces to the
following scheme:

x1, uecC,
Yn = Pc(l — AoDy)xy, (3.22)
Xl = Cplh + BuXn + Yu TPc(I — MD1)(ax, + 1 —a)y,), Yn=>1,

From Theorem 3.1, we obtain that the sequence {x,} generated by (3.22) converges
strongly to %y = Pr(r)nr(G)#, where the mapping G : C — C defined by G(x) = Pc(I —
MmD1)(ax + (1 — a)Pc(I — ApDsy)x) for all x € C and (x,%0) is a solution of (1.3) where
Yo = Pc(I — A2D3)xo.

4 Applications

In this section we prove a strong convergence theorem involving variational inequalities
problems by using our main result. We need the following lemmas to prove the desired
results.

Lemma 4.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let T, S :
C — C be nonexpansive mappings. Define a mapping B4 : C — C by Bx = T(al + (1 -
a)S)x for every x € C and a € (0,1). Then F(B*) = F(T) N F(S) and B is a nonexpansive
mapping.

Proof It is easy to see that F(T) N F(S) € F(B*). Let xo € F(B*) and x* € F(T) N F(S). By
the definition of B4, we have

Jso - = [Bo — | = | T(al + (1= )S)so — |
< [laxo + (1 - @)Sxo — x|
= al|xo - |* + (1= @) || Sxo — x*||* = (1 — @) ll0 — Sxo )
<afxo -2 + =) w0 2| - all - @) 0 - Sxo

= [0 — & |* = (1 = @)llg — Sxo > (4.1)
From (4.1), it implies that
a(l-a)lxo - Sxol* < 0.
Then we have x; = Sx, that is, xo € F(S). By the definition of B4, we have
%0 = Bxg = T(axo +(1 —a)Sxo) = TXy.

It follows that xy € F(T). Then we have x € F(T) N F(S). Hence F(B*) € F(T) N F(S).
Next, we show that B is a nonexpansive mapping. Let x,y € C, since

||BAx—BAy||2 = || T(oz] +(1- a)S)x— T(0d+ (1 —oz)S)y”2

< (eI + (1 - a)S)x— (cf + (1 - oz)S)yH2
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= ||a(x—y) + (1 - a)(Sx—Sy) ||2
<alx-yI*+ (1L -a)Sx - Syl>

< -yl (4.2)
Then we have B# is a nonexpansive mapping. d

Lemma 4.2 (See [15]) Let H be a real Hibert space, let C be a nonempty closed convex
subset of H and let A be a mapping of C into H. Let u € C. Then for 1 > 0,

u=Pc(I-2Au < uecVIC,A),
where Pc is the metric projection of H onto C.

Lemma 4.3 Let C be a nonempty closed convex subset of a real Hilbert space H and
let D1,D, : C — H be dy,dy-inverse strongly monotone mappings, respectively, which
VI(C,D;) N VI(C, Dy) # @. Define a mapping G : C — C as in Lemma 2.7 for every A €
(0,2d,), Ay € (0,2d,) and a € (0,1). Then F(G) = VI(C,D,) N VI(C, D,).

Proof First, we show that (I — A;D;), (I — A,D2) are nonexpansive. Let x,y € C. Since D; is
dy-inverse strongly monotone and A < 2d;, we have

|t = 1Dy)x — (I = 3Dy
= Hx —y—M(Dx - Dyy) ||2
= |l& = ylI* = 241 (x — ¥, D1x — D1y) + A7 | D1x — Dyy||*
< llx = yI* = 2d1A1 | Drx — Dyy|* + A} | Dix — Dyy >
= |l = yII> + A1(A1 — 2| Dix — Dy

< -yl (43)

Thus (I — A1D;) is nonexpansive. By using the same method as (4.3), we have (I — A;D,) is
a nonexpansive mapping. Hence Pc(I — A1D;), Pc(I — AD5) are nonexpansive mappings.
From

G(x) = Pc(I — }Dy)(ax + (1 — a)Pc(I — AaD5)x),
for every x € C and Lemma 4.1, we have

F(G) = F(Pc(I = MD1)) N F(Pc(I = 12D5)). (4.4)
From Lemma 4.2, we have

F(G) = VI(C,D;) N VI(C, Dy). O

Theorem 4.4 Let C be a nonempty closed convex subset of a real Hilbert space H and
let D1,D, : C — H be dy, dy-inverse strongly monotone mappings, respectively. Define the
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mapping G : C — C by G(x) = Pc(I- 1 Ds)(ax+ (1 —a)Pc(l—ryDq)x) forallx € C,A,A3 >0
and a € (0,1). Let {T;}Y, be a finite family of k-strict pseudo-contractive mappings of C into
C with F = (X, F(T)) N VI(C,D;) N VI(C,Dy) # 8 and « = max{x;:i=1,2,...,N} and let
aj = (ot{,aé,oté) elxIxl1,j=12,3,...,N, where I = [0,1], o/l + aé + 0/3 =1, oz{,oté € (k,1)
forallj=1,2,...,N -1 and o € («,1], &l € [«,1), 0/2 € [k,1) forallj=1,2,...,N. Let S
be a mapping generated by T1, T, ..., Ty and o, as, ..., aN. Suppose that x1,u € C and let

{x,} be a sequence generated by

Yn :PC(I_ )‘*2D2)xm
Kpa1 = Aulh + By + YaSPc(ax, + (1 — a)y, — MDi(ax, + (1 - a)yy,)), (4.5)
Vn>1,

where A € (0,2d,), Ay € (0,2d,) and {a,}, {B.}, {yn} are sequences in [0,1]. Assume that
the following conditions hold:

(i) an+Bu+yu=1

o0
(i) lim o, =0 and E o, = 00,
Hn— 00 1
P

(iii) O0<liminfgB, <limsuppB, <1.
Hn—0Q

n—00

Then {x,} converges strongly to xy = Pru.

Proof From Lemma 4.3 and Theorem 3.1 we can conclude the desired conclusion. g
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