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Abstract
In this paper, we introduce a new class of mappings called Bregman weak relatively
nonexpansive mappings and propose new hybrid iterative algorithms for finding
common fixed points of an infinite family of such mappings in Banach spaces. We
prove strong convergence theorems for the sequences produced by the methods.
Furthermore, we apply our method to prove strong convergence theorems of
iterative algorithms for finding common fixed points of finitely many Bregman weak
relatively nonexpansive mappings in reflexive Banach spaces. These algorithms take
into account possible computational errors. We also apply our main results to solve
equilibrium problems in reflexive Banach spaces. Finally, we study hybrid iterative
schemes for finding common solutions of an equilibrium problem, fixed points of an
infinite family of Bregman weak relatively nonexpansive mappings and null spaces of
a γ -inverse strongly monotone mapping in 2-uniformly convex Banach spaces. Some
application of our results to the solution of equations of Hammerstein-type is
presented. Our results improve and generalize many known results in the current
literature.
MSC: 47H10; 37C25
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1 Introduction
The hybrid projection method was first introduced by Hangazeau in []. In a series of
papers [–], authors investigated the hybrid projection method and proved strong and
weak convergence theorems for the sequences produced by their method. The shrinking
projection method, which is a generalization of the hybrid projection method, was first
introduced by Takahashi et al. in []. Throughout this paper, we denote the set of real
numbers and the set of positive integers by R and N, respectively. Let E be a Banach space
with the norm ‖ · ‖ and the dual space E∗. For any x ∈ E, we denote the value of x∗ ∈ E∗ at
x by 〈x,x∗〉. Let {xn}n∈N be a sequence in E. We denote the strong convergence of {xn}n∈N
to x ∈ E as n → ∞ by xn → x and the weak convergence by xn ⇀ x. The modulus δ of
convexity of E is denoted by

δ(ε) = inf

{
 –

‖x + y‖


: ‖x‖ ≤ ,‖y‖ ≤ ,‖x – y‖ ≥ ε

}
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for every ε with  ≤ ε ≤ . A Banach space E is said to be uniformly convex if δ(ε) >  for
every ε > . Let SE = {x ∈ E : ‖x‖ = }. The norm of E is said to be Gâteaux differentiable if
for each x, y ∈ SE , the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists. In this case, E is called smooth. If the limit (.) is attained uniformly for all x, y ∈
SE , then E is called uniformly smooth. The Banach space E is said to be strictly convex if
‖ x+y

 ‖ <  whenever x, y ∈ SE and x �= y. It is well known that E is uniformly convex if and
only if E∗ is uniformly smooth. It is also known that if E is reflexive, then E is strictly convex
if and only if E∗ is smooth; for more details, see [, ].
Let C be a nonempty subset of E. Let T : C → E be a mapping. We denote the set of

fixed points of T by F(T), i.e., F(T) = {x ∈ C : Tx = x}. A mapping T : C → E is said to
be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C. A mapping T : C → E is said to
be quasi-nonexpansive if F(T) �= ∅ and ‖Tx – y‖ ≤ ‖x – y‖ for all x ∈ C and y ∈ F(T). The
concept of nonexpansivity plays an important role in the study of Mann-type iteration
[] for finding fixed points of a mapping T : C → C. Recall that the Mann-type iteration
is given by the following formula:

xn+ = γnTxn + ( – γn)xn, x ∈ C. (.)

Here, {γn}n∈N is a sequence of real numbers in [, ] satisfying some appropriate condi-
tions. The construction of fixed points of nonexpansive mappings via Mann’s algorithm
[] has been extensively investigated recently in the current literature (see, for example,
[] and the references therein). In [], Reich proved the following interesting result.

Theorem . Let C be a closed and convex subset of a uniformly convex Banach space E
with a Fréchet differentiable norm, let T : C → C be a nonexpansive mapping with a fixed
point, and let γn be a sequence of real numbers such that γn ∈ [, ] and

∑∞
n= γn(–γn) = ∞.

Then the sequence {xn}n∈N generated by Mann’s algorithm (.) converges weakly to a fixed
point of T .

However, the convergence of the sequence {xn}n∈N generated by Mann’s algorithm (.)
is in general not strong (see a counterexample in []; see also []). Some attempts to
modify the Mann iteration method (.) so that strong convergence is guaranteed have
recently been made. Bauschke and Combettes [] proposed the following modification of
the Mann iteration method for a single nonexpansive mapping T in a Hilbert space H :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C,

yn = αnxn + ( – αn)Txn,

Cn = {z ∈ Cn : ‖z – yn‖ ≤ ‖z – xn‖},
Qn = {z ∈ C : 〈xn – z,x – xn〉 ≥ },
xn+ = PCn∩Qnx,

(.)

whereC is a closed and convex subset ofH , PQ denotes themetric projection fromH onto
a closed and convex subset Q of H . They proved that if the sequence {αn}n∈N is bounded
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above from one, then the sequence {xn}n∈N generated by (.) converges strongly to PF(T)x
as n→ ∞.
Let E be a smooth, strictly convex and reflexive Banach space and let J be a normalized

dualitymapping of E. LetC be a nonempty, closed and convex subset of E. The generalized
projection �C from E onto C [] is defined and denoted by

�C(x) = argmin
y∈C

φ(y,x),

where φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖. Let C be a nonempty, closed and convex subset of a
smooth Banach space E, let T be a mapping from C into itself. A point p ∈ C is said to be
an asymptotic fixed point [] of T if there exists a sequence {xn}n∈N in C which converges
weakly to p and limn→∞ ‖xn – Txn‖ = . We denote the set of all asymptotic fixed points
of T by F̂(T). A point p ∈ C is called a strong asymptotic fixed point of T if there exists
a sequence {xn}n∈N in C which converges strongly to p and limn→∞ ‖xn – Txn‖ = . We
denote the set of all strong asymptotic fixed points of T by F̃(T).
Following Matsushita and Takahashi [], a mapping T : C → C is said to be relatively

nonexpansive if the following conditions are satisfied:
() F(T) is nonempty;
() φ(u,Tx) ≤ φ(u,x), ∀u ∈ F(T), x ∈ C;
() F̂(T) = F(T).
In , Matsushita and Takahashi [] proved the following strong convergence theo-

rem for relatively nonexpansive mappings in a Banach space.

Theorem . Let E be a uniformly smooth and uniformly convex Banach space, let C be
a nonempty, closed and convex subset of E, let T be a relatively nonexpansive mapping
from C into itself, and let {αn}n∈N be a sequence of real numbers such that  ≤ αn <  and
lim supn→∞ αn < . Suppose that {xn}n∈N is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C,

yn = J–(αnJxn + ( – αn)JTxn),

Hn = {z ∈ Cn : φ(z, yn) ≤ φ(z,xn)},
Wn = {z ∈ C : 〈xn – z, Jx – Jxn〉 ≥ },
xn+ = �Hn∩Wnx.

(.)

If F(T) is nonempty, then {xn}n∈N converges strongly to �F(T)x.

1.1 Some facts about gradient
For any convex function g : E → (–∞, +∞] we denote the domain of g by dom g = {x ∈
E : g(x) < ∞}. For any x ∈ int dom g and any y ∈ E, we denote by g(x, y) the right-hand
derivative of g at x in the direction y, that is,

g(x, y) = lim
t↓

g(x + ty) – g(x)
t

. (.)

The function g is said to be Gâteaux differentiable at x if limt→
g(x+ty)–g(x)

t exists for any y.
In this case, g(x, y) coincides with ∇g(x), the value of the gradient ∇g of g at x. The func-
tion g is said to be Gâteaux differentiable if it is Gâteaux differentiable everywhere. The
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function g is said to be Fréchet differentiable at x if this limit is attained uniformly in
‖y‖ = . The function g is Fréchet differentiable at x ∈ E (see, for example, [, p.] or
[, p.]) if for all ε > , there exists δ >  such that ‖y – x‖ ≤ δ implies that

∣∣g(y) – g(x) –
〈
y – x,∇g(x)

〉∣∣ ≤ ε‖y – x‖.

The function g is said to be Fréchet differentiable if it is Fréchet differentiable everywhere.
It is well known that if a continuous convex function g : E → R is Gâteaux differentiable,
then ∇g is norm-to-weak∗ continuous (see, for example, [, Proposition ..]). Also, it
is known that if g is Fréchet differentiable, then ∇g is norm-to-norm continuous (see [,
p.]). The mapping ∇g is said to be weakly sequentially continuous if xn ⇀ x as n→ ∞
implies that ∇g(xn) ⇀∗ ∇g(x) as n→ ∞ (for more details, see [, Theorem ..] or [,
p.]). The function g is said to be strongly coercive if

lim‖xn‖→∞
g(xn)
‖xn‖ = ∞.

It is also said to be bounded on bounded subsets of E if g(U) is bounded for each bounded
subset U of E. Finally, g is said to be uniformly Fréchet differentiable on a subset X of E if
the limit (.) is attained uniformly for all x ∈ X and ‖y‖ = .
Let A : E → E∗ be a set-valued mapping. We define the domain and range of A by

domA = {x ∈ E : Ax �= ∅} and ranA =
⋃

x∈E Ax, respectively. The graph of A is denoted
byG(A) = {(x,x∗) ∈ E×E∗ : x∗ ∈ Ax}. The mapping A⊂ E×E∗ is said to bemonotone []
if 〈x – y,x∗ – y∗〉 ≥  whenever (x,x∗), (y, y∗) ∈ A. It is also said to be maximal monotone
[] if its graph is not contained in the graph of any other monotone operator on E. If
A⊂ E× E∗ is maximal monotone, then we can show that the set A– = {z ∈ E :  ∈ Az} is
closed and convex. Amapping A : domA⊂ E → E∗ is called γ -inverse strongly monotone
if there exists a positive real number γ such that for all x, y ∈ domA, 〈x – y,Ax – Ay〉 ≥
γ ‖Ax –Ay‖.

1.2 Some facts about Legendre functions
Let E be a reflexive Banach space. For any proper, lower semicontinuous and convex func-
tion g : E → (–∞, +∞], the conjugate function g∗ of g is defined by

g∗(x∗) = sup
x∈E

{〈
x,x∗〉 – g(x)

}

for all x∗ ∈ E∗. It is well known that g(x) + g∗(x∗) ≥ 〈x,x∗〉 for all (x,x∗) ∈ E × E∗. It is also
known that (x,x∗) ∈ ∂g is equivalent to

g(x) + g∗(x∗) = 〈
x,x∗〉. (.)

Here, ∂g is the subdifferential of g [, ]. We also know that if g : E → (–∞, +∞] is a
proper, lower semicontinuous and convex function, then g∗ : E∗ → (–∞, +∞] is a proper,
weak∗ lower semicontinuous and convex function; see [] for more details on convex
analysis.
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Let g : E → (–∞, +∞] be a mapping. The function g is said to be:
(i) essentially smooth, if ∂g is both locally bounded and single-valued on its domain;
(ii) essentially strictly convex, if (∂g)– is locally bounded on its domain and g is strictly

convex on every convex subset of dom ∂g ;
(iii) Legendre, if it is both essentially smooth and essentially strictly convex (for more

details, we refer to [, Definition .]).
If E is a reflexive Banach space and g : E → (–∞, +∞] is a Legendre function, then in

view of [, p.],

∇g∗ = (∇g)–, ran∇g = dom g∗ = int dom g∗ and ran∇g = int dom g.

Examples of Legendre functions are given in [, ]. One important and interesting
Legendre function is 

s‖ · ‖s ( < s < ∞), where the Banach space E is smooth and strictly
convex and, in particular, a Hilbert space.

1.3 Some facts about Bregman distance
Let E be a Banach space and let E∗ be the dual space of E. Let g : E → R be a convex and
Gâteaux differentiable function. Then the Bregman distance [, ] corresponding to g
is the function Dg : E × E →R defined by

Dg(x, y) = g(x) – g(y) –
〈
x – y,∇g(y)

〉
, ∀x, y ∈ E. (.)

It is clear that Dg(x, y) ≥  for all x, y ∈ E. In that case when E is a smooth Banach space,
setting g(x) = ‖x‖ for all x ∈ E, we obtain that∇g(x) = Jx for all x ∈ E and henceDg(x, y) =
φ(x, y) for all x, y ∈ E.
Let E be a Banach space and let C be a nonempty and convex subset of E. Let g : E →R

be a convex and Gâteaux differentiable function. Then we know from [] that for x ∈ E
and x ∈ C, Dg(x,x) =miny∈C Dg(y,x) if and only if

〈
y – x,∇g(x) –∇g(x)

〉 ≤ , ∀y ∈ C. (.)

Furthermore, if C is a nonempty, closed and convex subset of a reflexive Banach space E
and g : E → R is a strongly coercive Bregman function, then for each x ∈ E, there exists a
unique x ∈ C such that

Dg(x,x) =min
y∈C Dg(y,x).

The Bregman projection projgC from E onto C is defined by projgC(x) = x for all x ∈ E. It is
also well known that projgC has the following property:

Dg
(
y,projgC x

)
+Dg

(
projgC x,x

) ≤ Dg(y,x) (.)

for all y ∈ C and x ∈ E (see [] for more details).

http://www.fixedpointtheoryandapplications.com/content/2013/1/141
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1.4 Some facts about uniformly convex and totally convex functions
Let E be a Banach space and let Br := {z ∈ E : ‖z‖ ≤ r} for all r > . Then a function g : E →
R is said to be uniformly convex on bounded subsets of E [, pp., ] if ρr(t) >  for
all r, t > , where ρr : [, +∞) → [,∞] is defined by

ρr(t) = inf
x,y∈Br ,‖x–y‖=t,α∈(,)

αg(x) + ( – α)g(y) – g(αx + ( – α)y)
α( – α)

for all t ≥ . The function ρr is called the gauge of uniform convexity of g . The function g is
also said to be uniformly smooth on bounded subsets of E [, pp., ] if limt↓ σr(t)

t = 
for all r > , where σr : [, +∞)→ [,∞] is defined by

σr(t) = sup
x∈Br ,y∈SE ,α∈(,)

αg(x + ( – α)ty) + ( – α)g(x – αty) – g(x)
α( – α)

for all t ≥ . The function g is said to be uniformly convex if the function δg : [, +∞) →
[, +∞], defined by

δg(t) := sup

{


g(x) +



g(y) – g

(
x + y


)
: ‖y – x‖ = t

}
,

satisfies that limt↓ σr (t)
t = .

Remark . Let E be a Banach space, let r >  be a constant and let g : E →R be a convex
function which is uniformly convex on bounded subsets. Then

g
(
αx + ( – α)y

) ≤ αg(x) + ( – α)g(y) – α( – α)ρr
(‖x – y‖)

for all x, y ∈ Br and α ∈ (, ), where ρr is the gauge of uniform convexity of g .

Let g : E → (–∞, +∞] be a convex and Gâteaux differentiable function. Recall that, in
view of [, Section ., p.] (see also []), the function g is called totally convex at a
point x ∈ int dom g if itsmodulus of total convexity at x, that is, the function vg : int dom g×
[, +∞)→ [, +∞), defined by

vg(x, t) := inf
{
Dg(y,x) : y ∈ int dom g,‖y – x‖ = t

}
,

is positive whenever t > . The function g is called totally convex when it is totally convex
at every point x ∈ int dom g . Moreover, the function f is called totally convex on bounded
subsets of E if vg(x, t) >  for any bounded subset X of E and for any t > , where the
modulus of total convexity of the function g on the set X is the function vg : int dom g ×
[, +∞)→ [, +∞) defined by

vg(X, t) := inf
{
vg(x, t) : x ∈ X ∩ int dom g

}
.

It is well known that any uniformly convex function is totally convex, but the converse is
not true in general (see [, Section ., p.]).
It is also well known that g is totally convex on bounded subsets if and only if g is uni-

formly convex on bounded subsets (see [, Theorem ., p.]).

http://www.fixedpointtheoryandapplications.com/content/2013/1/141
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Examples of totally convex functions can be found, for instance, in [, ].

1.5 Some facts about resolvent
Let E be a reflexive Banach space with the dual space E∗ and let g : E → (–∞, +∞] be a
proper, lower semicontinuous and convex function. Let A be a maximal monotone oper-
ator from E to E∗. For any r > , let the mapping ResgrA : E → domA be defined by

ResgrA = (∇g + rA)–∇g.

The mapping ResgrA is called the g-resolvent of A (see []). It is well known that A–() =
F(ResgrA) for each r >  (for more details, see, for example, []).
Examples and some important properties of such operators are discussed in [].

1.6 Some facts about Bregman quasi-nonexpansive mappings
Let C be a nonempty, closed and convex subset of a reflexive Banach space E. Let g : E →
(–∞, +∞] be a proper, lower semicontinuous and convex function. Recall that a mapping
T : C → C is said to be Bregman quasi-nonexpansive [] if F(T) �=∅ and

Dg(p,Tx) ≤ Dg(p,x), ∀x ∈ C,p ∈ F(T).

Amapping T : C → C is said to be Bregman relatively nonexpansive [] if the following
conditions are satisfied:
() F(T) is nonempty;
() Dg(p,Tv) ≤ Dg(p, v), ∀p ∈ F(T), v ∈ C;
() F̂(T) = F(T).
Now, we are in a position to introduce the following new class of Bregman quasi-

nonexpansive type mappings. A mapping T : C → C is said to be Bregman weak relatively
nonexpansive if the following conditions are satisfied:
() F(T) is nonempty;
() Dg(p,Tv) ≤ Dg(p, v), ∀p ∈ F(T), v ∈ C;
() F̃(T) = F(T).
It is clear that any Bregman relatively nonexpansive mapping is a Bregman quasi-

nonexpansive mapping. It is also obvious that every Bregman relatively nonexpansive
mapping is a Bregman weak relatively nonexpansive mapping, but the converse in not
true in general. Indeed, for any mapping T : C → C, we have F(T) ⊂ F̃(T) ⊂ F̂(T). If T
is Bregman relatively nonexpansive, then F(T) = F̃(T) = F̂(T). Below we show that there
exists a Bregman weak relatively nonexpansive mapping which is not a Bregman relatively
nonexpansive mapping.

Example . Let E = l, where

l =

{
σ = (σ,σ, . . . ,σn, . . .) :

∞∑
n=

‖σn‖ <∞
}
, ‖σ‖ =

( ∞∑
n=

‖σn‖
) 



, ∀σ ∈ l,

〈σ ,η〉 =
∞∑
n=

σnηn, ∀δ = (σ,σ, . . . ,σn, . . .),η = (η,η, . . . ,ηn, . . .) ∈ l.

http://www.fixedpointtheoryandapplications.com/content/2013/1/141


Naraghirad and Yao Fixed Point Theory and Applications 2013, 2013:141 Page 8 of 43
http://www.fixedpointtheoryandapplications.com/content/2013/1/141

Let {xn}n∈N∪{} ⊂ E be a sequence defined by

x = (, , , , . . .),

x = (, , , , , . . .),

x = (, , , , , , . . .),

x = (, , , , , , , . . .),

· · · ,
xn = (σn,,σn,, . . . ,σn,k , . . .),

· · · ,

where

σn,k =

⎧⎨
⎩ if k = ,n + ,

 if k �= ,k �= n + 

for all n ∈ N. It is clear that the sequence {xn}n∈N converges weakly to x. Indeed, for any
 = (λ,λ, . . . ,λn, . . .) ∈ l = (l)∗, we have

(xn – x) = 〈xn – x,〉 =
∞∑
k=

λkσn,k → 

as n→ ∞. It is also obvious that ‖xn – xm‖ = √
 for any n �=m with n,m sufficiently large.

Thus, {xn}n∈N is not a Cauchy sequence. Let k be an even number in N and let g : E → R

be defined by

g(x) =

k
‖x‖k , x ∈ E.

It is easy to show that ∇g(x) = Jk(x) for all x ∈ E, where

Jk(x) =
{
x∗ ∈ E∗ :

〈
x,x∗〉 = ‖x‖∥∥x∗∥∥,∥∥x∗∥∥ = ‖x‖k–}.

It is also obvious that

Jk(λx) = λk–Jk(x), ∀x ∈ E,λ ∈R.

Now, we define a mapping T : E → E by

T(x) =

⎧⎨
⎩

n
n+x if x = xn;

–x if x �= xn.

It is clear that F(T) = {} and for any n ∈N,

Dg(,Txn) = g() – g(Txn) –
〈
 – Txn,∇g(Txn)

〉
= –

nk

(n + )k
g(xn) +

nk

(n + )k
〈
xn,∇g(xn)

〉

http://www.fixedpointtheoryandapplications.com/content/2013/1/141
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=
nk

(n + )k
[
–g(xn) +

〈
x,∇g(xn)

〉]

=
nk

(n + )k
Dg(,xn)

≤ Dg(,xn).

If x �= xn, then we have

Dg(,Tx) = g() – g(Tx) –
〈
 – Tx,∇g(Tx)

〉
= –g(x) –

〈
x, –∇g(x)

〉
= –g(x) –

〈
–x,∇g(x)

〉
=Dg(,x).

Therefore, T is a Bregman quasi-nonexpansive mapping. Next, we claim that T is a Breg-
man weak relatively nonexpansive mapping. Indeed, for any sequence {zn}n∈N ⊂ E such
that zn → z and ‖zn – Tzn‖ →  as n → ∞, since {xn}n∈N is not a Cauchy sequence,
there exists a sufficiently large number N ∈ N such that zn �= xm for any n,m > N . If we
suppose that there exists m ≤ N such that zn = xm for infinitely many n ∈ N, then a sub-
sequence {xni}i∈N would satisfy zni = xm, so z = limi→∞ zni = xm and z = limi→∞ Tzni =
Txm = m

m+xm, which is impossible. This implies that Tzn = –zn for all n > N . It follows
from ‖zn – Tzn‖ →  that zn →  and hence zn → z = . Since z ∈ F(T), we conclude
that T is a Bregman weak relatively nonexpansive mapping.
Finally, we show that T is not Bregman relatively nonexpansive. In fact, though xn ⇀ x

and

‖xn – Txn‖ =
∥∥∥∥xn – n

n + 
xn

∥∥∥∥ =


n + 
‖xn‖ → 

as n→ ∞, but x /∈ F(T). Thus we have F̂(T) �= F(T).

Let us give an example of a Bregman quasi-nonexpansive mapping which is neither a
Bregman relatively nonexpansive mapping nor a Bregman weak relatively nonexpansive
mapping (see also []).

Example . Let E be a smooth Banach space, let k be an even number in N and let g :
E →R be defined by

g(x) =

k
‖x‖k , x ∈ E.

Let x �=  be any element of E. We define a mapping T : E → E by

T(x) =

⎧⎨
⎩(  +


n+ )x if x = (  +


n )x;

–x if x �= (  +

n )x

http://www.fixedpointtheoryandapplications.com/content/2013/1/141


Naraghirad and Yao Fixed Point Theory and Applications 2013, 2013:141 Page 10 of 43
http://www.fixedpointtheoryandapplications.com/content/2013/1/141

for all n ≥ . It could easily be seen that T is neither a Bregman weak relatively nonexpan-
sive mapping nor a Bregman relatively nonexpansive mapping. To this end, we set

xn =
(


+


n

)
x, ∀n ∈ N.

Though xn → 
x (xn ⇀ 

x) as n→ ∞ and

‖xn – Txn‖ =
∥∥∥∥
(


+


n

)
x –

(


+


n+

)
x

∥∥∥∥ =


n–
‖x‖ → 

as n→ ∞, but 
x /∈ F(T). Therefore, F̂(T) �= F(T) and F̃(T) �= F(T).

In [], Bauschke and Combettes introduced an iterative method to construct the
Bregman projection of a point onto a countable intersection of closed and convex sets
in reflexive Banach spaces. They proved a strong convergence theorem of the sequence
produced by their method; for more detail, see [, Theorem .].
In [], Reich and Sabach introduced a proximal method for finding common zeros of

finitely many maximal monotone operators in a reflexive Banach space. More precisely,
they proved the following strong convergence theorem.

Theorem . Let E be a reflexive Banach space and let Ai : E → E∗ , i = , , . . . ,N , be N
maximal monotone operators such that Z :=

⋂N
i=A–

i (∗) �=∅. Let g : E →R be a Legendre
function that is bounded, uniformly Fréchet differentiable and totally convex on bounded
subsets of E. Let {xn}n∈N be a sequence defined by the following iterative algorithm:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

yin = Resg
λinAi

(xn + ein),

Ci
n = {z ∈ E :Dg(z, yin)≤ Dg(z,xn + ein)},

Cn :=
⋂N

i=Ci
n,

Qn = {z ∈ E : 〈∇g(x) –∇g(xn), z – xn〉 ≤ },
xn+ = projgCn∩Qn x and n ∈N∪ {}.

(.)

If, for each i = , , . . . ,N , lim infn→∞ λi
n >  and the sequences of errors {ein}n∈N ⊂ E sat-

isfy lim infn→∞ ein = , then each such sequence {xn}n∈N converges strongly to projgZ(x) as
n→ ∞.

LetC be a nonempty, closed and convex subset of a reflexive Banach space E. Let g : E →
(–∞, +∞] be a proper, lower semicontinuous and convex function. Recall that a mapping
T : C → C is said to be Bregman firmly nonexpansive (for short, BFNE) if

Dg(Tx,Ty) +Dg(Ty,Tx) +Dg(Tx,x) +Dg(Ty, y) ≤ Dg(Tx, y) +Dg(Ty,x)

for all x, y ∈ C. The mapping T is called quasi-Bregman firmly nonexpansive (for short,
QBFNE) [], if F(T) �=∅ and

Dg(p,Tx) +Dg(Tx,x)≤ Dg(p,x)

http://www.fixedpointtheoryandapplications.com/content/2013/1/141
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for all x ∈ C and p ∈ F(T). It is clear that any quasi-Bregman firmly nonexpansivemapping
is Bregman quasi-nonexpansive. For more information on Bregman firmly nonexpansive
mappings, we refer the readers to [, ]. In [], Reich and Sabach proved that for any
BFNE operator T , F̂(T) = F(T).
In [], Reich and Sabach introduced a Mann-type process to approximate fixed points

of quasi-Bregman firmly nonexpansive mappings defined on a nonempty, closed and con-
vex subset C of a reflexive Banach space E. More precisely, they proved the following the-
orem.

Theorem . Let E be a reflexive Banach space and let Ti : E → E, i = , , . . . ,N , be N
QBFNE operators which satisfy F(Ti) = F̂(Ti) for each  ≤ i ≤ N and F :=

⋂N
i= F(Ti) �= ∅.

Let g : E →R be a Legendre function that is bounded, uniformly Fréchet differentiable and
totally convex on bounded subsets of E. Let {xn}n∈N be a sequence defined by the following
iterative algorithm:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

Qi
 = E, i = , , . . . ,N ,

yin = Ti(xn + ein),

Qi
n+ = {z ∈Qi

n : 〈∇g(xn + ein) –∇g(yin), z – yin〉 ≤ },
Qn+ :=

⋂N
i=Qi

n+,

xn+ = projgQn+
x and n ∈N∪ {}.

(.)

If, for each i = , , . . . ,N , the sequences of errors {ein}n∈N ⊂ E satisfy lim infn→∞ ein = , then
each such sequence {xn}n∈N converges strongly to projgF (x) as n → ∞.

Let E be a reflexive Banach space and let g : E → R be a convex and Gâteaux differen-
tiable function. Let C be a nonempty, closed and convex subset of E. Recall that a mapping
T : C → C is said to be (quasi-)Bregman strongly firmly nonexpansive (for short, BSNE)
with respect to a nonempty F̂(T) if F(T) �=∅ and

Dg(p,Tx) ≤ Dg(p,x)

for all x ∈ C and p ∈ F̂(T), and if whenever {xn}n∈N ⊂ C is bounded and p ∈ ˆF(T), then we
have

lim
n→∞

(
Dg(p,xn) –Dg(p,Txn)

)
=  �⇒ lim

n→∞Dg(Txn,xn) = .

The class of (quasi-)Bregman strongly nonexpansive mappings was first introduced in [,
] (for more details, see also []). We know that the notion of a strongly nonexpansive
operator (with respect to the norm) was first introduced and studied in [, ].
In [], Reich and Sabach introduced iterative algorithms for finding common fixed

points of finitely many Bregman strongly nonexpansive operators in a reflexive Banach
space. They established the following strong convergence theorem in a reflexive Banach
space.

Theorem . Let E be a reflexive Banach space and let Ti : E → E, i = , , . . . ,N , be N
BSNE operators which satisfy F(Ti) = F̂(Ti) for each  ≤ i ≤ N and F :=

⋂N
i= F(Ti) �= ∅.

http://www.fixedpointtheoryandapplications.com/content/2013/1/141


Naraghirad and Yao Fixed Point Theory and Applications 2013, 2013:141 Page 12 of 43
http://www.fixedpointtheoryandapplications.com/content/2013/1/141

Let g : E →R be a Legendre function that is bounded, uniformly Fréchet differentiable and
totally convex on bounded subsets of E. Let {xn}n∈N be a sequence defined by the following
iterative algorithm:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E chosen arbitrarily,

yin = Ti(xn + ein),

Ci
n = {z ∈ E :Dg(z, yin)≤ Dg(z,xn + ein)},

Cn :=
⋂N

i=Ci
n,

Qn = {z ∈ E : 〈∇g(x) –∇g(xn), z – xn〉 ≤ },
xn+ = projgCn∩Qn x and n ∈N∪ {}.

(.)

If, for each i = , , . . . ,N , the sequences of errors {ein}n∈N ⊂ E satisfy lim infn→∞ ein = , then
each such sequence {xn}n∈N converges strongly to projgF (x) as n → ∞.

But it is worth mentioning that, in all the above results for Bregman nonexpansive-type
mappings, the assumption F̂(T) = F(T) is imposed on the map T .

Remark . Though the iteration processes (.) and (.), as introduced by the authors
mentioned above, worked, it is easy to see that these processes seem cumbersome and
complicated in the sense that at each stage of iteration, two different sets Cn and Qn are
computed and the next iterate taken as the Bregman projection of x on the intersection of
Cn andQn. This seems difficult to do in application. It is important to state clearly that the
iteration process (.) involves computation of only one set Qn at each stage of iteration.
In [], Sabach proposed an excellentmodification of algorithm (.) for finding common
zeros of finitely many maximal monotone operators in reflexive Banach spaces.

Our concern now is the following:

Is it possible to obtain strong convergence of modified Mann-type schemes (.)-
(.) to a fixed point of a Bregman quasi-nonexpansive type mapping T without
imposing the assumption F̂(T) = F(T) on T?

In this paper, using Bregman functions, we introduce new hybrid iterative algorithms
for finding common fixed points of an infinite family of Bregman weak relatively non-
expansive mappings in Banach spaces. We prove strong convergence theorems for the
sequences produced by the methods. Furthermore, we apply our method to prove strong
convergence theorems of iterative algorithms for finding common fixed points of finitely
many Bregman weak relatively nonexpansive mappings in reflexive Banach spaces. These
algorithms take into account possible computational errors. We also apply our main re-
sults to solve equilibrium problems in reflexive Banach spaces. Finally, we study hybrid
iterative schemes for finding common solutions of an equilibrium problem, fixed points
of an infinite family of Bregman weak relatively nonexpansive mappings and null spaces
of a γ -inverse strongly monotone mapping in -uniformly convex Banach spaces. Some
application of our results to the solution of equations of Hammerstein type is presented.
No assumption F̂(T) = F(T) is imposed on the mapping T . Consequently, the above con-
cern is answered in the affirmative in reflexive Banach space setting. Our results improve

http://www.fixedpointtheoryandapplications.com/content/2013/1/141
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and generalize many known results in the current literature; see, for example, [, , , ,
, , –, , –].

2 Preliminaries
In this section, we begin by recalling some preliminaries and lemmas which will be used
in the sequel.
The following definition is slightly different from that in Butnariu and Iusem [].

Definition . [] Let E be a Banach space. The function g : E → R is said to be a
Bregman function if the following conditions are satisfied:
() g is continuous, strictly convex and Gâteaux differentiable;
() the set {y ∈ E :Dg(x, y) ≤ r} is bounded for all x ∈ E and r > .

The following lemma follows from Butnariu and Iusem [] and Zălinscu [].

Lemma . Let E be a reflexive Banach space and let g : E → R be a strongly coercive
Bregman function. Then
() ∇g : E → E∗ is one-to-one, onto and norm-to-weak∗ continuous;
() 〈x – y,∇g(x) –∇g(y)〉 =  if and only if x = y;
() {x ∈ E :Dg(x, y) ≤ r} is bounded for all y ∈ E and r > ;
() dom g∗ = E∗, g∗ is Gâteaux differentiable and ∇g∗ = (∇g)–.

Now, we are ready to prove the following key lemma.

Lemma . Let E be a Banach space, let r >  be a constant and let g : E →R be a convex
function which is uniformly convex on bounded subsets of E. Then

g

( n∑
k=

αkxk

)
≤

n∑
k=

αkg(xk) – αiαjρr
(‖xi – xj‖

)

for all i, j ∈ {, , , . . . ,n}, xk ∈ Br , αk ∈ (, ) and k = , , , . . . ,n with
∑n

k= αk = , where
ρr is the gauge of uniform convexity of g .

Proof Without loss of generality, we may assume that i =  and j = . By induction on n,
for n = , in view of Remark . we get the desired result. Now suppose that it is true for
n = k, i.e.,

g

( k∑
m=

αmxm

)
≤

k∑
m=

αmg(xm) – ααρr
(‖x – x‖

)
.

Now, we prove that the conclusion holds for n = k + . Put x =
∑k

m= αmxm
–αk+

and observe that
x ∈ Br . Since g is convex, given assumption, we conclude that

g

( k+∑
m=

αmxm

)
= g

(
( – αk+)

k∑
m=

αmxm
 – αk+

+ αk+xk+

)

≤ ( – αk+)g

( k∑
m=

αmxm
 – αk+

)
+ αk+g(xk+)

http://www.fixedpointtheoryandapplications.com/content/2013/1/141
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≤
k∑

m=

αmg(xm) – ααρr
(‖x – x‖

)
+ αk+g(xk+)

=
k+∑
m=

αmg(xm) – ααρr
(‖x – x‖

)
.

This completes the proof. �

Lemma . Let E be a Banach space, let r >  be a constant and let g : E →R be a contin-
uous and convex function which is uniformly convex on bounded subsets of E. Then

g

( ∞∑
k=

αkxk

)
≤

∞∑
k=

αkg(xk) – αiαjρr
(‖xi – xj‖

)

for all i, j ∈ N ∪ {}, xk ∈ Br , αk ∈ (, ) and k ∈ N ∪ {} with ∑∞
k= αk = , where ρr is the

gauge of uniform convexity of g .

Proof Let i, j ∈N∪ {} and k > i, j. Put vk = αx∑k
m= αm

+ αx∑k
m= αm

+ · · · + αkxk∑k
m= αm

and observe
that vk ∈ Br for all k ∈N. In view of Lemma ., we obtain that

g(vk) = g
(

αx∑k
m= αm

+
αx∑k
m= αm

+ · · · + αkxk∑k
m= αm

)

≤ ∑k
m= αm

k∑
m=

αmg(xm) – αiαjρr
(‖xi – xj‖

)
. (.)

Since g is continuous and vk → ∑∞
m= αmxm as k → ∞, we have

lim
k→∞

g(vk) = g

( ∞∑
m=

αmxm

)
.

Letting k → ∞ in (.), we conclude that

g

( ∞∑
m=

αmxm

)
≤

∞∑
m=

αmg(xm) – αiαjρr
(‖xi – xj‖

)
,

which completes the proof. �

We know the following two results; see [, Proposition ..].

Theorem . Let E be a reflexive Banach space and let g : E → R be a convex function
which is bounded on bounded subsets of E. Then the following assertions are equivalent:
() g is strongly coercive and uniformly convex on bounded subsets of E;
() dom g∗ = E∗, g∗ is bounded on bounded subsets and uniformly smooth on bounded

subsets of E∗;
() dom g∗ = E∗, g∗ is Fréchet differentiable and ∇g∗ is uniformly norm-to-norm

continuous on bounded subsets of E∗.
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Theorem . Let E be a reflexive Banach space and let g : E →R be a continuous convex
function which is strongly coercive. Then the following assertions are equivalent:
() g is bounded on bounded subsets and uniformly smooth on bounded subsets of E;
() g∗ is Fréchet differentiable and ∇g∗ is uniformly norm-to-norm continuous on

bounded subsets of E∗;
() dom g∗ = E∗, g∗ is strongly coercive and uniformly convex on bounded subsets of E∗.

Let E be a Banach space and let g : E →R be a convex and Gâteaux differentiable func-
tion. Then the Bregman distance [, ] satisfies the three point identity that is

Dg(x, z) =Dg(x, y) +Dg(y, z) +
〈
x – y,∇g(y) –∇g(z)

〉
, ∀x, y, z ∈ E. (.)

In particular, it can be easily seen that

Dg(x, y) = –Dg(y,x) +
〈
y – x,∇g(y) –∇g(x)

〉
, ∀x, y ∈ E. (.)

Indeed, by letting z = x in (.) and taking into account thatDg(x,x) = , we get the desired
result.

Lemma. Let E be aBanach space and let g : E →R be aGâteaux differentiable function
which is uniformly convex on bounded subsets of E. Let {xn}n∈N and {yn}n∈N be bounded
sequences in E. Then the following assertions are equivalent:
() limn→∞ Dg(xn, yn) = ;
() limn→∞ ‖xn – yn‖ = .

Proof The implication () �⇒ () was proved in [] (see also []). For the converse im-
plication, we assume that limn→∞ ‖xn – yn‖ = . Then, in view of (.), we have

Dg(xn, yn) = –Dg(yn,xn) +
〈
xn – yn,∇g(xn) –∇g(yn)

〉
≤ ‖xn – yn‖

∥∥∇g(xn) –∇g(yn)
∥∥, ∀n ∈ N. (.)

The function g is bounded on bounded subsets of E and therefore ∇g is also bounded on
bounded subsets of E∗ (see, for example, [, Proposition ..] for more details). This,
together with (.)-(.), implies that limn→∞ Dg(xn, yn) = , which completes the proof.

�

The following result was first proved in [] (see also []).

Lemma. Let E be a reflexive Banach space, let g : E →R be a strongly coercive Bregman
function and let V be the function defined by

V
(
x,x∗) = g(x) –

〈
x,x∗〉 + g∗(x∗), x ∈ E,x∗ ∈ E∗.

Then the following assertions hold:
() Dg(x,∇g∗(x∗)) = V (x,x∗) for all x ∈ E and x∗ ∈ E∗.
() V (x,x∗) + 〈∇g∗(x∗) – x, y∗〉 ≤ V (x,x∗ + y∗) for all x ∈ E and x∗, y∗ ∈ E∗.
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Corollary . [] Let E be a Banach space, let g : E → (–∞,∞] be a proper, lower semi-
continuous and convex function and let p,q ∈R with  ≤ p≤  ≤ q and p– + q– = . Then
the following statements are equivalent.
() There exists c >  such that g is ρ-convex with ρ(t) := c

q t
q for all t ≥ .

() There exists c >  such that for all (x,x∗), (y, y∗) ∈ G(∂g); ‖x∗ – y∗‖ ≥ c
q ‖x – y‖q–.

3 Strong convergence theorems without computational errors
In this section, we prove strong convergence theorems without computational errors in
a reflexive Banach space. We start with the following simple lemma whose proof will be
omitted since it can be proved by a similar argument as that in [, Lemma .].

Lemma . Let E be a reflexive Banach space and let g : E → R be a convex, continuous,
strongly coercive andGâteaux differentiable function which is bounded on bounded subsets
and uniformly convex on bounded subsets of E. Let C be a nonempty, closed and convex
subset of E. Let T : C → C be a Bregman weak relatively nonexpansive mapping. Then
F(T) is closed and convex.

Using ideas in [], we can prove the following result.

Theorem . Let E be a reflexive Banach space and let g : E → R be a strongly coercive
Bregman function which is bounded on bounded subsets and uniformly convex and uni-
formly smooth on bounded subsets of E. Let C be a nonempty, closed and convex subset of
E and let {Tj}j∈N be an infinite family of Bregman weak relatively nonexpansive mappings
from C into itself such that F :=

⋂∞
j= F(Tj) �=∅. Suppose in addition that T

j = T = I for all
j ∈ N, where I is the identity mapping on E. Let {xn}n∈N be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C chosen arbitrarily,

C = C,

zn = ∇g∗[αn,∇g(xn) +
∑∞

j= αn,j∇g(Tjxn)],

yn = ∇g∗[βn∇g(xn) + ( – βn)∇g(zn)],

Cn+ = {z ∈ Cn :Dg(z, yn) ≤ Dg(z,xn)},
xn+ = projgCn+

x and n ∈N∪ {},

(.)

where ∇g is the right-hand derivative of g . Let {αn,j : j,n ∈ N ∪ {}} and {βn}n∈N∪{} be se-
quences in [, ) satisfying the following control conditions:
()

∑∞
j= αn,j = , ∀n ∈N∪ {};

() There exists i ∈N such that lim infn→∞ αn,iαn,j > , ∀j ∈N∪ {};
()  ≤ βn <  for all n ∈N∪ {} and lim supn→∞ βn < .
Then the sequence {xn}n∈N defined in (.) converges strongly to projgF x as n→ ∞.

Proof We divide the proof into several steps.
Step . We show that Cn is closed and convex for each n ∈N∪ {}.
It is clear thatC = C is closed and convex. LetCm be closed and convex for somem ∈N.

For z ∈ Cm, we see that

Dg(z, ym) ≤ Dg(z,xm)
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is equivalent to

〈
z,∇g(xm) –∇g(ym)

〉 ≤ g(ym) – g(xm) +
〈
xm,∇g(xm)

〉
–
〈
ym,∇g(ym)

〉
.

An easy argument shows that Cm+ is closed and convex. Hence Cn is closed and convex
for each n ∈ N∪ {}.
Step . We claim that F ⊂ Cn for all n ∈N∪ {}.
It is obvious that F ⊂ C = C. Assume now that F ⊂ Cm for some m ∈ N. Employing

Lemma ., for any w ∈ F ⊂ Cm, we obtain

Dg(w, zm) = Dg

(
w,∇g∗

[
αm,∇g(xm) +

∞∑
j=

αm,j∇g(Tjxm)

])

= V

(
w,αm,∇g(xm) +

∞∑
j=

αm,j∇g
(
Tm
j xm

))

= g(w) –

〈
w,αm,∇g(xm) +

∞∑
j=

αm,j∇g(Tjxm)

〉

+ g∗
(

αm,∇g(xm) +
∞∑
j=

αm,j∇g(Tjxm)

)

≤ αm,g(w) +
∞∑
j=

αm,jg(w) + αm,g∗(∇g(xm)
)
+

∞∑
j=

αm,jg∗(∇g(Tjxm)
)

= αm,V
(
w,∇g(xm)

)
+

∞∑
j=

αm,jV
(
w,∇g(Tjxm)

)

= αm,Dg(w,xm) +
∞∑
j=

αm,jDg(w,Tjxm)

≤ αm,Dg(w,xm) +
∞∑
j=

αm,jDg(w,xm)

= Dg(w,xm).

This implies that

Dg(w, ym) = Dg
(
w,∇g∗[βm∇g(xm) + ( – βm)∇g(zm)

])
= V

(
w,βm∇g(xm) + ( – βm)∇g(zm)

)
≤ βmV

(
w,∇g(xm)

)
+ ( – βm)V

(
w,∇(zm)

)
= βmDg(w,xm) + ( – βm)Dg(w, zm)

≤ βmDg(w,xm) + ( – βm)Dg(w,xm)

= Dg(w,xm). (.)

This proves that w ∈ Cm+. Thus, we have F ⊂ Cn for all n ∈N∪ {}.

http://www.fixedpointtheoryandapplications.com/content/2013/1/141


Naraghirad and Yao Fixed Point Theory and Applications 2013, 2013:141 Page 18 of 43
http://www.fixedpointtheoryandapplications.com/content/2013/1/141

Step . We prove that {xn}n∈N, {yn}n∈N, {zn}n∈N and {Tjxn : j,n ∈ N ∪ {}} are bounded
sequences in C.
In view of (.), we conclude that

Dg(xn,x) = Dg
(
projgCn x,x

) ≤ Dg(w,x) –Dg(w,xn)

≤ Dg(w,x), ∀w ∈ F ⊂ Cn,n ∈N∪ {}.

This implies that the sequence {D(xn,x)}n∈N is bounded and hence there existsM >  such
that

Dg(xn,x)≤ M, ∀n ∈N.

In view of Lemma .(), we conclude that the sequence {xn}n∈N is bounded. Since {Tj}j∈N
is an infinite family of Bregman weak relatively nonexpansive mappings from C into itself,
we have for any q ∈ F that

Dg(q,Tjxn) ≤ Dg(q,xn), ∀j,n ∈N.

This, together with Definition . and the boundedness of {xn}n∈N, implies that the se-
quence {Tjxn : j,n ∈N∪ {}} is bounded.
Step . We show that xn → u for some u ∈ F , where u = projgF x.
By Step , we have that {xn}n∈N is bounded. By the construction of Cn, we conclude that

Cm ⊂ Cn and xm = projgCm x ∈ Cm ⊂ Cn for any positive integer m ≥ n. This, together with
(.), implies that

Dg(xm,xn) =Dg
(
xm,proj

g
Cn x

) ≤ Dg(xm,x) –Dg
(
projgCn x,x

)
=Dg(xm,x) –Dg(xn,x). (.)

In view of (.), we conclude that

Dg(xn,x) =Dg
(
projgCn x,x

) ≤ Dg(w,x) –Dg(w,xn)

≤ Dg(w,x), ∀w ∈ F ⊂ Cn,n ∈N∪ {}. (.)

It follows from (.) that the sequence {Dg(xn,x)}n∈N is bounded and hence there exists
M >  such that

Dg(xn,x)≤ M, ∀n ∈N. (.)

In view of (.), we conclude that

Dg(xn,x)≤ Dg(xn,x) +Dg(xm,xn) ≤ Dg(xm,x), ∀m≥ n.

This proves that {Dg(xn,x)}n∈N is an increasing sequence in R and hence by (.) the limit
limn→∞ Dg(xn,x) exists. Lettingm,n→ ∞ in (.), we deduce thatDg(xm,xn)→ . In view
of Lemma., we get that ‖xm–xn‖ →  asm,n→ ∞. Thismeans that {xn}n∈N is a Cauchy
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sequence. Since E is a Banach space and C is closed and convex, we conclude that there
exists u ∈ C such that

lim
n→∞‖xn – u‖ = . (.)

Now, we show that u ∈ F . In view of (.), we obtain

lim
n→∞Dg(xn+,xn) = . (.)

Since xn+ ∈ Cn+, we conclude that

Dg(xn+, yn) ≤ Dg(xn+,xn).

This, together with (.), implies that

lim
n→∞Dg(xn+, yn) = . (.)

Employing Lemma . and (.)-(.), we deduce that

lim
n→∞‖xn+ – xn‖ =  and lim

n→∞‖xn+ – yn‖ = .

In view of (.), we get

lim
n→∞‖yn – u‖ = . (.)

From (.) and (.), it follows that

lim
n→∞‖xn – yn‖ = .

Since ∇g is uniformly norm-to-norm continuous on any bounded subset of E, we obtain

lim
n→∞

∥∥∇g(xn) –∇g(yn)
∥∥ = . (.)

In view of (.), we have

∇g(yn) –∇g(xn) = ( – βn)
(∇g(zn) –∇g(xn)

)
. (.)

It follows from (.)-(.) that

lim
n→∞

∥∥∇g(zn) –∇g(xn)
∥∥ = . (.)

Since ∇g is uniformly norm-to-norm continuous on any bounded subset of E, we obtain

lim
n→∞‖zn – xn‖ = .

Applying Lemma ., we derive that

lim
n→∞Dg(zn,xn) = .
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It follows from the three point identity (see (.)) that

∣∣Dg(w,xn) –Dg(w, zn)
∣∣ =

∣∣Dg(w, zn) +Dg(zn,xn)

+
〈
w – zn,∇g(zn) –∇g(xn)

〉
–Dg(w, zn)

∣∣
=

∣∣Dg(zn,xn) –
〈
w – zn,∇g(zn) –∇g(xn)

〉∣∣
≤ Dg(zn,xn) + ‖w – zn‖

∥∥∇g(zn) –∇g(xn)
∥∥

→  (.)

as n→ ∞.
The function g is bounded on bounded subsets of E and thus ∇g is also bounded on

bounded subsets of E∗ (see, for example, [, Proposition ..] for more details). This
implies that the sequences {∇g(xn)}n∈N, {∇g(yn)}n∈N, {∇g(zn)}n∈N and {∇g(Tn

j xn) : n, j ∈
N∪ {}} are bounded in E∗.
In view of Theorem .(), we know that dom g∗ = E∗ and g∗ is strongly coercive and

uniformly convex on bounded subsets. Let s = sup{‖∇g(Tn
j xn)‖ : j ∈ N ∪ {},n ∈ N ∪ {}}

and ρ∗
s : E∗ →R be the gauge of uniform convexity of the conjugate function g∗. Now, we

fix i ∈N satisfying condition (). We prove that for any w ∈ F and j ∈N∪ {}

Dg(w, zn) ≤ Dg(w,xn) – αn,iαn,jρ
∗
s
(∥∥∇g(Tixn) –∇g(Tjxn)

∥∥). (.)

Let us show (.). For any given w ∈ F(T) and j ∈ N, in view of the definition of the
Bregman distance (see (.)), (.), Lemmas . and ., we obtain

Dg(w, zn) = Dg

(
w,∇g∗

[
αn,∇g(xn) +

∞∑
j=

αn,j∇g(Tjxn)

])

= V

(
w,αn,∇g(xn) +

∞∑
j=

αn,j∇g(Tjxn)

)

= g(w) –

〈
w,αn,∇g(xn) +

∞∑
j=

αn,j∇g(Tjxn)

〉

+ g∗
(

αn,∇g(xn) +
∞∑
j=

αn,j∇g(Tjxn)

)

≤ αn,g(w) +
∞∑
j=

αn,jg(w)

– αn,
〈
w,∇g(xn)

〉
–

∞∑
j=

αn,j
〈
w,∇g(Tjxn)

〉

+ αn,g∗(∇g(xn)
)
+

∞∑
j=

αn,jg∗(∇g(Tjxn)
)

– αn,iαn,jρ
∗
s
(∥∥∇g(Tixn) –∇g(Tjxn)

∥∥)
= αn,V

(
w,∇g(xn)

)
+

∞∑
j=

αn,jV
(
w,∇g(Tjxn)

)
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– αn,iαn,jρ
∗
s
(∥∥∇g(Tixn) –∇g(Tjxn)

∥∥)
= αn,Dg(w,xn) +

∞∑
j=

αn,jDg(w,Tjxn) – αn,iαn,jρ
∗
s
(∥∥∇g(Tixn) –∇g(Tjxn)

∥∥)

≤ αn,Dg(w,xn) +
∞∑
j=

αn,jDg(w,xn) – αn,iαn,jρ
∗
s
(∥∥∇g(Tixn) –∇g(Tjxn)

∥∥)

= Dg(w,xn) – αn,iαn,jρ
∗
s
(∥∥∇g(Tixn) –∇g(Tjxn)

∥∥).
In view of (.), we obtain

Dg(w,xn) –Dg(w, zn) →  as n→ ∞. (.)

In view of (.) and (.), we conclude that

αn,iαn,jρ
∗
s
(∥∥∇g(Tixn) –∇g(Tjxn)

∥∥) ≤ Dg(w,xn) –Dg(w, zn)→ 

as n→ ∞. From the assumption lim infn→∞ αn,iαn,j > , ∀j ∈ N∪ {}, we have

lim
n→∞ρ∗

s
(∥∥∇g(Tixn) –∇g(Tjxn)

∥∥) = , ∀j ∈N∪ {}.

Therefore, from the property of ρ∗
s , we deduce that

lim
n→∞

∥∥∇g(Tixn) –∇g(Tjxn)
∥∥ = , ∀j ∈N∪ {}.

Since ∇g∗ is uniformly norm-to-norm continuous on bounded subsets of E∗, we arrive at

lim
n→∞‖Tixn – Tjxn‖ = , ∀j ∈N∪ {}. (.)

In particular, for j = , we have

lim
n→∞‖Tixn – xn‖ = .

This, together with (.), implies that

lim
n→∞‖Tjxn – xn‖ = , ∀j ∈N∪ {}. (.)

Since {Tj}j∈N is an infinite family of Bregmanweak relatively nonexpansivemappings, from
(.) and (.), we conclude that Tju = u, ∀j ∈N∪ {}. Thus, we have u ∈ F .
Finally, we show that u = projgF x. From xn = projgCn x, we conclude that

〈
z – xn,∇g(xn) –∇g(x)

〉 ≥ , ∀z ∈ Cn.

Since F ⊂ Cn for each n ∈N, we obtain

〈
z – xn,∇g(xn) –∇g(x)

〉 ≥ , ∀z ∈ F . (.)
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Letting n → ∞ in (.), we deduce that

〈
z – u,∇g(u) –∇g(x)

〉 ≥ , ∀z ∈ F .

In view of (.), we have u = projgF x, which completes the proof. �

Remark . Theorem . improves Theorem . in the following aspects.
() For the structure of Banach spaces, we extend the duality mapping to a more general

case, that is, a convex, continuous and strongly coercive Bregman function which is
bounded on bounded subsets and uniformly convex and uniformly smooth on
bounded subsets.

() For the mappings, we extend the mapping from a relatively nonexpansive mapping
to a countable family of Bregman weak relatively nonexpansive mappings. We
remove the assumption F̂(T) = F(T) on the mapping T and extend the result to a
countable family of Bregman weak relatively nonexpansive mappings, where F̂(T) is
the set of asymptotic fixed points of the mapping T .

() For the algorithm, we remove the setWn in Theorem ..

Lemma . Let E be a reflexive Banach space and let g : E → R be a strongly coercive
Bregman function which is bounded on bounded subsets and uniformly convex and uni-
formly smooth on bounded subsets of E. Let A be a maximal monotone operator from E to
E∗ such that A–() �=∅. Let r >  and ResgrA = (∇g + rA)–∇g be the g-resolvent of A. Then
ResgrA is a Bregman weak relatively nonexpansive mapping.

Proof Let {zn}n∈N ⊂ E be a sequence such that zn → z and limn→∞ ‖zn – ResgrA zn‖ = .
Since ∇g is uniformly norm-to-norm continuous on bounded subsets of E, we obtain


r
(∇g(zn) –∇g

(
ResgrA zn

)) → .

It follows from


r
(∇g(zn) –∇g

(
ResgrA zn

)) ∈ AResgrA zn

and the monotonicity of A that

〈
w –ResgrA zn, y –


r
(∇g(zn) –∇g

(
ResgrA zn

))〉 ≥ 

for allw ∈ domA and y ∈ Aw. Letting n→ ∞ in the above inequality, we have 〈w–z, y〉 ≥ 
for all w ∈ domA and y ∈ Aw. Therefore, from the maximality of A, we conclude that
z ∈ A–() = F(ResgrA), that is, z = ResgrA z. Hence ResgrA is Bregman weak relatively non-
expansive, which completes the proof. �

As an application of our main result, we include a concrete example in support of The-
orem .. Using Theorem ., we obtain the following strong convergence theorem for
maximal monotone operators.
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Theorem . Let E be a reflexive Banach space and let g : E → R be a strongly coercive
Bregman function which is bounded on bounded subsets and uniformly convex and uni-
formly smooth on bounded subsets of E. Let A be a maximal monotone operator from E to
E∗ such that A–() �=∅. Let rn >  such that lim infn→∞ rn >  andResgrnA = (∇g + rnA)–∇g
be the g-resolvent of A. Let {xn}n∈N be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C chosen arbitrarily,

C = C,

zn = ∇g∗[αn,∇g(xn) +
∑∞

j= αn,j∇g(ResgrjA xn)],

yn = ∇g∗[βn∇g(xn) + ( – βn)∇g(zn)],

Cn+ = {z ∈ Cn :Dg(z, yn) ≤ Dg(z,xn)},
xn+ = projgCn+

x and n ∈N∪ {},

(.)

where ∇g is the right-hand derivative of g . Let {αn,j : j,n ∈ N ∪ {}} and {βn}n∈N∪{} be se-
quences in [, ) satisfying the following control conditions:
()

∑∞
j= αn,j = , ∀n ∈N∪ {};

() There exists i ∈N such that lim infn→∞ αn,iαn,j > , ∀j ∈N∪ {};
()  ≤ βn <  for all n ∈N∪ {} and lim infn→∞ βn < .

Then the sequence {xn}n∈N defined in (.) converges strongly to projgA–() x as n→ ∞.

Proof Letting Tj = ResgrjA, ∀j ∈ N ∪ {}, in Theorem ., from (.) we obtain (.). We
need only to show that Tj satisfies all the conditions in Theorem . for all j ∈ N∪ {}. In
view of Lemma ., we conclude that Tj is a Bregman relatively nonexpansive mapping for
each j ∈N∪ {}. Thus, we obtain

Dg
(
p,ResgrjA v

) ≤Dg(p, v), ∀v ∈ E,p ∈ F
(
ResgrjA

)
,∀j ∈N∪ {}

and

F̃
(
ResgrjA

)
= F

(
ResgrjA

)
= A–(), ∀j ∈N∪ {},

where F̃(ResgrjA) is the set of all strong asymptotic fixed points of ResgrjA. Therefore, in view
of Theorem ., we have the conclusions of Theorem .. This completes the proof. �

4 Strong convergence theorems with computational errors
In this section, we study strong convergence of iterative algorithms to find common fixed
points of finitely many Bregman weak relatively nonexpansive mappings in a reflexive
Banach space. Our algorithms take into account possible computational errors. We prove
the following strong convergence theorem concerning Bregman weak relatively nonex-
pansive mappings.

Theorem . Let E be a reflexive Banach space and let g : E → R be a strongly coercive
Bregman function which is bounded on bounded subsets and uniformly convex and uni-
formly smooth on bounded subsets of E. Let N ∈N and {Tj}Nj= be a finite family of Bregman
weak relatively nonexpansive mappings from E into int dom g such that F :=

⋂N
j= F(Tj) is
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a nonempty subset of E. Suppose in addition that T = I , where I is the identity mapping
on E. Let {xn}n∈N be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ E chosen arbitrarily,

C = E,

yn = ∇g∗[αn,∇g(xn) +
∑N

j= αn,j∇g(Tj(xn + ejn))],

Cn+ = {z ∈ Cn :Dg(z, yn) ≤ Dg(z,xn) +
∑N

j= αn,jDg(xn,xn + ejn)

+
∑N

j= αn,j〈z – xn,∇g(xn) –∇g(xn + ejn)〉},
xn+ = projgCn+

x and n ∈N∪ {},

(.)

where ∇g is the right-hand derivative of g . Let {αn,j : n ∈ N ∪ {}, j ∈ {, , , . . . ,N}} be a
sequence in (, ) satisfying the following control conditions:
()

∑N
j= αn,j = , ∀n ∈ N∪ {};

() There exists i ∈ {, , . . . ,N} such that lim infn→∞ αn,iαn,j > , ∀j ∈ {, , , . . . ,N}.
If, for each j = , , , . . . ,N , the sequences of errors {ejn}n∈N ⊂ E satisfy lim infn→∞ ejn = ,
then the sequence {xn}n∈N defined in (.) converges strongly to projgF x as n→ ∞.

Proof We divide the proof into several steps.
Step . We show that Cn is closed and convex for each n ∈N∪ {}.
It is clear that C = E is closed and convex. Let Cm be closed and convex for somem ∈N.

For z ∈ Cm, we see that

Dg(z, ym)≤ Dg(z,xm) +
N∑
j=

αm,jDg
(
xm,xm + ejm

)

+
N∑
j=

αm,j
〈
z – xm,∇g(xm) –∇g

(
xm + ejm

)〉

is equivalent to

〈
z,∇g(xm) –∇g(ym)

〉
+

N∑
j=

αm,j
〈
xm – z,∇g(xm) –∇g

(
xm + ejm

)〉

≤ g(ym) – g(xm) +
〈
xm,∇g(xm)

〉
–
〈
ym,∇g(ym)

〉
+

N∑
j=

αm,jDg
(
xm,xm + ejm

)
.

An easy argument shows that Cm+ is closed and convex. Hence Cn is closed and convex
for all n ∈N∪ {}.
Step . We claim that F ⊂ Cn for all n ∈N∪ {}.
It is obvious that F ⊂ C = E. Assume now that F ⊂ Cm for some m ∈ N. Employing

Lemma ., for any w ∈ F ⊂ Cm, we obtain

Dg(w, ym) = Dg

(
w,∇g∗

[
αm,∇g(xm) +

N∑
j=

αm,j∇g
(
Tj

(
xm + ejm

))])

= V

(
w,αm,∇g(xm) +

N∑
j=

αm,j∇g
(
Tj

(
xm + ejm

)))
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= g(w) –

〈
w,αm,∇g(xm) +

N∑
j=

αm,j∇g
(
Tj

(
xm + ejm

))〉

+ g∗(αm,∇g(xm)
)
+

N∑
j=

αm,j∇g
(
Tj

(
xm + ejm

))

≤ αm,g(w) +
N∑
j=

αm,jg(w)

+ αm,g∗(∇g(xm)
)
+

N∑
j=

αm,jg∗(∇g
(
Tj

(
xm + ejm

)))

= αm,V
(
w,∇g(xm)

)
+

N∑
j=

αm,jV
(
w,∇g

(
Tj

(
xm + ejm

)))

= αm,Dg(w,xm) +
N∑
j=

αm,jDg
(
w,Tj

(
xm + ejm

))

≤ αm,Dg(w,xm) +
N∑
j=

αm,jDg
(
w,xm + ejm

)

= αm,Dg(w,xm) +
N∑
j=

αm,jDg(w,xm) +
N∑
j=

αm,jDg
(
xm,xm + ejm

)

+
N∑
j=

αm,j
〈
w – xm,∇g(xm) –∇g

(
xm + ejm

)〉

= Dg(w,xm) +
N∑
j=

αm,jDg
(
xm,xm + ejm

)

+
N∑
j=

αm,j
〈
w – xm,∇g(xm) –∇g

(
xm + ejm

)〉
. (.)

This proves that w ∈ Cm+. Consequently, we see that F ⊂ Cn for any n ∈N∪ {}.
Step . We prove that {xn}n∈N, {yn}n∈N and {Tj(xn + ejn) : n ∈ N, j ∈ {, , , . . . ,N}} are

bounded sequences in E.
In view of (.), we conclude that

Dg(xn,x) =Dg
(
projgCn x,x

) ≤ Dg(w,x) –Dg(w,xn)

≤ Dg(w,x), ∀w ∈ F ⊂ Cn,n ∈N∪ {}. (.)

It follows from (.) that the sequence {Dg(xn,x)}n∈N is bounded and hence there exists
M >  such that

Dg(xn,x)≤ M, ∀n ∈N∪ {}. (.)

In view of Lemma .(), we conclude that the sequence {xn}n∈N and hence {xn + ejn : n ∈
N ∪ {}, j ∈ {, , , . . . ,N}} is bounded. Since {Tj}Nj= is a finite family of Bregman weak
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relatively nonexpansive mappings from E into int dom g , for any q ∈ F , we have

Dg
(
q,Tj

(
xn + ejn

)) ≤ Dg
(
q,xn + ejn

)
, ∀n ∈N and j ∈ {, , , . . . ,N}. (.)

This, togetherwithDefinition . and the boundedness of {xn}n∈N, implies that {Tj(xn+e
j
n) :

n ∈N∪ {}, j ∈ {, , , . . . ,N}} is bounded.
Step . We show that xn → u for some u ∈ F , where u = projgF x.
By Step , we deduce that {xn}n∈N is bounded. By the construction of Cn, we conclude

that Cm ⊂ Cn and xm = projgCm x ∈ Cm ⊂ Cn for any positive integer m ≥ n. This, together
with (.), implies that

Dg(xm,xn) =Dg
(
xm,proj

g
Cn x

) ≤ Dg(xm,x) –Dg
(
projgCn x,x

)
=Dg(xm,x) –Dg(xn,x). (.)

In view of (.), we have

Dg(xn,x)≤ Dg(xn,x) +Dg(xm,xn) ≤ Dg(xm,x), ∀m≥ n.

This proves that {Dg(xn,x)}n∈N is an increasing sequence in R and hence by (.) the limit
limn→∞ Dg(xn,x) exists. Letting m,n → ∞ in (.), we deduce that Dg(xm,xn) → . In
view of Lemma ., we obtain that ‖xm – xn‖ →  asm,n→ ∞. Thus we have {xn}n∈N is a
Cauchy sequence. Since E is a Banach space, we conclude that there exists u ∈ E such that

lim
n→∞‖xn – u‖ = . (.)

Now, we show that u ∈ F . In view of (.), we obtain

lim
n→∞Dg(xn+,xn) = . (.)

Since limn→∞ ejn = , for all j ∈ {, , , . . . ,N}, in view of Lemma . and (.), we obtain
that

lim
n→∞‖xn+ – xn‖ =  and lim

n→∞D
(
xn,xn + ejn

)
= , j ∈ {, , , . . . ,N}. (.)

The function g is bounded on bounded subsets of E and thus ∇g is also bounded on
bounded subsets of E∗ (see, for example, [, Proposition ..] for more details). Since
xn+ ∈ Cn+, we get

Dg(xn+, yn) ≤ Dg(xn+,xn) +
N∑
j=

αn,jDg
(
xn,xn + ejn

)

+
N∑
j=

αn,j
〈
xn+ – xn,∇g(xn) –∇g

(
xn + ejn

)〉
.

This, together with (.), implies that

lim
n→∞Dg(xn+, yn) = . (.)
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Employing Lemma . and (.)-(.), we deduce that

lim
n→∞‖xn+ – yn‖ = . (.)

In view of (.) and (.), we get

lim
n→∞‖yn – u‖ = . (.)

Thus, {yn}n∈N is a bounded sequence.
From (.) and (.), it follows that

lim
n→∞‖xn – yn‖ = .

Since ∇g is uniformly norm-to-norm continuous on any bounded subset of E, we obtain

lim
n→∞

∥∥∇g(xn) –∇g(yn)
∥∥ = . (.)

Applying Lemma ., we deduce that

lim
n→∞Dg(yn,xn) = . (.)

It follows from the three point identity (see (.)) that

∣∣Dg(w,xn) –Dg(w, yn)
∣∣ =

∣∣Dg(w, yn) +Dg(yn,xn)

+
〈
w – yn,∇g(yn) –∇g(xn)

〉
–Dg(w, yn)

∣∣
=

∣∣Dg(yn,xn) –
〈
w – yn,∇g(yn) –∇g(xn)

〉∣∣
≤ Dg(yn,xn) + ‖w – yn‖

∥∥∇g(yn) –∇g(xn)
∥∥

→  (.)

as n→ ∞.
The function g is bounded on bounded subsets of E and thus ∇g is also bounded on

bounded subsets of E∗ (see, for example, [, Proposition ..] for more details). This,
together with Step , implies that the sequences {∇g(xn)}n∈N, {∇g(yn)}n∈N and {∇g(Tj(xn +
ejn)) : n ∈N∪ {}, j ∈ {, , , . . . ,N}} are bounded in E∗.
In view of Theorem .(), we know that dom g∗ = E∗ and g∗ is strongly coercive and uni-

formly convex on bounded subsets. Let s = sup{‖∇g(Tj(xn + ejn))‖ : j ∈ {, , , . . . ,N},n ∈
N ∪ {}} and let ρ∗

s : E∗ → R be the gauge of uniform convexity of the conjugate func-
tion g∗. Suppose that i ∈ N satisfies condition (). We prove that for any w ∈ F and
j ∈ {, , , . . . ,N},

Dg(w, yn)≤ Dg(w,xn) +
N∑
j=

αn,jDg
(
xn,xn + ejn

)

+
N∑
j=

αn,j
〈
w – xn,∇g(xn) –∇g

(
xn + ejn

)〉

– αn,iαn,jρ
∗
s
(∥∥∇g

(
Ti

(
xn + ein

))
–∇g

(
Tj

(
xn + ejn

))∥∥). (.)
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Let us show (.). For any given w ∈ F and j ∈ {, , , . . . ,N}, in view of the definition of
the Bregman distance (see (.)), (.), Lemmas . and ., we obtain

Dg(w, yn) = Dg

(
w,∇g∗

[
αn,∇g(xn) +

N∑
j=

αn,j∇g
(
Tj

(
xn + ejn

))])

= V

(
w,αn,∇g(xn) +

N∑
j=

αn,j∇g
(
Tj

(
xn + ejn

)))

= g(w) –

〈
w,αn,∇g(xn) +

N∑
j=

αn,j∇g
(
Tj

(
xn + ejn

))〉

+ g∗(αn,∇g(xn)
)
+

N∑
j=

αn,j∇g
(
Tj

(
xn + ejn

))

≤ αn,g(w) +
N∑
j=

αn,jg(w) – αn,
〈
w,∇g(xn)

〉
–

N∑
j=

αn,j
〈
w,∇g

(
Tj

(
xn + ejn

))〉

+ αn,g∗(∇g(xn)
)
+

N∑
j=

αn,jg∗(∇g
(
Tj

(
xn + ejn

)))

– αn,iαn,jρ
∗
s
(∥∥∇g

(
Ti

(
xn + ein

))
–∇g

(
Tj

(
xn + ejn

))∥∥)
= αn,V

(
w,∇g(xn)

)
+

N∑
j=

αn,jV
(
w,∇g

(
Tj

(
xn + ejn

)))

– αn,iαn,jρ
∗
s
(∥∥∇g

(
Ti

(
xn + ein

))
–∇g

(
Tj

(
xn + ejn

))∥∥)
= αn,Dg(w,xn) +

N∑
j=

αn,jDg
(
w,Tj

(
xn + ejn

))

– αn,iαn,jρ
∗
s
(∥∥∇g

(
Ti

(
xn + ein

))
–∇g

(
Tj

(
xn + ejn

))∥∥)
≤ αn,Dg(w,xn) +

N∑
j=

αn,jDg
(
w,xn + ejn

)

– αn,iαn,jρ
∗
s
(∥∥∇g

(
Ti

(
xn + ein

))
–∇g

(
Tj

(
xn + ejn

))∥∥)
= αn,Dg(w,xn) +

N∑
j=

αn,jDg(w,xn) +
N∑
j=

αn,jDg
(
xn,xn + ejn

)

+
N∑
j=

αn,j
〈
w – xn,∇g(xn) –∇g

(
xn + ejn

)〉

– αn,iαn,jρ
∗
s
(∥∥∇g

(
Ti

(
xn + ein

))
–∇g

(
Tj

(
xn + ejn

))∥∥)
= Dg(w,xn) +

N∑
j=

αn,jDg
(
xn,xn + ejn

)

+
N∑
j=

αn,j
〈
w – xn,∇g(xn) –∇g

(
xn + ejn

)〉

– αn,iαn,jρ
∗
s
(∥∥∇g

(
Ti

(
xn + ein

))
–∇g

(
Tj

(
xn + ejn

))∥∥).

http://www.fixedpointtheoryandapplications.com/content/2013/1/141


Naraghirad and Yao Fixed Point Theory and Applications 2013, 2013:141 Page 29 of 43
http://www.fixedpointtheoryandapplications.com/content/2013/1/141

Since limn→∞ ‖xn – (xn + ejn)‖ =  for all j ∈ {, , , . . . ,N} and ∇g is uniformly norm-to-
norm continuous on any bounded subset of E, we obtain

lim
n→∞

∥∥∇g(xn) –∇g
(
xn + ejn

)∥∥ = , ∀j ∈ {, , , . . . ,N}.

This, together with (.), implies that

Dg(w,xn) –Dg(w, yn) +
N∑
j=

αn,jDg
(
xn,xn + ejn

)

+
N∑
j=

αn,j
〈
w – xn,∇g(xn) –∇g

(
xn + ejn

)〉 →  as n → ∞. (.)

In view of (.) and (.), we conclude that

αn,iαn,jρ
∗
s
(∥∥∇g

(
Ti

(
xn + ein

))
–∇g

(
Tj

(
xn + ejn

))∥∥)

≤ Dg(w,xn) –Dg(w, yn) +
N∑
j=

αn,jDg
(
xn,xn + ejn

)

+
N∑
j=

αn,j
〈
xn+ – xn,∇g(xn) –∇g

(
xn + ejn

)〉

→ 

as n→ ∞. From the assumption lim infn→∞ αn,iαn,j > , ∀j ∈ {, , , . . . ,N}, we have

lim
n→∞ρ∗

s
(∥∥∇g

(
Ti

(
xn + ein

))
–∇g

(
Tj

(
xn + ejn

))∥∥) = , ∀j ∈ {, , , . . . ,N}.

Therefore, from the property of ρ∗
s , we deduce that

lim
n→∞

∥∥∇g
(
Ti

(
xn + ein

))
–∇g

(
Tj

(
xn + ejn

))∥∥ = , ∀j ∈ {, , , . . . ,N}.

Since ∇g∗ is uniformly norm-to-norm continuous on bounded subsets of E∗, we arrive at

lim
n→∞

∥∥Ti
(
xn + ein

)
– Tj

(
xn + ejn

)∥∥ = , ∀j ∈ {, , , . . . ,N}. (.)

In particular, for j = , we have

lim
n→∞

∥∥Ti
(
xn + ein

)
– xn

∥∥ = lim
n→∞

∥∥Ti
(
xn + ein

)
–
(
xn + en

)∥∥ = .

This, together with (.) and (.), implies that

lim
n→∞

∥∥Tj
(
xn + ejn

)
– xn + ejn

∥∥ = , ∀j ∈ {, , , . . . ,N}. (.)

From (.), we obtain

lim
n→∞

∥∥xn + ejn – u
∥∥ = , ∀j ∈ {, , , . . . ,N}. (.)
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In view of (.) and (.), we conclude that Tju = u, ∀j ∈ {, , , . . . ,N}. Thus, we have
u ∈ F .
Finally, we show that u = projgF x. From xn = projgCn x, we conclude that

〈
z – xn,∇g(xn) –∇g(x)

〉 ≥ , ∀z ∈ Cn.

Since F ⊂ Cn for each n ∈N, we obtain

〈
z – xn,∇g(xn) –∇g(x)

〉 ≥ , ∀z ∈ F . (.)

Letting n → ∞ in (.), we deduce that

〈
z – u,∇g(u) –∇g(x)

〉 ≥ , ∀z ∈ F .

In view of (.), we have u = projgF x, which completes the proof. �

Remark . In Theorem., we present a strong convergence theorem for Bregmanweak
relatively nonexpansive mappings with a new algorithm and new control conditions. This
is complementary to Reich and Sabach [, Theorem ]. It also extends and improves
Theorems ., . and ..

5 Equilibrium problems
Let E be a Banach space and let C be a nonempty, closed and convex subset of a reflexive
Banach space E. Let f : C × C → R be a bifunction. Consider the following equilibrium
problem: Find x̄ ∈ C such that

f (x̄, y) ≥ , ∀y ∈ C. (.)

In order to solve the equilibrium problem, let us assume that f : C × C → R satisfies the
following conditions []:
(A) f (x,x) =  for all x ∈ C;
(A) f is monotone, i.e., f (x, y) + f (y,x) ≤  for all x, y ∈ C;
(A) f is upper hemi-continuous, i.e., for each x, y, z ∈ C,

lim sup
t↓

f
(
tz + ( – t)x, y

) ≤ f (x, y);

(A) for each x ∈ C, the function y �−→ f (x, y) is convex and lower semicontinuous.
The set of solutions of problem (.) is denoted by EP(f ).
Let C be a nonempty, closed and convex subset of E and let g : E → R be a Legendre

function. For r > , we define a mapping Tr : E → C as follows:

Tr(x) =
{
z ∈ C : f (z, y) +


r
〈
y – z,∇g(z) –∇g(x)

〉 ≥  for all y ∈ C
}

(.)

for all x ∈ E.
The following two lemmas were proved in [].
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Lemma . Let E be a reflexive Banach space and let g : E → R be a Legendre function.
Let C be a nonempty, closed and convex subset of E and let f : C × C → R be a bifunc-
tion satisfying (A)-(A). For r > , let Tr : E → C be the mapping defined by (.). Then
dom(Tr) = E.

Lemma . Let E be a reflexive Banach space and let g : E → R be a convex, continuous
and strongly coercive function which is bounded on bounded subsets and uniformly convex
on bounded subsets of E. Let C be a nonempty, closed and convex subset of E and let f :
C × C → R be a bifunction satisfying (A)-(A). For r > , let Tr : E → C be the mapping
defined by (.). Then the following statements hold:
() Tr is single-valued;
() Tr is a Bregman firmly nonexpansive mapping [], i.e., for all x, y ∈ E,

〈
Trx – Try,∇g(Trx) –∇g(Try)

〉 ≤ 〈
Trx – Try,∇g(x) –∇g(y)

〉
;

() F(Tr) = EP(f );
() EP(f ) is closed and convex;
() Tr is a Bregman quasi-nonexpansive mapping;
() Dg(q,Trx) +Dg(Trx,x)≤ Dg(q,x), ∀q ∈ F(Tr).

Theorem . Let E be a reflexive Banach space and let g : E → R be a strongly coercive
Bregman function which is bounded on bounded subsets and uniformly convex and uni-
formly smooth on bounded subsets of E. Let f be a bifunction from E × E to R satisfying
(A)-(A). Let N ∈ N and let {Tj}Nj= be a finite family of Bregman weak relatively non-
expansive mappings from E into int dom g such that F :=

⋂N
j= F(Tj) is a nonempty subset

of E. Suppose in addition that T = I , where I is the identity mapping on E. Suppose that
F ∩ EP(f ) is a nonempty subset of E, where EP(f ) is the set of solutions to the equilibrium
problem (.). Let {xn}n∈N be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ E chosen arbitrarily,

C = E,

yn = ∇g∗[αn,∇g(xn) +
∑N

j= αn,j∇g(Tj(xn + ejn))],

un ∈ E such that f (un, y) + 
rn 〈y – un,∇g(un) –∇g(yn)〉 ≥ ,∀y ∈ E,

Cn+ = {z ∈ Cn :Dg(z,un) ≤ Dg(z,xn) +
∑N

j= αn,jDg(xn,xn + ejn)

+
∑N

j= αn,j〈z – xn,∇g(xn) –∇g(xn + ejn)〉},
xn+ = projgCn+

x and n ∈N∪ {},

(.)

where ∇g is the right-hand derivative of g . Let {αn,j : n ∈ N ∪ {}, j ∈ {, , , . . . ,N}} be a
sequence in (, ) satisfying the following control conditions:
()

∑N
j= αn,j = , ∀n ∈ N∪ {};

() There exists i ∈ {, , . . . ,N} such that lim infn→∞ αn,iαn,j > , ∀j ∈ {, , , . . . ,N}.
If, for each j = , , , . . . ,N , the sequences of errors {ejn}n∈N ⊂ E satisfy lim infn→∞ ejn = ;
then the sequence {xn}n∈N defined in (.) converges strongly to projgF∩EP(f ) x as n→ ∞.

Proof By the same argument, as in the proof of Theorem ., we can prove the following:
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(i) limn→∞ ‖xn – un‖ =  and limn→∞ ‖∇g(xn) –∇g(un)‖ = .
(ii) For each w ∈ F , limn→∞ |Dg(w,xn) –Dg(w,un)| = .
(iii) There exists u ∈ F such that xn → u as n→ ∞.

Since un = Trnyn, for any w ∈ F , we have

Dg(w,un) = Dg(w,Trnyn)

≤ Dg(w, yn)

≤ Dg(w,xn) +
N∑
j=

αn,jDg
(
xn,xn + ejn

)

+
N∑
j=

αn,j
〈
w – xn,∇g(xn) –∇g

(
xn + ejn

)〉
. (.)

Next, we show that u ∈ EP(f ). From Lemma .(), (.) and un = Trnyn, we conclude
that

Dg(un, yn) = Dg(Trnyn, yn)

≤ Dg(w, yn) –Dg(w,Trnyn)

≤ Dg(w,xn) –Dg(w,un) +
N∑
j=

αn,jDg
(
xn,xn + ejn

)

+
N∑
j=

αn,j
〈
w – xn,∇g(xn) –∇g

(
xn + ejn

)〉
→  (.)

as n→ ∞. In view of (.) and Lemma ., we obtain

lim
n→∞‖un – yn‖ = . (.)

Since ∇g is uniformly norm-to-norm continuous on any bounded subset of E, it follows
from (.) that

lim
n→∞

∥∥∇g(un) –∇g(yn)
∥∥ = .

By the assumption rn ≥ a, we have

lim
n→∞

‖∇g(un) –∇g(yn)‖
rn

= . (.)

In view of un = Trnyn, we obtain

f (un, y) +

rn

〈
y – un,∇g(un) –∇g(yn)

〉 ≥ , ∀y ∈ E.
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From condition (A), we deduce that

‖y – un‖‖∇g(un) –∇g(yn)‖
rn

≥ 
rn

〈
y – un,∇g(un) –∇g(yn)

〉
≥ –f (un, y) ≥ f (y,un) ≥ , ∀y ∈ E.

Letting n → ∞ in the above inequality, we have from (.) and (A) that

f (y,u) ≤ , ∀y ∈ E.

For t ∈ (, ] and y ∈ E, let yt = ty + ( – t)u. Then we have yt ∈ E, which yields that
f (yt ,u) ≤ . From (A), we also have

 = f (yt , yt) ≤ tf (yt , y) + ( – t)f (yt ,u) ≤ tf (yt , y).

Dividing by t, we get

f (yt , y) ≥ , ∀y ∈ E.

Letting t ↓ , from the condition (A), we obtain that

f (u, y) ≥ , ∀y ∈ E.

This means that u ∈ EP(f ). Therefore, u ∈ F ∩ EP(f ). �

Theorem . Let E be a -uniformly convex Banach space and let g : E →R be a strongly
coercive Bregman function which is bounded on bounded subsets and uniformly convex
and uniformly smooth on bounded subsets of E. Assume that there exists c >  such that g
is ρ-convex with ρ(t) := c

 t
 for all t ≥ . Let C be a nonempty, closed and convex subset

of E and let f be a bifunction from C × C to R satisfying (A)-(A). Assume that {Tj}j∈N
is an infinite family of Bregman weak relatively nonexpansive mappings from C into itself
and that A : C → E∗ is a γ -inverse strongly monotone mapping for some γ > . Suppose
that F :=

⋂∞
j= F(Tj) ∩ A–() ∩ EP(f ) is a nonempty subset of C, where EP(f ) is the set of

solutions to the equilibrium problem (.). Suppose in addition that T = I , where I is the
identity mapping on E. Let {xn}n∈N be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C chosen arbitrarily,

C = C,

yn = projgC(∇g∗[∇g(xn) – βAxn]),

zn = ∇g∗[αn,∇g(xn) +
∑∞

j= αn,j∇g(Tjyn)],

un ∈ C such that f (un, y) + 
rn 〈y – un,∇g(un) –∇g(yn)〉 ≥ ,∀y ∈ C,

Cn+ = {z ∈ Cn :Dg(z,un) ≤ Dg(z,xn)},
xn+ = projgCn+

x and n ∈N∪ {},

(.)

where∇g is the right-handderivative of g .Letβ be a constant such that  < β < cγ
 ,where c

is the -uniformly convex constant of E satisfying Corollary .(). Let {αn,j : n ∈N∪{}, j ∈
N∪ {}} be a sequence in (, ) satisfying the following control conditions:
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()
∑∞

j= αn,j = , ∀n ∈ N∪ {};
() lim infn→∞ αn,αn,j > , ∀j ∈N.

Then the sequence {xn}n∈N defined in (.) converges strongly to projgF x as n→ ∞.

Proof We divide the proof into several steps.
Step . Following the method of the proof of Theorem . Step , we obtain that Cn is

both closed and convex for each n ∈N∪ {}.
Step . We claim that F ⊂ Cn for all n ∈N∪ {}.
It is obvious that F ⊂ C = C. Assume now that F ⊂ Cm for somem ∈N. It follows from

Lemma . that, for each w ∈ F ⊂ Cm, we have

Dg(w, ym) = Dg
(
w,projgC

(∇g∗[∇g(xm) – βAxm
]))

≤ Dg
(
w,∇g∗[∇g(xm) – βAxm

])
= V

(
w,∇g(xm) – βAxm

)
≤ V

(
w,∇g(xm) – βAxm + βAxm

)
–
〈∇g∗(∇g(xm) – βAxm

)
–w,βAxm

〉
= V

(
w,∇g(xm)

)
– β

〈∇g∗(∇g(xm) – βAxm
)
–w,Axm

〉
= Dg(w,xm) – β〈xm –w,Axm〉 – β

〈∇g∗(∇g(xm) – βAxm
)
– xm,Axm

〉
≤ Dg(w,xm) – βγ ‖Axm‖ + β

∥∥∇g∗(∇g(xm) – βAxm
)
–∇g∗∇g(xm)

∥∥‖Axm‖

≤ Dg(w,xm) – βγ ‖Axm‖ + β

c
‖Axm‖

≤ Dg(w,xm) + β

(
β

c
– γ

)
‖Axm‖. (.)

This, together with β

c
– γ < , implies that

Dg(w, ym) ≤ Dg(w,xm).

Since Tj is Bregman weak relatively nonexpansive, for each j ∈N, we obtain

Dg(w,um) = Dg(w,Trmzm)

≤ Dg(w, zm)

= Dg

(
w,∇g∗

[
αm,∇g(xm) +

∞∑
j=

αm,j∇g(Tjym)

])

= V

(
w,αm,∇g(xm) +

∞∑
j=

αm,j∇g(Tjym)

)

= g(w) –

〈
w,αm,∇g(xm) +

∞∑
j=

αm,j∇g(Tjym)

〉

+ g∗
(

αm,∇g(xm) +
∞∑
j=

αm,j∇g(Tjym)

)
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≤ αm,g(w) +
∞∑
j=

αm,jg(w)

+ αm,g∗(∇g(xm)
)
+

∞∑
j=

αm,jg∗(∇g(Tjym)
)

= αm,V
(
w,∇g(xm)

)
+

∞∑
j=

αm,jV
(
w,∇g(Tjym)

)

= αm,Dg(w,xm) +
∞∑
j=

αm,jDg(w,Tjym)

≤ αm,Dg(w,xm) +
∞∑
j=

αm,jDg(w, ym)

≤ Dg(w,xm).

This proves that w ∈ Cm+. Consequently, we see that F ⊂ Cn for any n ∈N∪ {}.
Step . By the same manner, as mentioned in the proof of Theorem ., Step , we can

prove that the sequences {xn}n∈N, {yn}n∈N, {zn}n∈N, {un}n∈N and {Tjyn : j ∈N∪ {},n ∈N∪
{}} are bounded.
Step . We show that xn → u for some u ∈ F , where u = projgF x.
A similar argument, as mentioned in Theorem ., Step , shows that there exists u ∈ C

such that

lim
n→∞‖xn – u‖ =  and lim

n→∞‖un – xn‖ = . (.)

In view of Lemma ., we deduce that

lim
n→∞Dg(un,xn) = .

Since ∇g is uniformly norm-to-norm continuous on any bounded subset of E, we obtain

lim
n→∞

∥∥∇g(un) –∇g(xn)
∥∥ = .

It follows from the three point identity (see (.)) that

∣∣Dg(w,xn) –Dg(w,un)
∣∣ =

∣∣Dg(w,un) +Dg(un,xn)

+
〈
w – un,∇g(un) –∇g(xn)

〉
–Dg(w,un)

∣∣
=

∣∣Dg(un,xn) –
〈
w – un,∇g(un) –∇g(xn)

〉∣∣
≤ Dg(un,xn) + ‖w – un‖

∥∥∇g(un) –∇g(xn)
∥∥

→  (.)

as n → ∞. The function g is bounded on bounded subsets of E and thus ∇g is also
bounded on bounded subsets of E∗ (see, for example, [, Proposition ..] for more
details). This, together with Step , implies that the sequences {∇g(xn)}n∈N, {∇g(yn)}n∈N,
{∇g(zn)}n∈N and {∇g(Tjxn) : j ∈N∪ {},n ∈N∪ {}} are bounded in E∗.

http://www.fixedpointtheoryandapplications.com/content/2013/1/141


Naraghirad and Yao Fixed Point Theory and Applications 2013, 2013:141 Page 36 of 43
http://www.fixedpointtheoryandapplications.com/content/2013/1/141

In view of Theorem .(), we know that dom g∗ = E∗ and g∗ is strongly coercive and
uniformly convex on bounded subsets. Let s = sup{‖∇g(xn)‖,‖∇g(Tjxn)‖ : j ∈ N ∪ {},n ∈
N∪ {}} and ρ∗

s : E∗ →R be the gauge of uniform convexity of the conjugate function g∗.
For any given w ∈ F(T) and j ∈ N, in view of the definition of the Bregman distance (see
(.)), (.), Lemmas . and ., we obtain

Dg(w,un) = Dg(w,Trnzn)

≤ Dg(w, zn)

= Dg

(
w,∇g∗

[
αn,∇g(xn) +

∞∑
j=

αn,j∇g(Tjyn)

])

= V

(
w,αn,∇g(xn) +

∞∑
j=

αn,j∇g(Tjyn)

)

= g(w) –

〈
w,αn,∇g(xn) +

∞∑
j=

αn,j∇g(Tjyn)

〉

+ g∗
(

αn,∇g(xn) +
∞∑
j=

αn,j∇g(Tjyn)

)

≤ αn,g(w) +
∞∑
j=

αn,jg(w)

– αn,
〈
w,∇g(xn)

〉
–

∞∑
j=

αn,j
〈
w,∇g(Tjyn)

〉

+ αn,g∗(∇g(xn)
)
+

∞∑
j=

αn,jg∗(∇g(Tjyn)
)

– αn,iαn,jρ
∗
s
(∥∥∇g(xn) –∇g(Tjyn)

∥∥)
= αn,V

(
w,∇g(xn)

)
+

∞∑
j=

αn,jV
(
w,∇g(Tjyn)

)

– αn,αn,jρ
∗
s
(∥∥∇g(xn) –∇g(Tjyn)

∥∥)
= αn,Dg(w,xn) +

∞∑
j=

αn,jDg(w,Tjyn)

– αn,αn,jρ
∗
s
(∥∥∇g(xn) –∇g(Tjyn)

∥∥)
= αn,Dg(w,xn) +

∞∑
j=

αn,jDg(w, yn)

– αn,αn,jρ
∗
s
(∥∥∇g(xn) –∇g(Tjyn)

∥∥)
≤ αn,Dg(w,xn) +

∞∑
j=

αn,jDg(w,xn)

– αn,αn,jρ
∗
s
(∥∥∇g(xn) –∇g(Tjyn)

∥∥)
= Dg(w,xn) – αn,αn,jρ

∗
s
(∥∥∇g(xn) –∇g(Tjxn)

∥∥). (.)
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In view of (.), (.) and (.), we conclude that

αn,αn,jρ
∗
s
(∥∥∇g(xn) –∇g(Tjyn)

∥∥)
≤ Dg(w,xn) –Dg(w, zn)

→ 

as n→ ∞. From the assumption lim infn→∞ αn,αn,j > , ∀j ∈ N, we have

lim
n→∞ρ∗

s
(∥∥∇g(xn) –∇g(Tjyn)

∥∥) = , ∀j ∈N.

Therefore, from the property of ρ∗
s , we deduce that

lim
n→∞

∥∥∇g(xn) –∇g(Tjyn)
∥∥ = , ∀j ∈ N.

Since ∇g∗ is uniformly norm-to-norm continuous on bounded subsets of E∗, we arrive at

lim
n→∞‖xn – Tjyn‖ = , ∀j ∈N. (.)

Using inequalities (.) and (.), we obtain

Dg(w,un)≤ αn,Dg(w,xn) +
∞∑
j=

αn,jDg(w, yn)

≤ αn,Dg(w,xn) +
∞∑
j=

αn,j

[
Dg(w,xn) + β

(
β

c
– γ

)
‖Axn‖

]

=Dg(w,xn) + β

∞∑
j=

αn,j

(
β

c
– γ

)
‖Axn‖. (.)

It follows from (.) that

β

∞∑
j=

αn,j

(
γ –

β

c

)
‖Axn‖ ≤ Dg(w,xn) –Dg(w,un).

Since β

c
– γ < , we see that

lim
n→∞‖Axn‖ = . (.)

Furthermore, since xn ∈ C for all n ≥ , then using (.), Lemma . and Corollary ., we
get

Dg(xn, yn) =Dg
(
xn,proj

g
C
(∇g∗[∇g(xn) – βAxn

]))
≤ Dg

(
xn,∇g∗[∇g(xn) – βAxn

])
= V

(
xn,∇g(xn) – βAxn

)
≤ V

(
xn,∇g(xn) – βAxn + βAxn

)
–
〈∇g∗(∇g(xn) – βAxn

)
– xn,βAxn

〉
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= V
(
xn,∇g(xn)

)
– β

〈∇g∗(∇g(xn) – βAxn
)
–w,Axn

〉
=Dg(xn,xn) – β〈xn – xn,Axn〉 – β

〈∇g∗(∇g(xn) – βAxn
)
– xn,Axn

〉
≤ β

∥∥∇g∗(∇g(xn) – βAxn
)
–∇g∗∇g(xn)

∥∥‖Axn‖

≤ β

c
‖Axn‖.

It follows from (.) that

lim
n→∞Dg(xn, yn) = .

Lemma . now implies that

lim
n→∞‖xn – yn‖ = . (.)

Using (.) and (.), we conclude that

lim
n→∞‖yn – u‖ =  and lim

n→∞‖yn – Tjyn‖ = , ∀j ∈ N. (.)

Therefore, u ∈ F̃(Tj) = F(Tj), ∀j ∈N.
Step . We show that u ∈ A–().
Since A is γ -inverse strongly monotone, it is continuous and hence, using (.) and

(.), we conclude that Au = limn→∞ Axn = . Therefore, u ∈ A–().
Step . Finally, we show that u = projgF x.
The proof of this step is similar to that of Theorem ., Step  and is omitted here. �

We end this section with the following simple example in order to support Theorem ..

Example . Let E = l and

x = (, , , , . . .),

x = (, , , , , . . .),

x = (, , , , , , . . .),

x = (, , , , , , , . . .),

· · · ,
xn = (σn,,σn,, . . . ,σn,k , . . .),

· · · ,

where

σn,k =

⎧⎨
⎩ if k = ,n + ,

 if k �= ,k �= n + 
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for all n ∈N. It is easy to see that the sequence {xn}n∈N converges weakly to x. Let k be an
even number in N and let g : E →R be defined by

g(x) =

k
‖x‖k , x ∈ E.

It is easy to show that ∇g(x) = Jk(x) for all x ∈ E, where

Jk(x) =
{
x∗ ∈ E∗ :

〈
x,x∗〉 = ‖x‖∥∥x∗∥∥,∥∥x∗∥∥ = ‖x‖k–}.

It is also obvious that

Jk(λx) = λk–Jk(x), ∀x ∈ E,λ ∈R.

Now, we define a countable family of mappings Tj : E → E by

Tj(x) =

⎧⎨
⎩

n
n+x if x = xn;
–x
j if x �= xn

for all j ≥  and n ≥ . It is clear that F(Tj) = {} for all j ≥ . Choose j ∈ N, then for any
n ∈N,

Dg(,Tjxn) = g() – g(Tjxn) –
〈
 – Tjxn,∇g(Tjxn)

〉
= –

nk

(n + )k
g(xn) +

nk

(n + )k
〈
xn,∇g(xn)

〉

=
nk

(n + )k
[
–g(xn) +

〈
xn,∇g(xn)

〉]

=
nk

(n + )k
[
Dg(,xn)

]
≤ Dg(,xn).

If x �= xn, then we have

Dg(,Tjx) = g() – g(Tjx) –
〈
 – Tjx,∇g(Tjx)

〉
= –


jk
g(x) –


jk
〈
x, –∇g(x)

〉

=

jk
[
–g(x) –

〈
–x,∇g(x)

〉]
≤ Dg(,x).

Therefore, Tj is a Bregman quasi-nonexpansive mapping. Next, we claim that Tj is a
Bregman weak relatively nonexpansive mapping. Indeed, for any sequence {zn}n∈N ⊂ E
such that zn → z and ‖zn –Tjzn‖ →  as n→ ∞, there exists a sufficiently large number
N ∈ N such that zn �= xm for any n,m > N. This implies that Tjzn = – zn

j for all n > N.
It follows from ‖zn – Tjzn‖ →  that j+

j zn →  and hence zn → z = . Since z ∈ F(Tj),
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we conclude that Tj is a Bregman weak relatively nonexpansive mapping. It is clear that⋂∞
j= F̃(Tj) =

⋂∞
j= F(Tj) = {}. Thus {Tj}j∈N is a countable family of Bregmanweak relatively

nonexpansive mappings.
Next, we show that {Tj}j∈N is not a countable family of Bregman relatively nonexpansive

mappings. In fact, though xn ⇀ x and

‖xn – Tjxn‖ =
∥∥∥∥xn – n

n + 
xn

∥∥∥∥ =


n + 
‖xn‖ → 

as n → ∞, but x /∈ F(Tj) for all j ∈ N. Therefore, F̂(Tj) �= F(Tj) for all j ∈ N. This implies
that

⋂∞
j= F̂(Tj) �=⋂∞

j= F(Tj).
Finally, it is obvious that the family {Tj}j∈N satisfies all the aspects of the hypothesis of

Theorem ..

6 Applications (Hammerstein-type equations)
Let E be a real Banach space with the dual space E∗. The generalized formulation of many
boundary value problems for ordinary and partial differential equations leads to operator
equations of the type

〈z,Ax〉 = 〈z,b〉, ∀z ∈ E,

which is equivalent to equality of functionals on E. That is, the equality of the form

Ax = b, (.)

where A is a monotone-type operator acting from a Banach space E into E∗. Without loss
of generality, we may assume b = . It is well known that a solution of the equation Ax = 
(i.e., 〈z,Ax〉 = , ∀z ∈ E) is a solution of the variational inequality 〈z – x,Ax〉 ≥ , ∀z ∈ E.
Therefore, the theory of monotone operators and its applications to nonlinear partial dif-
ferential equations and variational inequalities are related and have been involved in a
substantial topic in nonlinear functional analysis. One important application of solving
(.) is finding the zeros of the so-called equation of Hammerstein type (see, e.g., []),
where a nonlinear integral equation of Hammerstein type is one of the form

u(x) +
∫

�

k(x, y)f
(
y,u(y)

)
dy = h(x), (.)

where dy is a σ -finite measure on the measure space �; the real kernel k is defined on
�×�, f is a real-valued function defined on �×R and is, in general, nonlinear and h is a
given function on�. If we now define an operatorK byKv(x) =

∫
�
k(x, y)v(y)dy; x ∈ �, and

the so-called superposition or Nemytskii operator by Qu(y) := f (y,u(y)), then the integral
Eq. (.) can be put in operator theoretic form as follows:

u +KQu = , (.)

where, without loss of generality, we have taken h = .
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Interest in Eq. (.) stems mainly from the fact that several problems that arise in differ-
ential equations, for instance, elliptic boundary value problems, whose linear parts possess
Green’s functions, can, as a rule, be transformed into equations of the form (.) (see, e.g.,
[], Chapter IV). Equations of Hammerstein type play a crucial role in the theory of opti-
mal control systems (see, e.g., []). Several existence and uniqueness theorems have been
proved for equations of Hammerstein type (see, e.g., [–]). Very recently, Ofoedu and
Malonza in [] proposed an iterative solution of the operator Hammerstein Eq. (.) in
a -uniformly convex and uniformly smooth Banach space.
Now, we give an application of Theorem . to an iterative solution of the operator

Hammerstein Eq. (.).

Theorem. Let E be a real Banach space with a dual space E∗ such that X = E×E∗ (with
the norm ‖z‖X = ‖u‖E +‖v‖E∗ , z = (u, v) ∈ X) is a -uniformly convex and uniformly smooth
real Banach space. Let g : X →R be a strongly coercive Bregman function which is bounded
on bounded subsets and uniformly convex and uniformly smooth on bounded subsets of X .
Assume that there exists c >  such that g is ρ-convex with ρ(t) := c

 t
 for all t ≥ . Let Q :

E → E∗ and K : E∗ → E with domK = Q(E) = E∗ be continuous monotone-type operators
such that Eq. (.) has a solution in E and such that the map A : X → X∗ defined by Az :=
A(u, v) = (Qu – v,u + Kv) is γ -inverse strongly monotone. Let C be a nonempty, closed and
convex subset of X, let f : C × C → R be a bifunction satisfying (A)-(A) and let {Tj}j∈N
be an infinite family of Bregman weak relatively nonexpansive mappings from C into itself.
Let {xn}n∈N be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C chosen arbitrarily,

C = C,

yn = projgC(∇g∗[∇g(xn) – βAxn]),

zn = ∇g∗[αn,∇g(xn) +
∑∞

j= αn,j∇g(Tjyn)],

un ∈ C such that f (un, y) + 
rn 〈y – un,∇g(un) –∇g(yn)〉 ≥ ,∀y ∈ C,

Cn+ = {z ∈ Cn :Dg(z,un) ≤ Dg(z,xn)},
xn+ = projgCn+

x and n ∈N∪ {},

(.)

where∇g is the right-handderivative of g .Letβ be a constant such that  < β < cγ
 ,where c

is the -uniformly convex constant of E satisfying Corollary .(). Let {αn,j : n ∈N∪{}, j ∈
N∪ {}} be a sequence in (, ) satisfying the following control conditions:
()

∑∞
j= αn,j = , ∀n ∈ N∪ {};

() lim infn→∞ αn,αn,j > , ∀j ∈N.
Suppose that F :=

⋂∞
j= F(Tj) ∩ A–() ∩ EP(f ) �= ∅, then the sequence {xn}n∈N defined by

(.) converges strongly to projgF x as n→ ∞.

Remark . Observe that z ∈ F implies, in particular, that z ∈ A–() ⇐⇒ Az = . But
z = (u, v) for some u ∈ E and v ∈ E∗; moreover, Az = A(u, v) = (Qu – v,u +Kv).
So, Az =  implies that (Qu – v,u +Kv) = (, ). This is equivalent toQu – v =  and
u + Kv = . Thus we have v = Qu which in turn implies that u + Kv = . Therefore,
u ∈ E solves the Hammerstein-type Eq. (.).
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