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Abstract

In this paper, we introduce a new class of mappings called Bregman weak relatively
nonexpansive mappings and propose new hybrid iterative algorithms for finding
common fixed points of an infinite family of such mappings in Banach spaces. We
prove strong convergence theorems for the sequences produced by the methods.
Furthermore, we apply our method to prove strong convergence theorems of
iterative algorithms for finding common fixed points of finitely many Bregman weak
relatively nonexpansive mappings in reflexive Banach spaces. These algorithms take
into account possible computational errors. We also apply our main results to solve
equilibrium problems in reflexive Banach spaces. Finally, we study hybrid iterative
schemes for finding common solutions of an equilibrium problem, fixed points of an
infinite family of Bregman weak relatively nonexpansive mappings and null spaces of
a y-inverse strongly monotone mapping in 2-uniformly convex Banach spaces. Some
application of our results to the solution of equations of Hammerstein-type is
presented. Our results improve and generalize many known results in the current
literature.
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1 Introduction

The hybrid projection method was first introduced by Hangazeau in [1]. In a series of
papers [2-12], authors investigated the hybrid projection method and proved strong and
weak convergence theorems for the sequences produced by their method. The shrinking
projection method, which is a generalization of the hybrid projection method, was first
introduced by Takahashi et al. in [13]. Throughout this paper, we denote the set of real
numbers and the set of positive integers by R and N, respectively. Let E be a Banach space
with the norm || - || and the dual space E*. For any x € E, we denote the value of x* € E* at
x by (x,x*). Let {x,},en be a sequence in E. We denote the strong convergence of {x,},en
tox € E as n — 0o by x, — x and the weak convergence by x, — x. The modulus § of

convexity of E is denoted by

llx + ¥
2

5(6)=inf{1— el =LAyl <1 lle -yl 26}
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for every € with 0 < € <2. A Banach space E is said to be uniformly convex if 5(¢) > 0 for
every € > 0. Let Sg = {x € E : ||x|| = 1}. The norm of E is said to be Gdteaux differentiable if
for each x,y € S, the limit

X+ tyl| —|[|x
lim llx + gyl = llxll (L1)
t—0 t

exists. In this case, E is called smooth. If the limit (1.1) is attained uniformly for all x,y €

Sk, then E is called uniformly smooth. The Banach space E is said to be strictly convex if

x+y
1=

only if £* is uniformly smooth. It is also known that if E is reflexive, then E is strictly convex

| <1 whenever x,y € Sg and x # y. It is well known that E is uniformly convex if and

if and only if E* is smooth; for more details, see [14, 15].

Let C be a nonempty subset of E. Let T : C — E be a mapping. We denote the set of
fixed points of T by F(T), i.e., F(T) = {x € C: Tx = x}. A mapping T : C — E is said to
be nonexpansive if | Tx — Ty|| < ||x — y|| for all x,y € C. A mapping T : C — E is said to
be quasi-nonexpansive if F(T) # ¥ and | Tx — y|| < ||x — y|| for allx € C and y € F(T). The
concept of nonexpansivity plays an important role in the study of Mann-type iteration
[16] for finding fixed points of a mapping 7 : C — C. Recall that the Mann-type iteration
is given by the following formula:

Xn+l = J/nTxn + (1 - yn)xn’ x1€C. (12)

Here, {y,}xen is a sequence of real numbers in [0, 1] satisfying some appropriate condi-
tions. The construction of fixed points of nonexpansive mappings via Mann’s algorithm
[16] has been extensively investigated recently in the current literature (see, for example,
[17] and the references therein). In [17], Reich proved the following interesting result.

Theorem 1.1 Let C be a closed and convex subset of a uniformly convex Banach space E
with a Fréchet differentiable norm, let T : C — C be a nonexpansive mapping with a fixed
point, and let y, be a sequence of real numbers such that y, € (0,11 and Y -, yu(1-y,) = oc.
Then the sequence {x,},cn generated by Mann’s algorithm (1.2) converges weakly to a fixed
point of T.

However, the convergence of the sequence {x,},cy generated by Mann’s algorithm (1.2)
is in general not strong (see a counterexample in [18]; see also [19]). Some attempts to
modify the Mann iteration method (1.2) so that strong convergence is guaranteed have
recently been made. Bauschke and Combettes [4] proposed the following modification of
the Mann iteration method for a single nonexpansive mapping 7 in a Hilbert space H:

xo=x€C,

Vn = Xy + (L= ) Ty,

Co={ze Cy:llz=yull < llz—x4ll}, (1.3)
Qu={z€C:{x;,—2z,x—-x,) >0},

Xnsl = PCnﬁan;

where C is a closed and convex subset of H, P denotes the metric projection from H onto
a closed and convex subset Q of H. They proved that if the sequence {o,},cn is bounded
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above from one, then the sequence {x,},en generated by (1.3) converges strongly to Pr(ryx
as n — 00.

Let E be a smooth, strictly convex and reflexive Banach space and let / be a normalized
duality mapping of E. Let C be a nonempty, closed and convex subset of E. The generalized
projection Il¢ from E onto C [20] is defined and denoted by

[M¢(x) = argmin ¢ (y, x),
yeC

where ¢(x, ) = ||x]|?> — 2(x,Jy) + ||¥]|>. Let C be a nonempty, closed and convex subset of a
smooth Banach space E, let T' be a mapping from C into itself. A point p € C is said to be
an asymptotic fixed point [21] of T if there exists a sequence {x,},cn in C which converges
weakly to p and lim,,_, « ||, — T%,|| = 0. We denote the set of all asymptotic fixed points
of T by F(T). A point p € C is called a strong asymptotic fixed point of T if there exists
a sequence {x,},cn in C which converges strongly to p and lim,_, « ||, — Tx,|| = 0. We
denote the set of all strong asymptotic fixed points of T by F(T).

Following Matsushita and Takahashi [22], a mapping T : C — C is said to be relatively
nonexpansive if the following conditions are satisfied:

(1) F(T) is nonempty;

(2) o(u, Tx) < d(u,x),Yu e F(T),x € C;

(3) F(T) = F(T).

In 2005, Matsushita and Takahashi [22] proved the following strong convergence theo-
rem for relatively nonexpansive mappings in a Banach space.

Theorem 1.2 Let E be a uniformly smooth and uniformly convex Banach space, let C be
a nonempty, closed and convex subset of E, let T be a relatively nonexpansive mapping
from C into itself, and let {a,},cn be a sequence of real numbers such that 0 < a,, <1 and
limsup,_, . o, < 1. Suppose that {x,}nen is given by

xo=x€C,
IYn :]_1(05n]xn + (1 — )/ Tx,),
Hn = {Z € Cn :¢(Z:yn) < ¢(Z:xn)}) (14)

W,={zeC: (x,—zJx—Jx,) >0},

Xns1 = Hp,nw,x.
IfF(T) is nonempty, then {x,},en converges strongly to Iprx.

1.1 Some facts about gradient

For any convex function g : E — (—00, +00] we denote the domain of g by domg = {x €
E : g(x) < co}. For any x € intdomg and any y € E, we denote by g°(x,y) the right-hand
derivative of g at x in the direction y, that is,

glx +ty) — g(x) .

, (1.5)

0 T
g (xy)= 1}{3

glx+ty)—g(x)
t

In this case, g°(x, y) coincides with Vg(x), the value of the gradient Vg of g at x. The func-

The function g is said to be Gdteaux differentiable at x if lim;_,¢ exists for any y.

tion g is said to be Gdteaux differentiable if it is Gateaux differentiable everywhere. The
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function g is said to be Fréchet differentiable at x if this limit is attained uniformly in
llyll = 1. The function g is Fréchet differentiable at x € E (see, for example, [23, p.13] or
[24, p.508)) if for all € > 0, there exists § > 0 such that ||y — x| < § implies that

lg() —gx) =y — %, Vgx))| <e€lly - x|

The function g is said to be Fréchet differentiable if it is Fréchet differentiable everywhere.
It is well known that if a continuous convex function g : E — R is Gateaux differentiable,
then Vg is norm-to-weak* continuous (see, for example, [23, Proposition 1.1.10]). Also, it
is known that if g is Fréchet differentiable, then Vg is norm-to-norm continuous (see [24,
p-508]). The mapping Vg is said to be weakly sequentially continuous if x, — x as n — 0o
implies that Vg(x,) —* Vg(x) as n — oo (for more details, see [23, Theorem 3.2.4] or [24,
p-508]). The function g is said to be strongly coercive if

gbxn)

lnl—oo ||%,]l

It is also said to be bounded on bounded subsets of E if g(U) is bounded for each bounded
subset U of E. Finally, g is said to be uniformly Fréchet differentiable on a subset X of E if
the limit (1.5) is attained uniformly for all x € X and ||y| = 1.

Let A : E — 2" be a set-valued mapping. We define the domain and range of A by
domA = {x € E: Ax # @} and ranA = |, A%, respectively. The graph of A is denoted
by G(A) = {(x,x*) € E x E*: x* € Ax}. The mapping A C E x E* is said to be monotone [25]
if (x — y,&2* —y*) > 0 whenever (x,x*), (y,y*) € A. It is also said to be maximal monotone
[26] if its graph is not contained in the graph of any other monotone operator on E. If
A C E x E* is maximal monotone, then we can show that the set A0 = {z € E: 0 € Az} is
closed and convex. A mapping A : domA C E — E* is called y -inverse strongly monotone
if there exists a positive real number y such that for all x,y € domA, (x — y,Ax — Ay) >
v Ax — Ay||>.

1.2 Some facts about Legendre functions
Let E be a reflexive Banach space. For any proper, lower semicontinuous and convex func-

tion g: E — (—00, +00], the conjugate function g* of g is defined by

¢ () = suplfs ) - g0}
xeE
for all x* € E*. It is well known that g(x) + g*(x*) > (x,x*) for all (x,x*) € E x E*. It is also

known that (x,x*) € dg is equivalent to
g) +g*(x*) = {x,%). (1.6)

Here, dg is the subdifferential of g [27, 28]. We also know that if g: E — (—00, +00] is a
proper, lower semicontinuous and convex function, then g* : E* — (—00, +00] is a proper,
weak* lower semicontinuous and convex function; see [15] for more details on convex

analysis.
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Let g: E — (—00, +00] be a mapping. The function g is said to be:
(i) essentially smooth, if dg is both locally bounded and single-valued on its domain;
(ii) essentially strictly convex, if (3g)™! is locally bounded on its domain and g is strictly
convex on every convex subset of dom dg;
(iii) Legendre, if it is both essentially smooth and essentially strictly convex (for more
details, we refer to [29, Definition 5.2]).
If E is a reflexive Banach space and g : E — (—00, +00] is a Legendre function, then in
view of [30, p.83],

Vg*=(Vg)™, ran Vg = domg* = intdomg* and ranVg =intdomg.

Examples of Legendre functions are given in [29, 31]. One important and interesting
Legendre function is %II -]I* (1 < s < 00), where the Banach space E is smooth and strictly

convex and, in particular, a Hilbert space.

1.3 Some facts about Bregman distance

Let E be a Banach space and let E* be the dual space of E. Let g : E — R be a convex and
Géteaux differentiable function. Then the Bregman distance [32, 33] corresponding to g
is the function D, : E x E — R defined by

Dy(x,y) = g(x) —-g(y) - (x -3, Vg(»), Vx,y€E. (1.7)

It is clear that Dy (x,y) > O for all x,y € E. In that case when E is a smooth Banach space,
setting g(x) = |lx||% for all x € E, we obtain that Vg(x) = 2Jx for all x € E and hence D, (x,7) =
¢(x,y) forallx,y € E.

Let E be a Banach space and let C be a nonempty and convex subset of E. Let g: E — R
be a convex and Gateaux differentiable function. Then we know from [34] that for x € E

and xo € C, Dy(x0,x) = minyec Dy (y, %) if and only if
[y —x0, Vg(x) - Vg(xo)) <0, VyeC. (1.8)

Furthermore, if C is a nonempty, closed and convex subset of a reflexive Banach space E
and g : E — R is a strongly coercive Bregman function, then for each x € E, there exists a

unique x € C such that

D, ,x) =minD,(y,x).
¢ (X0,%) Ijglél (¥, %)

The Bregman projection projs- from E onto C is defined by projs-(x) = xo for all x € E. It is
also well known that projt. has the following property:

Dg(y, projs- x) + Dg(proj‘gé x, x) < D,(y,%) (1.9)

for all y € C and x € E (see [23] for more details).
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1.4 Some facts about uniformly convex and totally convex functions

Let E be a Banach space and let B, :={z € E : ||z|| < r} for all r > 0. Then a function g : E —
R is said to be uniformly convex on bounded subsets of E [35, pp.203, 221] if p,(t) > O for
all ,£ > 0, where p, : [0, +00) — [0, 00] is defined by

pr(t) = inf ag(x) + (1-a)g(y) - glax + (1 -a)y)

%,Y€By, | x-yll=t,a(0,1) a(l-a)

forall £ > 0. The function p, is called the gauge of uniform convexity of g. The function g is
also said to be uniformly smooth on bounded subsets of E [35, pp.207, 221] if lim, o "’T“) =0
for all r > 0, where o, : [0, +00) — [0, o0] is defined by

o= sup ~(EFI-y)+(-aghk-ab)-gw

x€ByyeSg,ae(0,1) a(l-a)

for all £ > 0. The function g is said to be uniformly convex if the function é, : [0, +0c0) —
[0, +00], defined by

5,(0) 1= sup{%g(x) - 520) —g(’%) Ny - = t},

satisfies that lim, o "’t(t) =0.

Remark 1.1 Let E be a Banach space, let r > 0 be a constant and let g : E — R be a convex
function which is uniformly convex on bounded subsets. Then

glow+ (1 -a)y) <ag) + 1 -a)gly) —al —a)po(llx-yll)
for all v,y € B, and « € (0,1), where p, is the gauge of uniform convexity of g.

Let g: E — (—00, +00] be a convex and Gateaux differentiable function. Recall that, in
view of [23, Section 1.2, p.17] (see also [36]), the function g is called fotally convex at a
point x € intdom g if its modulus of total convexity at x, that is, the function v, : intdom g x
[0, +00) — [0, +00), defined by

vg(%,t) := inf{Dy(y,x) : y € intdomg, ||y — x| = £},

is positive whenever ¢ > 0. The function g is called totally convex when it is totally convex
at every point x € intdomg. Moreover, the function f is called totally convex on bounded
subsets of E if vg(x,t) > 0 for any bounded subset X of E and for any ¢ > 0, where the
modulus of total convexity of the function g on the set X is the function v, : intdomg x
[0, +00) — [0, +00) defined by

ve(X, 1) := inf{vg(x, H:xeXnN intdomg}.

It is well known that any uniformly convex function is totally convex, but the converse is
not true in general (see [23, Section 1.3, p.30]).

It is also well known that g is totally convex on bounded subsets if and only if g is uni-
formly convex on bounded subsets (see [37, Theorem 2.10, p.9]).
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Examples of totally convex functions can be found, for instance, in [23, 37].

1.5 Some facts about resolvent
Let E be a reflexive Banach space with the dual space E* and let g : E — (—00, +00] be a
proper, lower semicontinuous and convex function. Let A be a maximal monotone oper-

ator from E to E*. For any r > 0, let the mapping Res’, : E — dom A be defined by
Res?, = (Vg +rA)'Vg.

The mapping Res‘g 4 is called the g-resolvent of A (see [38]). It is well known that A7H0) =
F (Res‘fr 1) for each 7 > 0 (for more details, see, for example, [14]).
Examples and some important properties of such operators are discussed in [39].

1.6 Some facts about Bregman quasi-nonexpansive mappings

Let C be a nonempty, closed and convex subset of a reflexive Banach space E. Let g: E —
(—00, +00] be a proper, lower semicontinuous and convex function. Recall that a mapping
T : C — Cis said to be Bregman quasi-nonexpansive [40] if F(T) # @ and

Dy(p, Tx) < Dy(p,x), Vx e C,peF(T).

A mapping T : C — Cis said to be Bregman relatively nonexpansive [40] if the following
conditions are satisfied:

(1) F(T) is nonempty;

(2) Dy(p, Tv) < Dy(p,v), Yp € F(T), v e C;

(3) E(T) = F(T).

Now, we are in a position to introduce the following new class of Bregman quasi-
nonexpansive type mappings. A mapping 7 : C — C is said to be Bregman weak relatively
nonexpansive if the following conditions are satisfied:

(1) F(T) is nonempty;

(2) Dy(p, Tv) < Dy(p,v), Yp € F(T), v e C;

(3) E(T) =F(T).

It is clear that any Bregman relatively nonexpansive mapping is a Bregman quasi-
nonexpansive mapping. It is also obvious that every Bregman relatively nonexpansive
mapping is a Bregman weak relatively nonexpansive mapping, but the converse in not
true in general. Indeed, for any mapping T : C — C, we have F(T) C E(T)CK(T).If T
is Bregman relatively nonexpansive, then F(T) = E(T) = F(T). Below we show that there
exists a Bregman weak relatively nonexpansive mapping which is not a Bregman relatively

nonexpansive mapping.

Example 1.1 Let E = /2, where

o0 o0 %
2 2 2 2
P=10=(01,03....00..): Y _ ol <oo], ||o||:<2||on||) , Voel,
n=1 n=1

o0
(o,m) = Za,,nn, V8 =(01,02,000500,...),1=(N1025 003Ny .) € 2.
n=1
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Let {x,},enuioy C E be a sequence defined by

x0 =(1,0,0,0,...),
X1 = (11 1’ 0) 0, 0,-"))
% = (1,0,1,0,0,0,...),

X3 = (11 O’ 07 1) 07 O’ 0) .. ');

cey

Xp = (U}’l,lr Op2seesO0pnks«- ');
.
where
1 ifk=1n+1,
Onk =

0 ifk#Lk#n+1

for all n € N. It is clear that the sequence {x,},cn converges weakly to x,. Indeed, for any
A=A k.)€ = (%), we have

[o¢]
Ay = %0) = (% = %0, A) = Y MO — 0
k=2

as n — oo. It is also obvious that ||x, — x,, || = /2 for any n # m with n, m sufficiently large.
Thus, {*,}.en is not a Cauchy sequence. Let k be an even number in Nand letg: E — R
be defined by

1
g =7 lxl¥, xeE.
It is easy to show that Vg(x) = Ji(x) for all x € E, where

/|

Jix) = {x* € E* 1 {x,2%) = 2] |#*

x| = <.
It is also obvious that

Je(x) = A (x), VxeE,xeR.
Now, we define a mapping T : E — E by

T() = ﬁx if x = x,;
—-x  ifxFx,.

It is clear that F(T) = {0} and for any n € N,

Dg(or Tx,) =g(0) _g(Txn) - <O = Txy, Vg(Txn)>
Vlk k

n
T+ 1)kg(x") ¥ (m+1)k

(2 V()

Page 8 of 43
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nk

- (m+ 1)

k

n
= ng(O,x,,)

[~g(xn) + (%, Vg(xn))]

= Dg(or Xn)-
If x # x,,, then we have

Dy (0, Tx) = g(0) — g(Tx) — (0 — Tx, Vg(Tx))
= —g(x) — (x,-Vgx))
= —g(x) - (~x, Vg(x))
= D, (0, %).

Therefore, T is a Bregman quasi-nonexpansive mapping. Next, we claim that 7 is a Breg-
man weak relatively nonexpansive mapping. Indeed, for any sequence {z,},cn C E such
that z, — zo and ||z, — Tz,|| = 0 as n — oo, since {x,},en is not a Cauchy sequence,
there exists a sufficiently large number N € N such that z, # x,, for any n,m > N. If we
suppose that there exists m < N such that z, = x,, for infinitely many n € N, then a sub-

sequence {xy, };en would satisfy z,, = %, 50 2o = lim; o0 2y, = %s and 2o = lim;_, ¢ T2y, =

_m_

—%m, which is impossible. This implies that 7z, = —z, for all n > N. It follows

Tx,, =
from ||z, — Tz,|| — O that 2z, — 0 and hence z, — zo = 0. Since zy € F(T), we conclude
that T is a Bregman weak relatively nonexpansive mapping.

Finally, we show that 7 is not Bregman relatively nonexpansive. In fact, though x,, — x
and

1
%, — Txull = =——|xu]l >0
+1

n
Xn — Xn
n

+1
as 1 — 00, but xy ¢ F(T). Thus we have F(7) #F(T).

Let us give an example of a Bregman quasi-nonexpansive mapping which is neither a
Bregman relatively nonexpansive mapping nor a Bregman weak relatively nonexpansive

mapping (see also [41]).

Example 1.2 Let E be a smooth Banach space, let k be an even number in N and let g :
E — R be defined by

1
@) = 7lxll", x<E.
Let x5 # 0 be any element of E. We define a mapping T : E — E by

(3 + ger)%0  ifx= (3 + 5)%05
T(X) _ 2 1 oon+l i 21
- ifx # (5 + 20)%0
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for all # > 0. It could easily be seen that T is neither a Bregman weak relatively nonexpan-
sive mapping nor a Bregman relatively nonexpansive mapping. To this end, we set

1 1
Xy = (5 + 2_”)x0’ Vn e N.

1
2

1 1 1 1
% = Txull = 5"’2—” X0 — §+W X0

as n— 00, but Jxo ¢ F(T). Therefore, F(T) # F(T) and E(T) # F(T).

Though x, — sx¢ (x, — %xo) as n — 0o and

In [42], Bauschke and Combettes introduced an iterative method to construct the
Bregman projection of a point onto a countable intersection of closed and convex sets
in reflexive Banach spaces. They proved a strong convergence theorem of the sequence
produced by their method; for more detail, see [42, Theorem 4.7].

In [40], Reich and Sabach introduced a proximal method for finding common zeros of
finitely many maximal monotone operators in a reflexive Banach space. More precisely,
they proved the following strong convergence theorem.

Theorem 1.3 Let E be a reflexive Banach space and let A; : E — 2" i-1,2,...,N,be N
maximal monotone operators such that Z := (\r, A7 (0*) # @. Let g : E — R be a Legendre
function that is bounded, uniformly Fréchet differentiable and totally convex on bounded
subsets of E. Let {x,},en be a sequence defined by the following iterative algorithm:

xo € E  chosen arbitrarily,
i _Pad i
Vo = Resw’Ai(xn +ée,)
C! ={z € E: Dy(2,9!) < Dy(z,x, + €.)},
Cni= ﬂf\il CL,
Qn ={z € E: (Vglxo) - Vg(xn), 2 - x4) < 0},

Kpal = proj%ann x0 and neNUJ{0}.

(1.10)

If, for each i =1,2,...,N, liminf,_, Ai, > 0 and the sequences of errors {efi}neN C E sat-
isfy liminf,_, « €/ = 0, then each such sequence {x,},cn converges strongly to projs(xo) as

n— oQ.

Let C be a nonempty, closed and convex subset of a reflexive Banach space E. Let g : E —
(—00, +00] be a proper, lower semicontinuous and convex function. Recall that a mapping
T :C — Cis said to be Bregman firmly nonexpansive (for short, BFNE) if

Dy(Tx, Ty) + Dg(Ty, Tx) + Dy(Tx, %) + Dg(Ty, y) < Dy(TX,y) + Dg(Ty,x)

for all x,y € C. The mapping T is called quasi-Bregman firmly nonexpansive (for short,
QBENE) [43], if F(T) # @ and

Dy(p, Tx) + Dg(Tx,x) < Dy(p,x)
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forallx € Cand p € F(T). It is clear that any quasi-Bregman firmly nonexpansive mapping
is Bregman quasi-nonexpansive. For more information on Bregman firmly nonexpansive
mappings, we refer the readers to [38, 44]. In [44], Reich and Sabach proved that for any
BENE operator T, F(T) = E(T).

In [43], Reich and Sabach introduced a Mann-type process to approximate fixed points
of quasi-Bregman firmly nonexpansive mappings defined on a nonempty, closed and con-
vex subset C of a reflexive Banach space E. More precisely, they proved the following the-

orem.

Theorem 1.4 Let E be a reflexive Banach space and let T; :E — E, i=1,2,...,N, be N
QBEFNE operators which satisfy F(T;) = ﬁ(]})for eachl <i<NandF = ﬂfilF(Ti) # .
Let g : E — R be a Legendre function that is bounded, uniformly Fréchet differentiable and
totally convex on bounded subsets of E. Let {x,},cn be a sequence defined by the following
iterative algorithm:

xo0 € E  chosen arbitrarily,

Q,=E, i=12,...,N,

V= Tilxn + €)),

Q1 = {2 € Q: (Ve + ;) - Vey,),2—,) <0},
Qi1 := mi\; f'H-l’

Xpal = proj‘ém1 xo and neNU({0}.

(1.11)

If, foreach i =1,2,...,N, the sequences of errors {€.,},en C E satisfy liminf,_, €', = 0, then
each such sequence {x,},cn converges strongly to projf;(xo) as n— 0o.

Let E be a reflexive Banach space and let g : E — R be a convex and Géteaux differen-
tiable function. Let C be a nonempty, closed and convex subset of E. Recall that a mapping
T :C — C is said to be (quasi-)Bregman strongly firmly nonexpansive (for short, BSNE)
with respect to a nonempty E(T) if F(T) # @ and

Dy(p, Tx) < Dg(p,x)

forallxe Candp e F(T), and if whenever {x,},cn C C is bounded andp € F(AT), then we
have

nlirglo(Dg(p,xn) -De(p, Txy)) =0 = nlirgng(Txn,xn) =0.
The class of (quasi-)Bregman strongly nonexpansive mappings was first introduced in [21,
45] (for more details, see also [46]). We know that the notion of a strongly nonexpansive
operator (with respect to the norm) was first introduced and studied in [47, 48].

In [46], Reich and Sabach introduced iterative algorithms for finding common fixed
points of finitely many Bregman strongly nonexpansive operators in a reflexive Banach
space. They established the following strong convergence theorem in a reflexive Banach
space.

Theorem 1.5 Let E be a reflexive Banach space and let T;: E — E, i =1,2,...,N, be N
BSNE operators which satisfy F(T;) = I:"(]"i)for eachl1 <i<N and F := ﬂf\ilF(T,r) # .
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Let g : E — R be a Legendre function that is bounded, uniformly Fréchet differentiable and
totally convex on bounded subsets of E. Let {x,},cn be a sequence defined by the following
iterative algorithm:

xo € E  chosen arbitrarily,

¥ = Ti(x, + €),

Cl,={z € E: Dy(2,)}) < Dq(2,%, + €.)},
Cui= ﬂf\il Gy

Qn = {z € E: (Vglxo) — Vg(xu), z - x,) < 0},

Kl = projgchn xo and neNU{0}.

(1.12)

If, foreach i =1,2,...,N, the sequences of errors {eﬁl}neN C E satisfy liminf,_, eﬁ, =0, then

each such sequence {x,},cn converges strongly to projf;(xo) as n— oo.

But it is worth mentioning that, in all the above results for Bregman nonexpansive-type
mappings, the assumption F(T) = F(T) is imposed on the map 7.

Remark 1.2 Though the iteration processes (1.10) and (1.12), as introduced by the authors
mentioned above, worked, it is easy to see that these processes seem cumbersome and
complicated in the sense that at each stage of iteration, two different sets C, and Q, are
computed and the next iterate taken as the Bregman projection of x on the intersection of
C, and Q,. This seems difficult to do in application. It is important to state clearly that the
iteration process (1.11) involves computation of only one set Q, at each stage of iteration.
In [49], Sabach proposed an excellent modification of algorithm (1.10) for finding common

zeros of finitely many maximal monotone operators in reflexive Banach spaces.

Our concern now is the following:

Is it possible to obtain strong convergence of modified Mann-type schemes (1.10)-
(1.12) to a fixed point of a Bregman quasi-nonexpansive type mapping 7 without
imposing the assumption F(T)=F(T)on T?

In this paper, using Bregman functions, we introduce new hybrid iterative algorithms
for finding common fixed points of an infinite family of Bregman weak relatively non-
expansive mappings in Banach spaces. We prove strong convergence theorems for the
sequences produced by the methods. Furthermore, we apply our method to prove strong
convergence theorems of iterative algorithms for finding common fixed points of finitely
many Bregman weak relatively nonexpansive mappings in reflexive Banach spaces. These
algorithms take into account possible computational errors. We also apply our main re-
sults to solve equilibrium problems in reflexive Banach spaces. Finally, we study hybrid
iterative schemes for finding common solutions of an equilibrium problem, fixed points
of an infinite family of Bregman weak relatively nonexpansive mappings and null spaces
of a y-inverse strongly monotone mapping in 2-uniformly convex Banach spaces. Some
application of our results to the solution of equations of Hammerstein type is presented.
No assumption F(T) = F(T) is imposed on the mapping T. Consequently, the above con-
cern is answered in the affirmative in reflexive Banach space setting. Our results improve
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and generalize many known results in the current literature; see, for example, [4, 7, 8, 11,
22,40, 42-44, 46, 50-52].

2 Preliminaries
In this section, we begin by recalling some preliminaries and lemmas which will be used
in the sequel.

The following definition is slightly different from that in Butnariu and Iusem [23].

Definition 2.1 [24] Let E be a Banach space. The function g : E — R is said to be a
Bregman function if the following conditions are satisfied:

(1) gis continuous, strictly convex and Gateaux differentiable;

(2) theset {y € E: D,(x,y) <r}is bounded for allx € E and r > 0.

The following lemma follows from Butnariu and Iusem [23] and Zalinscu [35].

Lemma 2.1 Let E be a reflexive Banach space and let g : E — R be a strongly coercive
Bregman function. Then
(1) Vg:E — E* is one-to-one, onto and norm-to-weak™ continuous;
(2) (x - Vgx) —Vg(y) =0 ifand only if x = y;
(3) {x € E:Dy(x,y) <r} is bounded for all y € E and r > 0;
(4) domg* = E*, g* is Gdteaux differentiable and Vg* = (Vg)™L.

Now, we are ready to prove the following key lemma.

Lemma 2.2 Let E be a Banach space, let r > 0 be a constant and let g : E — R be a convex
function which is uniformly convex on bounded subsets of E. Then

g(Z akxk> <Y axg) — oo (Ilxi — 1)

k=0 k=0

Sorall i,j €{0,1,2,...,n}, xx € B,, ax € (0,1) and k = 0,1,2,...,n with Y ;_,ox = 1, where
Or is the gauge of uniform convexity of g.

Proof Without loss of generality, we may assume that i = 0 and j = 1. By induction on #,
for n = 1, in view of Remark 1.1 we get the desired result. Now suppose that it is true for
n=k,ie.,

k k
g(z amxm> =< Zamg(xm) - OlOOll,Or(on —X1||).
m=0

m=0

er(,,:o AmXm

1= and observe that
O+l

Now, we prove that the conclusion holds for n = k + 1. Put x =
x € B,. Since g is convex, given assumption, we conclude that

k+1 k
Oy
mim | = 1—op, +
g(;a X ) g(( (293 1)2 1 + 0k 1xk+1)

-
=0 k+1

k
Ay
<(1- oek+1)g<z I-a ) + 0t/<+1g(x/<+1)
- 1

m=0 +
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k
<> mglm) — ctoen pr (160 — %1 1l) + 1@ ()

m=0
k+1
=Y cug(@m) — o pr(l1%0 — 2l

m=0

This completes the proof. O

Lemma 2.3 Let E be a Banach space, let r > 0 be a constant and let g : E — R be a contin-

uous and convex function which is uniformly convex on bounded subsets of E. Then

g(z ozkxk> <Y anglw) — iy (Ilxi - xll)

k=0 k=0

Sor all i,j e NU {0}, x¢ € B,, ax € (0,1) and k € NU {0} with Y 2, o = 1, where p, is the
gauge of uniform convexity of g.

Proof Leti,j e NU{0} and k > i,j. Put vy = —72%0— + Z“‘—"l +-++ + =&k and observe
m=0 %m m=0 ¥m m=0 %m
that v; € B, for all k € N. In view of Lemma 2.2, we obtain that

QX0 a1X1 ApXie
gvi) =g\ —¢ + =% et =
Zm:O Um ZVVI:O Um Zm:O Um
1

=<

k
= D tmglm) — ctictjpr (Ili — 1) (21)
m=0 ="M m=0

Since g is continuous and v — anozo Xy, as k — 00, we have

klifag(Vk) = g(Z Olm»”m) .

m=0

Letting k — oo in (2.1), we conclude that

m=0

o0 o0
g(Z amxm) <> amgm) — cicpr (Il - ),
m=0

which completes the proof. d
We know the following two results; see [35, Proposition 3.6.4].

Theorem 2.1 Let E be a reflexive Banach space and let g : E — R be a convex function
which is bounded on bounded subsets of E. Then the following assertions are equivalent:
(1) g is strongly coercive and uniformly convex on bounded subsets of E;
(2) domg* = E*, g* is bounded on bounded subsets and uniformly smooth on bounded
subsets of E*;
(3) domg* = E*, g* is Fréchet differentiable and Vg* is uniformly norm-to-norm
continuous on bounded subsets of E*.
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Theorem 2.2 Let E be a reflexive Banach space and let g : E — R be a continuous convex
function which is strongly coercive. Then the following assertions are equivalent:
(1) g is bounded on bounded subsets and uniformly smooth on bounded subsets of E;
(2) g* is Fréchet differentiable and Vg* is uniformly norm-to-norm continuous on
bounded subsets of E*;
(3) domg* = E*, g* is strongly coercive and uniformly convex on bounded subsets of E*.

Let E be a Banach space and let g : E — R be a convex and Gateaux differentiable func-
tion. Then the Bregman distance [32, 33] satisfies the three point identity that is

Dy(x,2) = Dg(x,y) + Dg(y,2) + (x -y, Vg(y) - Vg(z)), Vx,y,z € E. (2.2)
In particular, it can be easily seen that
Dy(x,y) = =Dy (y, %) + (y -x,Vg(y) - Vg(x)), Vx,y € E. (2.3)

Indeed, by letting z = x in (2.2) and taking into account that D,(x,x) = 0, we get the desired
result.

Lemma 2.4 Let E be a Banach space and let g : E — R be a Géteaux differentiable function
which is uniformly convex on bounded subsets of E. Let {x,},en and {y,}nen be bounded
sequences in E. Then the following assertions are equivalent:

(1) 1im,— 00 Dy (s, y) = 0;

(2) limy— o0 1% = yull = 0.

Proof The implication (1) = (2) was proved in [23] (see also [24]). For the converse im-
plication, we assume that lim,_, « [|%, — ¥4 || = 0. Then, in view of (2.3), we have

Dy (%, Y1) = =Dg (Y, %) + (xn — Y VE(xn) = Vg(yn)>
< I%n = yul | Vexn) = Ve[, VneN. (2.4)

The function g is bounded on bounded subsets of E and therefore Vg is also bounded on
bounded subsets of E* (see, for example, [23, Proposition 1.1.11] for more details). This,
together with (2.3)-(2.4), implies that lim,,_, o Dg(%4,¥,) = 0, which completes the proof.

O

The following result was first proved in [37] (see also [24]).

Lemma 2.5 Let E be a reflexive Banach space, let g : E — R be a strongly coercive Bregman
function and let V be the function defined by

V(x,x*) = g(x) - (x,6") + g*(x*), x€Ex*e€E"
Then the following assertions hold:

(1) Dy(x, Vg*(x*)) = V(x,x%) for all x € E and x* € E*.
(2) Vix,x*) + (Vg*(x*) —x,9*) < V(x,x* + y*) for all x € E and x*,y* € E*.

Page 15 of 43


http://www.fixedpointtheoryandapplications.com/content/2013/1/141

Naraghirad and Yao Fixed Point Theory and Applications 2013, 2013:141 Page 16 of 43
http://www.fixedpointtheoryandapplications.com/content/2013/1/141

Corollary 2.1 [35] Let E be a Banach space, let g : E — (—00, 00] be a proper, lower semi-
continuous and convex function and let p,q e Rwithl1 <p<2<qandp+q ' =1. Then
the following statements are equivalent.

(1) There exists ¢; > 0 such that g is p-convex with p(t) := %‘tqfor allt>0.

(2) There exists ¢y > 0 such that for all (x,x*), (y,y*) € G(3g); ||lx* — y*|| = 2% lloc — yl|97L.

3 Strong convergence theorems without computational errors
In this section, we prove strong convergence theorems without computational errors in
a reflexive Banach space. We start with the following simple lemma whose proof will be

omitted since it can be proved by a similar argument as that in [44, Lemma 15.5].

Lemma 3.1 Let E be a reflexive Banach space and let g : E — R be a convex, continuous,
strongly coercive and Gdteaux differentiable function which is bounded on bounded subsets
and uniformly convex on bounded subsets of E. Let C be a nonempty, closed and convex
subset of E. Let T : C — C be a Bregman weak relatively nonexpansive mapping. Then

F(T) is closed and convex.
Using ideas in [22], we can prove the following result.

Theorem 3.1 Let E be a reflexive Banach space and let g : E — R be a strongly coercive
Bregman function which is bounded on bounded subsets and uniformly convex and uni-
formly smooth on bounded subsets of E. Let C be a nonempty, closed and convex subset of
E and let {T}}jen be an infinite family of Bregman weak relatively nonexpansive mappings
from C into itself such that F := ﬂlofl F(T;) # @. Suppose in addition that Tj0 =Ty =1forall
j € N, where I is the identity mapping on E. Let {x,},en be a sequence generated by

x0=x€C chosen arbitrarily,

Co=C,

2Zn = Vg*[anoVEen) + 375 anVe(Tixa)],
In=Vg[BVEgxn) + (1 - Bu)Vg(zn)],
Cus1 = {2 € Gy : Dg(2,yn) < Dy(2,%,)},

(3.1)

Xpil = projgcn+1 x and neNU{0},

where Vg is the right-hand derivative of g. Let {a,; : j,n € NU {0}} and {B,}nenuio) be se-
quences in [0,1) satisfying the following control conditions:

1) Z;’jo o, =1,Vne NU{0};

(2) There exists i € N such that liminf,_, o ot0,; > 0, ¥j € NU {0};

(3) 0<By<1forallneNU{0}andlimsup,_, By <1

Then the sequence {x,},cn defined in (3.1) converges strongly to projs x as n — oo.

Proof We divide the proof into several steps.
Step 1. We show that C,, is closed and convex for each n € NU {0}.
It is clear that C = C is closed and convex. Let C,, be closed and convex for some m € N.

For z € C,,,, we see that

Dg(z)ym) S Dg(zyxm)
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is equivalent to

(7 Vgm) = Vam)) < g0m) — gem) + (%> VM) = i VEGm))-

An easy argument shows that C,,,; is closed and convex. Hence C,, is closed and convex
for each n € NU {0}.

Step 2. We claim that F C C, for all » € NU {0}.

It is obvious that F C Cy = C. Assume now that F C C,, for some m € N. Employing
Lemma 2.5, for any w € F C C,,, we obtain

Dy(W, 2,)

D, (w, Vg* |:Olm,() Vg(x,) + Z am,ng(Y}xm):|>

j=1

\% (W, Ao VE (%) + Z am,/Vg(Tj'"xm)>

j=1

=gw) - <w, A0 Vg(m) + ) am,/Vg(zjm)>

j=1

+g (amOVg Xm) Zam,Vg Txm))

j=1

= am,Og(W) + Zam,jg( + Um,08 (Vg xm Zam]g Vg(Txm))
j-1 =1

= amoV(w, Vg( x,,, Zam} w, Vg(Txm))
j=1

= U oDg(W, %,1) E i Dg(W, Tix,,)

< o Dg(W, %,1) Zam, (W, %)
= Do(w,%).
This implies that

Dy(W,ym) = Dg(w, Vg* [ BV gm) + (1 = ) Vg(zm)])
= V(W BinVgxm) + A = Bn)Vg(zm))
< BV (W, Vgam)) + (L= Bn)V (W, V(2))
= BunDg(W, %) + (1 = Bin)Dg(w, 2,)
< BuDg(W,%m) + (1 = Bn) Dg (W, 21)
= Dy(W, ). (3.2)

This proves that w € C,,,;;. Thus, we have F C C, for all » € NU {0}.
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Step 3. We prove that {x,,},en, {¥u}nens {Zn}nen and {Tjx, : j,n € NU {0}} are bounded
sequences in C.
In view of (1.9), we conclude that

Dy(,%) = Dg(proj¢, x,x) < Dy(w,x) — Dg(w, x,,)

< Dg(w,x), VYweFCC,neNU({0}.

This implies that the sequence {D(x;, x)},cn is bounded and hence there exists M > 0 such
that

Dy(x4,0) <M, VneN.

In view of Lemma 2.1(3), we conclude that the sequence {x,,}.en is bounded. Since {T}};en
is an infinite family of Bregman weak relatively nonexpansive mappings from C into itself,
we have for any g € F that

Dy, Tjxn) < Dolg %), Vjim €N,
This, together with Definition 2.1 and the boundedness of {x,},cn, implies that the se-
quence {Tjx, : j,n € NU {0}} is bounded.

Step 4. We show that x,, — u for some u € F, where u = proj; .

By Step 3, we have that {x,},cy is bounded. By the construction of C,, we conclude that
C,CC,andx,, = projgcm x € Cy, C C, for any positive integer m > n. This, together with

(1.9), implies that

Dy (s %) = Dy (xm, projgcn x) < Dg(%y, %) — Dy (projgcn X, x)

= Dy (%, %) — Dg (%, %). (3.3)
In view of (1.9), we conclude that

Dy(%4,%) = D, (projgcn x, x) < D,y(w,x) — Dy(w,x,)

<D,(w,x), YweFCC,neNU{0}. (3.4)

It follows from (3.4) that the sequence {D,(x,,)}.en is bounded and hence there exists
M > 0 such that

Dy(x4,x) <M, VneN. (3.5)
In view of (3.3), we conclude that

Dy (%4, %) < Dg(%y,%) + Dg (%, %) < Dg(Xp,%), V> n.
This proves that {Dg(x,, %)} ,en is an increasing sequence in R and hence by (3.5) the limit

lim,,_, oo Dg (%, %) exists. Letting m, n — o0 in (3.3), we deduce that D,(x,,,%,) — 0. Inview
of Lemma 2.4, we get that ||x,,, —x,|| — 0asm, n — oo. This means that {x, },cn is a Cauchy
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sequence. Since E is a Banach space and C is closed and convex, we conclude that there
exists u € C such that

lim ||x, —ul| = 0. (3.6)
n—00
Now, we show that # € F. In view of (3.3), we obtain
lim Dy (%y41,%,) = 0. (3.7)
n—00
Since x,,,1 € C,.1, we conclude that
Dg(xn+1yyn) = Dg(xnﬂy Xn).
This, together with (3.7), implies that
lim Dy (%41, 9) = 0. (3.8)
n—00
Employing Lemma 2.4 and (3.7)-(3.8), we deduce that
lim |[x41 =%, =0 and  lim [lx,41 = yall = 0.
In view of (3.6), we get
lim ||y, —u| =0. (3.9)
n—00
From (3.6) and (3.9), it follows that
lim %, - yu | = 0.
Since Vg is uniformly norm-to-norm continuous on any bounded subset of E, we obtain
lim || Vg(x,) ~ Vg(y) | = 0. (3.10)
In view of (3.1), we have
Vg(yn) - Vg(xa) = 1 - B,)(Vg(zn) - Vg(xn)). (3.11)
It follows from (3.10)-(3.11) that
lim [|Vg(z4) = Vg(n)| = 0. (312)
Since Vg is uniformly norm-to-norm continuous on any bounded subset of E, we obtain
lim ||z, —x,]|| =0.
n—00
Applying Lemma 2.4, we derive that

lim Dy(z,,%,) = 0.

n—00
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It follows from the three point identity (see (2.2)) that

’Dg(w,x,,)—Dg(w,z,,)’ = ’Dg(w,zn)+Dg(z,,,x,,)
+ (W — 24, Vg(zy) — Vg(x4)) — Dy(w, 2,)|

= |Dg(zn»xn) - <W — 24, Vg(2,) - Vg(xn)>|

IA

Dg(zmxn) +{lw =zl ”Vg(zn) - Vg(x,) ”
-0 (3.13)

as n — o0.

The function g is bounded on bounded subsets of E and thus Vg is also bounded on
bounded subsets of E* (see, for example, [23, Proposition 1.1.11] for more details). This
implies that the sequences {Vg(x,)}nen, {V€Wi)tnen, {VE(24)}nen and {Vg(Tj”xn) 1m,j €
N U {0}} are bounded in E*.

In view of Theorem 2.2(3), we know that domg* = E* and g* is strongly coercive and
uniformly convex on bounded subsets. Let s = sup{llVg(Y}”x,,)H :jeNU{0},n e NU{0}}
and p} : E* — R be the gauge of uniform convexity of the conjugate function g*. Now, we
fix i € N satisfying condition (2). We prove that for any w € F and j € NU {0}

Dy(W,2,) < Dy(W, %) — t it 07 (|| Ve (Tien) — V(T (3.14)

Let us show (3.14). For any given w € F(T) and j € N, in view of the definition of the
Bregman distance (see (1.7)), (1.6), Lemmas 2.3 and 2.5, we obtain

Dg(W: Zy) = Dg (W» Vg* |:an,0Vg(xn) + Z OZn,ng(zjn)]>

Jj=1

\%4 <W» Oy0 Vg(xn) + Z an:ivg( T/x”)>

j=1

gw) - <w, o0 Vg (%) + Z Otn,jvg(zjn)>

j=1

+g* (Otn,o Vg(x,) + Zan,ng(zj,,)>

j=1

< duog(W) + ) et g(w)

j=1

— o (W, Vg(n)) = Y atnj{w, Ve(Ti,))

j=1

+ 08" (Vexa)) + Z anig (Ve(Tix,))

j=1

- an,ian,/’ps* (” Vg( Tlxn) - Vg(T}xn) ”)

o0
= a0V (W, Vg@,)) + Y otV (w, Vg(Tjn)
j=1
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— onicnip} (| Ve(Tixn) — Vg(Tixa)|)

00
= an,ODg(Wr Xn) + Z an,ng(W; Tjx,) - an,ian,jps*(” Vg(Tix,) - Vg(I}'xn) ”)
j=1

oo
< o Dg(W, ) + Y 0ty iDg(W, %) — it} (| Vg(Tin) = Vg(Tia) |)
j=1
= Dy(w, %) — it (| VE(Tin) = Vg(Tin) |)-
In view of (3.13), we obtain
Dy(w,%x,) — Dg(w,2,) = 0 asn— oo. (3.15)
In view of (3.14) and (3.15), we conclude that
an,ian,jps*(” Vg(Tixu) - Vg(]—}xn) ”) = Dg(Wyxn) - Dg(WyZn) -0
as n — oo. From the assumption liminf,_, o o, > 0, Vj € NU {0}, we have
Tim o7 (|| Ve(Tixs) - Ve(Tix)[) =0, vje NU(0).
Therefore, from the property of p}, we deduce that
lim || Vg(Tx,) - Vg(Tpn)| =0, ¥j e NU{0).
Since Vg* is uniformly norm-to-norm continuous on bounded subsets of E*, we arrive at
lim || Ty, — Tjx,|| =0, V¥je NU{0}. (3.16)
n— 00
In particular, for j = 0, we have
lim | Tix, —x,]| = 0.
n—00
This, together with (3.16), implies that
lim || Tjx, —x,ll =0, VjeNU({O0}. (3.17)
n—00
Since {T}}jen is an infinite family of Bregman weak relatively nonexpansive mappings, from
(3.6) and (3.17), we conclude that Tju = u, Vj € NU {0}. Thus, we have u € F.
Finally, we show that u = projf.x. From ,, = proj¢. x, we conclude that
(z =0, Vg(x,) = Vg(x)) = 0, VzeC,.
Since F C C,, for each n € N, we obtain

(z =0, Vg(x,) — Vg(x)) =0, Vz€eF. (3.18)
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Letting n — o0 in (3.18), we deduce that
(z—u,Vg(u) - Vg(x)) >0, VzeF.
In view of (1.8), we have u = proj} x, which completes the proof. O

Remark 3.1 Theorem 3.1 improves Theorem 1.2 in the following aspects.

(1) For the structure of Banach spaces, we extend the duality mapping to a more general
case, that is, a convex, continuous and strongly coercive Bregman function which is
bounded on bounded subsets and uniformly convex and uniformly smooth on
bounded subsets.

(2) For the mappings, we extend the mapping from a relatively nonexpansive mapping
to a countable family of Bregman weak relatively nonexpansive mappings. We
remove the assumption F(T) = F(T) on the mapping T and extend the result to a
countable family of Bregman weak relatively nonexpansive mappings, where F(T) is
the set of asymptotic fixed points of the mapping 7.

(3) For the algorithm, we remove the set W, in Theorem 1.2.

Lemma 3.2 Let E be a reflexive Banach space and let g : E — R be a strongly coercive
Bregman function which is bounded on bounded subsets and uniformly convex and uni-
formly smooth on bounded subsets of E. Let A be a maximal monotone operator from E to
E* such that A™(0) # @. Let r > 0 and Res‘fA = (Vg + rA)™'Vg be the g-resolvent of A. Then

Res®, is a Bregman weak relatively nonexpansive mapping.

Proof Let {z,},en C E be a sequence such that z, — z and lim,,_, ||z, — Res‘fA z4|l = 0.
Since Vg is uniformly norm-to-norm continuous on bounded subsets of E, we obtain

1
;(Vg(z,,) - Vg(Resz z,,)) — 0.

It follows from
L \Y Vg(Res® ARes?
;( g(zu) - g( eS,Azn))e €S,4 Zn

and the monotonicity of A that

<w —Res?, 2,y - %(Vg(zn) - Vg(Res}, zn))> >0

for all w € dom A and y € Aw. Letting n — oo in the above inequality, we have (w—z,y) >0
for all w € domA and y € Aw. Therefore, from the maximality of A, we conclude that
ze A1) =F (Res‘f 4)» that is, z = Res‘f 4 2. Hence Res‘f 4 is Bregman weak relatively non-
expansive, which completes the proof. d

As an application of our main result, we include a concrete example in support of The-
orem 3.1. Using Theorem 3.1, we obtain the following strong convergence theorem for

maximal monotone operators.
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Theorem 3.2 Let E be a reflexive Banach space and let g : E — R be a strongly coercive
Bregman function which is bounded on bounded subsets and uniformly convex and uni-
formly smooth on bounded subsets of E. Let A be a maximal monotone operator from E to
E* such that A™1(0) # @. Let r,, > 0 such thatliminf,_, o, r, > 0 and Res‘an =(Vg+r,A) Vg
be the g-resolvent of A. Let {x,},cn be a sequence generated by

x9=x € C chosen arbitrarily,

Co=C,

zn = Vg Lo Vg (xn) + 375 o Vg(Res) ; x,)],
In = Vg [BVEXn) + (1 = Bn)Vg(zn)],

Cun = {z € Cy: Dg(z,y4) < Dgl(z, %)},

(3.19)

%w1 =proje. & and neNU({0},

where Vg is the right-hand derivative of g. Let {a,; : j,n € NU {0}} and {B,}nenuio) be se-
quences in [0,1) satisfying the following control conditions:

1) Zjozoo anj=1,Yn e NU{0};

(2) There exists i € N such that liminf,_, o 00005 > 0, ¥j € NU {0};

(3) 0<Bu<1lforallneNU{0}andliminf, o By < 1.
Then the sequence {x,},cn defined in (3.19) converges strongly to proji,l (0% as 1 —> 00

Proof Letting T; = Res‘fjA, Vj € NU {0}, in Theorem 3.1, from (3.1) we obtain (3.19). We
need only to show that Tj satisfies all the conditions in Theorem 3.1 for all j e NU {0}. In
view of Lemma 3.2, we conclude that Tj is a Bregman relatively nonexpansive mapping for
each j € NU {0}. Thus, we obtain

Dg(p, Res‘f}_A v) <D,(p,v), VYveE,pe F(Res‘fjA),Vj e NU {0}
and
ﬁ(Resfj 4) = F(Resfi 4)=A7(0), VjeNU{0},

where F (Resf}, ) is the set of all strong asymptotic fixed points of Resf}, 4 Therefore, in view
of Theorem 3.1, we have the conclusions of Theorem 3.2. This completes the proof. [

4 Strong convergence theorems with computational errors

In this section, we study strong convergence of iterative algorithms to find common fixed
points of finitely many Bregman weak relatively nonexpansive mappings in a reflexive
Banach space. Our algorithms take into account possible computational errors. We prove
the following strong convergence theorem concerning Bregman weak relatively nonex-

pansive mappings.

Theorem 4.1 Let E be a reflexive Banach space and let g : E — R be a strongly coercive
Bregman function which is bounded on bounded subsets and uniformly convex and uni-
formly smooth on bounded subsets of E. Let N € N and {Tj}fi 1 be a finite family of Bregman
weak relatively nonexpansive mappings from E into int domg such that F := ﬂf\z[l F(T)) is
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a nonempty subset of E. Suppose in addition that Ty = I, where [ is the identity mapping
on E. Let {x,,}ncn be a sequence generated by

xo=x € E chosen arbitrarily,

Co=E

V= Vg 0o Vg (o) + XN o V(T + ), | w)
Cui1 = {2 € Cyy: Dy(2,9) < Dy, %) + Y10, 0Dy (s % + €))

+ ]I'\=[1 an,j(z_xn’Vg(xn) _Vg(xn +e/n))}:

Xu1 = Proj¢. & and neNU({0},

where Vg is the right-hand derivative of g. Let {a,,j: n € NU {0},j € {0,1,2,...,N}} be a
sequence in (0,1) satisfying the following control conditions:

1) Yoo =1,Yne NU{0};

(2) There exists i € {1,2,...,N} such that liminf,_, o a0, > 0, Vj € {0,1,2,...,N}.
If, for each j = 0,1,2,...,N, the sequences of errors {e/ Jnen CE Satzsfy 11m1nf,HOO =0,
then the sequence {x,},en defined in (4.1) converges strongly to proj: X asn— 00.

Proof We divide the proof into several steps.

Step 1. We show that C,, is closed and convex for each n € NU {0}.

It is clear that Cy = E is closed and convex. Let C,,, be closed and convex for some m € N.
For z € C,,,, we see that

N
Dg(zyym) < Dg(zvxm) + Zam,ng(xm:xm + e]m)
j=1

+ D {7 = 2, Ve () = Vg (0 + €),))
j=1

is equivalent to

N
(2 Vgxm) = Vgym)) + Zam,j<xm —2,Vg(xm) — Vg(%m +€,))
i1

< 8Om) —g(m) + (x> VE(tm)) = [y VEOm)) + Zam, (s 2 + €,).

An easy argument shows that C,,,; is closed and convex. Hence C,, is closed and convex
for all » e NU {0}.

Step 2. We claim that F C C, for all » € NU {0}.

It is obvious that F C Cy = E. Assume now that F C C,, for some m € N. Employing
Lemma 2.5, for any w € F C C,,, we obtain

Dy(W,ym) = Dg<w, vg* |:am0Vg X) Zam,Vg xm +e )):|)

= V(w,amOVg(xm)+Zam,Vg (o + €, )))

j=1
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N
= g(w) - <w, o V() + Zam,,»Vg(Y}(xm + e’m))>

j=1

N
+ & (ctmoVegm)) + Zam,ng(T;(xm +é,))
1

N

< AmogW) + ) iy g(W)

j-1

N
+ mog" (VE@n) + Y g (VE(Tj(xm + €),)))

~
—

= oV (W, VE@)) + ) oV (w, VE(Tj(%m + €],)))

~.
I
(=

e

N
= UoDe(W, %) + Z o iDyg (w, T,(xm + e’m))
j=1

N

< WmoDe(W, %) + Zam,,Dg (W, + €,)
j=1

N N
= oDg(W, %) + Z i Dg (W, %) + Zam,ng (xm,xm + e’m)
j=1 j=1

N
£ Y (W = %, V(o) = VG (3 + },))

Jj=1

N
= Do(w, %) + Zam,ng(xm,xm + e’m)
j=1

N
+ Z (W = %r V() = Vg (20 + €,))- (4.2)

j-1

This proves that w € C,,,,;. Consequently, we see that F C C, for any n € NU {0}.

Step 3. We prove that {x,},en, {¥u}nen and {Tj(x, + e@) :neN,je{0,1,2,...,N}} are
bounded sequences in E.

In view of (1.9), we conclude that

Dy(%4,%) = D, (projgcn x, x) < Dy(w,x) — Dy(w,x,,)

<D,(w,x), YweFCC,neNU{0}. (4.3)

It follows from (4.3) that the sequence {D,(x,,)},en is bounded and hence there exists
My > 0 such that

Dy(%,%) < Moy, ¥neNU(0). (4.4)

In view of Lemma 2.1(3), we conclude that the sequence {x,},cn and hence {x, + eL ‘ne
N U {0},j € {0,1,2,...,N}} is bounded. Since {7}};;[1 is a finite family of Bregman weak
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relatively nonexpansive mappings from E into intdomg, for any g € F, we have
Dy(q, Tj(xn + €,)) < Dg(q:%4 +€,), VneNandje{0,1,2,...,N} (4.5)

This, together with Definition 2.1 and the boundedness of {x,} ., implies that { T;(x, + e’;,) :
neNU{0},j€{0,1,2,...,N}} is bounded.

Step 4. We show that x,, — u for some u € F, where u = proj; .

By Step 3, we deduce that {x,},cy is bounded. By the construction of C,, we conclude
that C,, C C, and x,,, = projgcm x € C,, C C, for any positive integer m > n. This, together
with (1.9), implies that

Dy (% %4) = D (%, Proj¢., x) < Dyl %) — Dy (proj. x,x)
= Dy (%, %) = Dy (%, %). (4.6)
In view of (4.6), we have
Dg(xnrx) EDg(xmx) +Dg(xm;xn) EDg(xmrx); Vm > n.
This proves that {Dg(x,,, )} 4en is an increasing sequence in R and hence by (4.4) the limit
lim,,_, oo Dg(x,,, %) exists. Letting m,n — oo in (4.6), we deduce that Dy (x,,,x,) — 0. In
view of Lemma 2.4, we obtain that ||x,, —x,.|| — 0 as m,n — 00. Thus we have {x,},cn is a
Cauchy sequence. Since E is a Banach space, we conclude that there exists u € E such that
lim ||x, —u|| = 0. (4.7)
n— 00

Now, we show that « € F. In view of (4.6), we obtain

lim Dy (%41,%4) = 0. (4.8)
n— 00

Since lim,,_, o e’;, =0, forallje€{0,1,2,...,N}, in view of Lemma 2.4 and (4.8), we obtain
that

lim [0 — %, =0 and  lim D(x,,x, +€,) =0, j€{0,1,2,...,N} (4.9)
n— 00 n—00

The function g is bounded on bounded subsets of E and thus Vg is also bounded on
bounded subsets of E* (see, for example, [23, Proposition 1.1.11] for more details). Since
%41 € Cpy1, we get

N
Dg(xn+17yn) = Dg(xn+1:xn) + Zan,ng(xnrxn + ely’)
j=1

N
+ Zan,j<xn+l —Xn vg(xn) - Vg(xn + dn))
j=1

This, together with (4.9), implies that

lim Dy (%y41,9) = 0. (4.10)
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Employing Lemma 2.4 and (4.9)-(4.10), we deduce that
im0 = yll = 0. (411)
n— o0

In view of (4.7) and (4.11), we get
lim ||y, —u| =0. (4.12)

Thus, {y,}uen is a bounded sequence.
From (4.11) and (4.12), it follows that

lim |%, = ¥ull = 0.
H—>0Q
Since Vg is uniformly norm-to-norm continuous on any bounded subset of E, we obtain
lim [ Vg(x) ~ Vgl | = 0. (4.13)
Applying Lemma 2.4, we deduce that
lim Dy (yy,%,) = 0. (4.14)
n— o0

It follows from the three point identity (see (2.2)) that

|Dg(W, %) = Dg(w,3)| = |Dg(W,9) + Dy %)

+ (W=7 Vg() = Vg(,)) = Dg(w, )|
|Dg ) = (W = 3, V2 () = V()|
Dy %) + 1w = yull | Ve () = Vg ()

S0 (4.15)

IA

as n — o0.

The function g is bounded on bounded subsets of E and thus Vg is also bounded on
bounded subsets of E* (see, for example, [23, Proposition 1.1.11] for more details). This,
together with Step 3, implies that the sequences {Vg(x,)}en, {VE€Wn)}nen and {Vg(Tj(x, +
e’;,)) :neNU{0},j€{0,1,2,...,N}} are bounded in E*.

In view of Theorem 2.2(3), we know that dom g* = E* and g* is strongly coercive and uni-
formly convex on bounded subsets. Let s = sup{||Vg(Tj(x, + ei,))|| :j€{0,1,2,...,N},ne
N U {0}} and let p; : E* — R be the gauge of uniform convexity of the conjugate func-
tion g*. Suppose that i € N satisfies condition (2). We prove that for any w € F and
j€{0,1,2,...,N},

N
Dg(Wryn) = Dg(w’xn) + Za”JDg(x”’x” + e/}’l)
j=1
N
+ Z an,j(w —Xn Vg(xn) - Vg(xl’l + eln))
j=1

— i} (| VE(Ti (% + €,)) = VE(Tj (20 + €)) |)- (4.16)
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Let us show (4.16). For any given w € F and j € {0,1,2,...,N}, in view of the definition of
the Bregman distance (see (1.7)), (1.6), Lemmas 2.3 and 2.5, we obtain

Dy,(w,y,) = Dy (w, Vg* |:a,,,ng(x,, Za,,,Vg x,, +é ))j|>
= V(w,oc,,OVg(xn) + Za,,,Vg (o + ¢ )))
j=1
= g(w) - <w,a,,0Vg %) Zan,Vg (%0 + €] ))>

+ g (o Vgxa)) + Zan,Vg (% +€)))

— zan,g — ctnolr Vgl zan,w,Vg (5 +))

Mz

+ O‘n,Og*(vg(xn)) + oyg (Vg( (xn +é )))

~.
I
—_

— a0t (| Vg (Ti(tn + €1)) = Veg(Tj(xn + €,)) |)

Il
—

= o V(w, Vg(x,,)) + oz,,,V(w, Vg( (x,, +é )))

J

= anien;] (| Va(Ti(n + €,)) = Ve (T (% + €)) )

= an,ODg(Wrxn) + Zan,ng(W’ T}(xn + e;))
j=1
= it (|| VE(Ti(xn + €,)) = Va(Tj(xn + €,)) )
N
< o Dg(W,2,) + Y 0t Dy (W, %, + €))
j=1

— it} (| Ve(Ti(wn + €})) = Ve(Tj(x + €,)) )

N N
= 0D, (W, x,) + E apiDg(W, x,) + E oDy x,,,x,,+e’)
J=1 J=1

) aniw =, V() - Ve (x + €]))

j=1

aman;ps(llvg( @+ €,)) = Ve(Tilxn +€,)))

= Do(w,x,,) + Zan,ng(xn,xn +é)

Jj=1

£ (W = %0, Vg () = Ve + )
j=1

= it} (| VE(Ti (5 + €,)) = Va(Tj(xa + €,))|)-
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Since lim,,_, o [|%, — (x, + e’,;)ll =0 forallje€ {0,1,2,...,N} and Vg is uniformly norm-to-

norm continuous on any bounded subset of E, we obtain
lim | Vg(x,) - Vg(xs +€,)| =0, Vje{0,1,2,....N}

n—00

This, together with (4.15), implies that

N
Dg(Wrxn) - Dg(W’yn) + Zan,ng(xn;xn + e;)
-1

N

+ Zan,,(w — %, Vg(xy) — Vg (% + e’n)) —0 asn— oo.

j=1
In view of (4.16) and (4.17), we conclude that
ooty (| VE(Tixn + €,)) = Ve(Tj(xa +€))) )
N
= Dg(W:xn) _Dg(wxyn) + Zan,/Dg(xmxn + eln)
j=1
N

+ Z O5;’1,}<xn+1 —Xn» Vg(xn) - vg(xn + ei«;))
j=1

-0

as 1 — 00. From the assumption liminf,_, o ot > 0, ¥j € {0,1,2,...,N}, we have

lim pf ([ Ve(Ti(n +¢,)) = Ve(Tj(xn +€,))[) =0, Vj€{0,1,2,...,N}.

Therefore, from the property of p}, we deduce that

lim || Vg(Ti(xs +¢€,)) - Vg(Tj(xn + €,))|| =0, Vje{0,1,2,...,N}

n—00

(4.17)

Since Vg* is uniformly norm-to-norm continuous on bounded subsets of E*, we arrive at

,,IEEOHE(’C” +e,)-Ti(x, +€,)]| =0, Vje{0,1,2,...,N}.
In particular, for j = 0, we have

lim ” Ti(x,, + ei,) — X, ” = lim H Ti(x,, + ei,) - (x,, + eg) H =0.
This, together with (4.7) and (4.18), implies that

lim || Tj(x, + €,) —x, + €, =0, Vje{0,1,2,...,N}.

n—0Q
From (4.7), we obtain

lim %, +€,—u| =0, Vje{0,1,2,...,N}.

n—00

(4.18)

(4.19)

(4.20)
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In view of (4.19) and (4.20), we conclude that Tju = u, Vj € {0,1,2,...,N}. Thus, we have
uekf.
Finally, we show that u = proj‘fF x. From x,, = proj‘%n x, we conclude that

(z =0, Vg(x,) = Vg(x)) =0, VzeC,.
Since F C C,, for each n € N, we obtain

(z— %4 Vg(x,) — Vg(x)) >0, VzeF. (4.21)
Letting n — oo in (4.21), we deduce that

(z—u,Vg(u) - Vg(x)) >0, VzeF.
In view of (1.8), we have u = projsx, which completes the proof. g

Remark 4.1 In Theorem 4.1, we present a strong convergence theorem for Bregman weak
relatively nonexpansive mappings with a new algorithm and new control conditions. This
is complementary to Reich and Sabach [46, Theorem 2]. It also extends and improves
Theorems 1.3, 1.4 and 1.5.

5 Equilibrium problems

Let E be a Banach space and let C be a nonempty, closed and convex subset of a reflexive
Banach space E. Let f : C x C — R be a bifunction. Consider the following equilibrium
problem: Find x € C such that

f(x,y) >0, VyeC. (5.1)

In order to solve the equilibrium problem, let us assume that f : C x C — R satisfies the
following conditions [53]:

(A1) f(x,x) =0 forallx € C;

(A2) f is monotone, ie., f(x,y) +f(y,x) <0 forallx,y € C;

(A3) f is upper hemi-continuous, i.e., for each x,y,z € C,

limsupf(tz + (1 - t)x,y) <f(%,p);
£,0

(A4) for each x € C, the function y —> f(x, y) is convex and lower semicontinuous.
The set of solutions of problem (5.1) is denoted by EP(f).
Let C be a nonempty, closed and convex subset of E and let g : E — R be a Legendre

function. For r > 0, we define a mapping 7, : E — C as follows:
1
T, (x) = {z eC:f(zy) + ;(y -2z,Vg(z) - Vg(x)) >0forallye C} (5.2)

forallx € E.
The following two lemmas were proved in [46].
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Lemma 5.1 Let E be a reflexive Banach space and let g : E — R be a Legendre function.
Let C be a nonempty, closed and convex subset of E and let f : C x C — R be a bifunc-
tion satisfying (A1)-(A4). For r > 0, let T, : E — C be the mapping defined by (5.2). Then
dom(T,) = E

Lemma 5.2 Let E be a reflexive Banach space and let g : E — R be a convex, continuous
and strongly coercive function which is bounded on bounded subsets and uniformly convex
on bounded subsets of E. Let C be a nonempty, closed and convex subset of E and let f :
C x C — R be a bifunction satisfying (Al)-(A4). For r >0, let T, : E — C be the mapping
defined by (5.2). Then the following statements hold:

(1) T, is single-valued,

(2) T, is a Bregman firmly nonexpansive mapping [46], i.e., for all x,y € E,

(Tox - T,y Vg(T,x) — Vg(T,9)) < (Tox - T,p, Vg(x) — Vg());

(3) F(T,) = EP(f);
(4) EP(f) is closed and convex;
(5)
(6) D,

T, is a Bregman quasi-nonexpansive mapping;
¢(q, Trx) + Dg(Tx, x) < Dy(q, %), Vq € F(T).

Theorem 5.1 Let E be a reflexive Banach space and let g : E — R be a strongly coercive
Bregman function which is bounded on bounded subsets and uniformly convex and uni-
formly smooth on bounded subsets of E. Let f be a bifunction from E x E to R satisfying
(A1)-(A4). Let N € N and let {T}-}j\:{1 be a finite family of Bregman weak relatively non-
expansive mappings from E into intdomg such that F := ﬂ]]\il F(T)) is a nonempty subset
of E. Suppose in addition that T, = I, where I is the identity mapping on E. Suppose that
F NEP(f) is a nonempty subset of E, where EP(f) is the set of solutions to the equilibrium
problem (5.1). Let {x,,},cn be a sequence generated by

xo=x €E chosen arbitrarily,

C() :E,
= Vg [0 Vg () + Y V(T + )],
u, €E such that f(u,,y) + —(y — 1y, Vg(u,) — Vg(y,)) > 0,Vy € E, (5.3)

Cus1 = {z € Cy : Dg(2,uy) < Dyl2, %) + Z 1 0D (%1, 20, + eh)
+ j=1 an,j(z —Xn» Vg(xn) - Vg(xn + e/n))}:

Xnel = projgcm1 x and neNU{0},

where Vg is the right-hand derivative of g. Let {a,,j: n € NU {0},j € {0,1,2,...,N}} be a
sequence in (0,1) satisfying the following control conditions:

1) Yoo =1,YneNU{0};

(2) There exists i € {1,2,...,N} such that liminf,_, o a0, > 0, Vj € {0,1,2,...,N}.
If, for each j = 0,1,2,...,N, the sequences of errors {h}nen CE satzsfy lim 1nf,4_>oo é,=0;

then the sequence {x,},en defined in (5.3) converges strongly to projs FrEp() X A4S 1 —> 0.

Proof By the same argument, as in the proof of Theorem 4.1, we can prove the following:
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(i) lim,— oo [, — #,]l = 0 and lim,,_, o ”Vg(xn) - Vg(un)” =0.
(ii) For each w € F, lim,_, o [Dg(W, %,,) — Dg(w, 1,,)| = 0.
(iii) There exists u € F such that x, — u as n — oo.

Since u, = T, y,, for any w € F, we have

Dg(W: Up) = Dg(W: Ty,n)

< Dg(W’yn)

N
< Dy(w,x,) + Zan,ng (xn,x,, + e’n)
j=1

N
43w =, Vg () — Vg ( + €])). (5.4)

j=1

Next, we show that u € EP(f). From Lemma 5.2(6), (5.4) and u, = T}, y,, we conclude
that

Dg(unxyn) = Dg(Tr,,ynxyn)

=< Dg(Wryn) _Dg(w» Try,yn)
N
=< Dg(W;xn) _Dg(W’ un) + Zan,ng(xnrxn + eln)
j=1
N
+ ) W=, VElra) = Ve(xn + )
j=1
o (5.5)

as # — o0. In view of (5.5) and Lemma 2.4, we obtain
lim [z, — yull = 0. (5.6)
Hn—>0Q

Since Vg is uniformly norm-to-norm continuous on any bounded subset of E, it follows
from (5.6) that

lim [ Vg(us) - V()| = 0.

By the assumption r,, > a, we have

i V&) = Vel _

n—00 T

0. (5.7)

In view of u,, = T, y,, we obtain

fluny) + %(y — Uy, Vg(u,) - Vg(y,,)) >0, VyeL.

n
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From condition (A2), we deduce that

Vg(u,) — Vg(y,) 1
1y - L5 = V00

n n

{y -, Vg (u) = Vg(yn)
> ~f(uny) > f(y,u,) >0, VyeL.
Letting n — o0 in the above inequality, we have from (5.7) and (A4) that
fl,u) <0, VyeE.

For t € (0,1] and y € E, let y, = ty + (1 — £)u. Then we have y, € E, which yields that
f(,u) <0. From (Al), we also have

0=f0ey) <tf5ry) + A=) O u) < (1, ).

Dividing by ¢, we get

fny) =0, VyeLE.

Letting ¢ | 0, from the condition (A3), we obtain that
f(u,y)>0, VyeE.
This means that u € EP(f). Therefore, u € F N EP(f). O

Theorem 5.2 Let E be a 2-uniformly convex Banach space and let g : E — R be a strongly
coercive Bregman function which is bounded on bounded subsets and uniformly convex
and uniformly smooth on bounded subsets of E. Assume that there exists c; > 0 such that g
is p-convex with p(t) := $* for all t > 0. Let C be a nonempty, closed and convex subset
of E and let f be a bifunction from C x C to R satisfying (A1)-(A4). Assume that {T;}jen
is an infinite family of Bregman weak relatively nonexpansive mappings from C into itself
and that A : C — E* is a y-inverse strongly monotone mapping for some y > 0. Suppose
that F := ﬂlofl F(T)nN A7Y0) N EP(f) is a nonempty subset of C, where EP(f) is the set of
solutions to the equilibrium problem (5.1). Suppose in addition that T = I, where I is the
identity mapping on E. Let {x,},en be a sequence generated by

xo=x€ C chosen arbitrarily,

Co=C,
Y = Proje.(Vg*[Vg(x,) — BAx,]),
Zn = Vg* [an.()vg(xn) + Z]O:ol Oln,ng(ijn)], (5‘8)

u, € C  such that f(u,,y) + é(y —uy,, Vg(u,) —Vgly,)) =0,Vy e C,
Cn+1 = {Z € Cn :Dg(zy un) =< Dg(znxn)};

Kyl = projgcm1 x and neNU{0},

2
where Vg is the right-hand derivative of g. Let B be a constant such that 0 < 8 < %, where ¢y
is the 2-uniformly convex constant of E satisfying Corollary 2.1(2). Let {a,,; : n e NU{0},j €
N U {0}} be a sequence in (0,1) satisfying the following control conditions:
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(1) Y% omi=1,¥n e NU{0);

(2) liminf,_, o atpoy; >0, Vje N.
Then the sequence {x,}.cn defined in (5.8) converges strongly to projs. x as n — oo.

Proof We divide the proof into several steps.

Step 1. Following the method of the proof of Theorem 3.1 Step 1, we obtain that C, is
both closed and convex for each » € NU {0}.

Step 2. We claim that F C C, for all » € NU {0}.

It is obvious that F C Cy = C. Assume now that F C C,, for some m € N. It follows from
Lemma 2.5 that, for each w € F C C,,, we have

Dy(W, ym) = Dy (w, proj¢(Ve*[Ve(wm) — BAxm]))
< Dy(w, Vg*[Vg(m) — BA%])
V(w, Vg(m) — BAX)
V (W, Vgm) — BAXy + BA%) — (Vg* (Vg (xm) — BA) — W, BAX,,)
V(w, Vgxm)) — B(VE* (Vgm) — BAX) — W, Ax)
Dg(W, %) = Bt — W, Ays) — BV (VE() — BA) — Xm) Ay

< Do(w, %) = BY A% |1> + B||Vg* (Vem) — BAm) — Vg* V() || 1A%

IA

2 4132 2
= Dew,0) = By A% + == | A
2

4
< Dy(W, %) + ﬁ(c—f - J’) A% 12 (5.9)

2
This, together with t—f — v <0, implies that
2
Dg(W;ym) E Dg(w1xm)'
Since T; is Bregman weak relatively nonexpansive, for each j € N, we obtain

Dg(W, uy) = Dg(W, T}, 21n)

< Dy(w,zn)

=D, (w, Vg* |:am,0Vg(xm) + Z ocm,ng(T,»ym):|>

j-1

o0
V<w, 0 VE(X) + Zam,/Vg(T;ym)>

Jj=1

glw) - <w, U0 VEX) + Z oem,,«Vg(ijm)>

Jj=1

o0
+g* (am,OVg(xm) + ZamJVg(T/ym))

j1
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< dmog(W) + ) (W)

j=1

+ Unog" (VE&m) + Y g™ (Ve(Tiym))

j=1

= ooV (W, Vg(xm)) + Zam,,-\/(w, Vg(Tiym))

j=1

oo
= &m0 Dy (W, %) + Zo‘my/Dg(W’ Tiym)
j1

[09)
= am,ODg(W:xm) + Zam,ng(W;ym)
j=1

< Dy(W, x,).

This proves that w € C,,,1. Consequently, we see that F C C, for any n € NU {0}.

Step 3. By the same manner, as mentioned in the proof of Theorem 3.1, Step 3, we can
prove that the sequences {X,,} N, {Vn)}nens {Zn}nens {#n}nen and {Tjy, :j e NU{0},n e NU
{0}} are bounded.

Step 4. We show that x,, — u for some u € F, where u = proj; .

A similar argument, as mentioned in Theorem 3.1, Step 4, shows that there exists u € C

such that
lim ||x, —u||=0 and lim |u, —x,| =0. (5.10)
n—00 n—00

In view of Lemma 2.4, we deduce that

lim Dy (24, %) = 0.

n—0o0

Since Vg is uniformly norm-to-norm continuous on any bounded subset of E, we obtain

lim ”Vg(un) - Vg(x,,)” =0.

n—00

It follows from the three point identity (see (2.2)) that

’Dg(wyxn) _Dg(W; un)| |Dg(Wx Upn) +Dg(un;xn)

+ <W — Uy, Vg(ty) - Vg(%:)) - Dg(W’ un)|

= |Dg(unrxn) - <W - Un, vg(”n) - Vg(’%))’

IA

Dg(umxn) + W=yl ” Vg(u,) — Vg(x,) ”
—0 (5.11)

as n — o0o. The function g is bounded on bounded subsets of E and thus Vg is also
bounded on bounded subsets of E* (see, for example, [23, Proposition 1.1.11] for more
details). This, together with Step 3, implies that the sequences {Vg(x,)},en, (VW) tnen,
{Vg(zu)}nen and {Vg(Tjx,) : j e NU{0},n € NU{0}} are bounded in E*.
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In view of Theorem 2.2(3), we know that domg* = E* and g* is strongly coercive and
uniformly convex on bounded subsets. Let s = sup{||Vg(x,)|l, | Vg(Tix,)| : j e NU{0},n €
NU {0}} and p; : E* — R be the gauge of uniform convexity of the conjugate function g*.
For any given w € F(T) and j € N, in view of the definition of the Bregman distance (see
(1.7)), (1.6), Lemmas 2.3 and 2.5, we obtain

Dg(W’ Up) = Dg(W: Ty,2n)
< D¢(w,z,)

= D, (w, Vg* |:an,0 Vg(x,) + Z anJVg(Y}yn)]>

j=1

=V (w, o VE(@n) + Yty Vg (ijn)>

j=1

= g(w) - <w, a,o0Vg(x,) + Zan,,'Vg(ij,,)>

j=1

+g" (an,o Vg(n) + Y Vg (T/yn)>
j=1

< duog(w) + Y (W)

j=1

— (W, Vg(®n) = D atnj{w, Ve(Tiy)

T
+atpog" (Vg (xn)) + i i@ (Ve(Tiyn))
i
— i} (| VE(0n) = VE(Tiy) | )
= a0V (w, Va(x,)) + iamv (w, Ve(Tiyn)
i
— o0} (| VEtn) = Ve(Tiya) )

[o¢]
= 0D, (W, x,) + Zan,ng(w, Tiyn)
j=1

— o0 (|| Ven) = Ve(Tiyn)|)

00
= an,ODg(Wv xn) + Zan,/Dg(Wyyn)
j=1

— oy onipr (|| Vexn) — Ve(Tiya) )

o
=< an,ODg(W; Xn) + Zan,/‘Dg(Wy %)
j=1

— anotnipr (|| Vexn) = Ve(Tiya) )
= Dy, %) — 0007 (|| Ve(xn) = Ve(Tixn) | )- (5.12)
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In view of (5.10), (5.11) and (5.12), we conclude that

an,Oan,jps*(” vg(xn) - Vg(T}yn) ”)
= Dg(W:xn) _Dg(W;Zn)

—0
as n — 00. From the assumption liminf,_, o, a0t > 0, Vj € N, we have
lim o} (| Vgten) - Ve(Tpn)]) =0, VjeN.
Therefore, from the property of p}, we deduce that
lim || Vg(xs) — Vg(Tiyu)| =0, VjeN.
n— 00
Since Vg* is uniformly norm-to-norm continuous on bounded subsets of E*, we arrive at
lim |lx, — Tjy.ll =0, VjeN. (5.13)
n— 00

Using inequalities (5.9) and (5.12), we obtain

o0
Dg(W» Uy) < an,ODg(W: Xn) + Z an,ng(Wx}/n)

j=1
o9 4[3 )
= an,ODg(W:xn) + Zan,j Dg(wrxn) +B C_2 =7 1Az, |l
j=1 2
=D,( 3 45 Ax,|? 5.14
= Dg(w,n) + B )i — — 7 ) IAx|. (5.14)
j=1 2
It follows from (5.14) that
00 4ﬂ )
B Zan,}' Y- C_Z |1Ax, ] < Dg(W:xn) _Dg(W: Uy).
=1 >
Since £ — y < 0, we see that
©
lim ||Ax,| = 0. (5.15)

Furthermore, since x,, € C for all # > 0, then using (1.6), Lemma 2.5 and Corollary 2.1, we
get

Dg(xnryn) = Dg(xnv Pijgc(Vg* [Vg(xn) - ,BAxn]))
< Dy(%n, Vg [ V(%) — BA%4))
= V(xn, Vg(x,) - ﬂAxn)

< V(% Vg(xa) — BAX, + BAx,) — (VG (VE(X) — BAX) — X0, BAX)
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= V(xm Vg(xn)) - Ig(Vg* (Vg(xn) - ,BAxn) - W’Axn>
= Dy, %) — Botn — % Ax) — B(VE* (V) — BAx,) — 5, Axy)
< B[ Vg (Vgn) — BA%,) — Vg* Vgl | 1A%,
2
< e [ Az, ||

=
(%}

It follows from (5.15) that
lim Dy (x,,,) = 0.
n—00

Lemma 2.2 now implies that
lim (|2, — yull = 0. (5.16)
n— 00

Using (5.13) and (5.16), we conclude that
lim |ly, —ull=0 and lim [ly,— Tjy.ll=0, VjeN. (5.17)
n—00 n— 00

Therefore, u € IE'(T]) =F(T)),VjeN.

Step 5. We show that u € A™1(0).

Since A is y-inverse strongly monotone, it is continuous and hence, using (5.16) and
(5.17), we conclude that Au = lim,,_, o, Ax,, = 0. Therefore, u € A71(0).

Step 6. Finally, we show that u = proj} x.

The proof of this step is similar to that of Theorem 3.1, Step 4 and is omitted here. [

We end this section with the following simple example in order to support Theorem 5.2.

Example 5.1 Let E = [? and

%0 = (1,0,0,0,...),
% =(1,1,0,0,0,...),
% =(1,0,1,0,0,0,...),

X3 = (1’01 0!1)07 0, 0,...),

cey

Xy = (Un,lr Op2seeesOpnkse ~),
’
where
1 ifk=1n+1,
Opk =

0 ifk#Lk#n+1
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for all #n € N. It is easy to see that the sequence {x,},cn converges weakly to x¢. Let k be an
even number in N and let g : E — R be defined by

1
@) = 7lxll, %<k
It is easy to show that Vg(x) = Ji(x) for all x € E, where

Je(x) = {x* € Bt {,2%) = ||« | +*

] = <.
It is also obvious that
JeOx) = A5 (x), VxeE A eR.

Now, we define a countable family of mappings Tj : E — E by

2y ifx=x,;

1 n»
k="
7 ifx #x,

forall j > 1 and n > 0. It is clear that F(T}) = {0} for all j > 1. Choose j € N, then for any
neN,

Dg(o: T}xn) =g(0) _g(zjn) - (0 - zjn: Vg(T}xn))
k k

_ n ( ) n
T T )RS T R

nk

= (n+ 1) [_g(xn) + (xm Vg(xn»]

nk

= m [Dg((), xn)]

<xnr Vg(xn)>

< Dy(0,x,).
If x # x,,, then we have

Dy(0, Tjx) = g(0) — g(Tjx) - (0 — Ty, Vg(Tjx))

1 1
= —j_kg(x) - ]—k(x, —Vg(x))

= j—k[—g(x) (- VgW))]

< Dy(0,x).

Therefore, T; is a Bregman quasi-nonexpansive mapping. Next, we claim that T} is a
Bregman weak relatively nonexpansive mapping. Indeed, for any sequence {z,},en C E
such that z, — zo and ||z, — Tjz,|| — 0 as n — o0, there exists a sufficiently large number
Ny € N such that z, # x,, for any n,m > Ny. This implies that Tjz, = —ZTf“ for all n > Ny.

It follows from ||z, — Tjz,|| — O that j%lz,, — 0 and hence z, — zy = 0. Since zy € F(T)),
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we conclude that T; is a Bregman weak relatively nonexpansive mapping. It is clear that
ﬂ;.’fl E(T) = ﬂ;’:l F(T)) = {0}. Thus {T}}jen is a countable family of Bregman weak relatively
nonexpansive mappings.

Next, we show that {T}};cy is not a countable family of Bregman relatively nonexpansive

mappings. In fact, though x, — x¢ and

1
% — Tixull = =——|x,]| >0
+1

Xn — Xn
n

+1

as n — 0o, but xy ¢ F(T}) for all j € N. Therefore, F(T,-) # F(T;) for all j € N. This implies
that ﬂffl j:(T/) #ﬂffl F(Tj).

Finally, it is obvious that the family {7}};cy satisfies all the aspects of the hypothesis of
Theorem 5.2.

6 Applications (Hammerstein-type equations)

Let E be a real Banach space with the dual space E*. The generalized formulation of many
boundary value problems for ordinary and partial differential equations leads to operator
equations of the type

(z,Ax) = (z,b), Yz €E,
which is equivalent to equality of functionals on E. That is, the equality of the form
Ax=Db, (6.1)

where A is a monotone-type operator acting from a Banach space E into E*. Without loss
of generality, we may assume b = 0. It is well known that a solution of the equation Ax = 0
(i.e., {(z,Ax) = 0, Vz € E) is a solution of the variational inequality (z — x,Ax) > 0, Vz € E.
Therefore, the theory of monotone operators and its applications to nonlinear partial dif-
ferential equations and variational inequalities are related and have been involved in a
substantial topic in nonlinear functional analysis. One important application of solving
(6.1) is finding the zeros of the so-called equation of Hammerstein type (see, e.g., [54]),
where a nonlinear integral equation of Hammerstein type is one of the form

u(x) + /Q k(o )f (3 u()) dy = hx), (62)

where dy is a o-finite measure on the measure space 2; the real kernel k is defined on
Q2 x @, f is areal-valued function defined on Q x R and is, in general, nonlinear and / is a
given function on Q. If we now define an operator K by Kv(x) = fQ k(x, y)v(y) dy; x € 2, and
the so-called superposition or Nemytskii operator by Qu(y) := f(y, u(y)), then the integral
Eq. (6.2) can be put in operator theoretic form as follows:

u+KQu=0, (6.3)

where, without loss of generality, we have taken / = 0.
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Interest in Eq. (6.2) stems mainly from the fact that several problems that arise in differ-
ential equations, for instance, elliptic boundary value problems, whose linear parts possess
Green’s functions, can, as a rule, be transformed into equations of the form (6.2) (see, e.g.,
[55], Chapter IV). Equations of Hammerstein type play a crucial role in the theory of opti-
mal control systems (see, e.g., [56]). Several existence and uniqueness theorems have been
proved for equations of Hammerstein type (see, e.g., [57—62]). Very recently, Ofoedu and
Malonza in [63] proposed an iterative solution of the operator Hammerstein Eq. (6.1) in
a 2-uniformly convex and uniformly smooth Banach space.

Now, we give an application of Theorem 5.1 to an iterative solution of the operator
Hammerstein Eq. (6.1).

Theorem 6.1 Let E be a real Banach space with a dual space E* such that X = E x E* (with
the norm | z||% = |ullz + VI3, z = (4, v) € X) is a 2-uniformly convex and uniformly smooth
real Banach space. Let g : X — R be a strongly coercive Bregman function which is bounded
on bounded subsets and uniformly convex and uniformly smooth on bounded subsets of X.
Assume that there exists ¢, > 0 such that g is p-convex with p(t) := %ltzfor allt>0.LetQ:
E — E* and K : E* — E with domK = Q(E) = E* be continuous monotone-type operators
such that Eq. (6.3) has a solution in E and such that the map A : X — X* defined by Az :=
A(u,v) = (Qu — v,u + Kv) is y-inverse strongly monotone. Let C be a nonempty, closed and
convex subset of X, let f : C x C — R be a bifunction satisfying (Al)-(A4) and let {T}}jen
be an infinite family of Bregman weak relatively nonexpansive mappings from C into itself.
Let {x,},cn be a sequence generated by

xo=x € C chosen arbitrarily,

Co=C,
Y = Proje.(Vg*[Vg(x,) — BAx,]),
2Zn = Vg* o Vg xn) + 375 o Ve(Tiyn)), (6.4)

u, € C  such that f(u,,y) + é(y —uy,, Vg(u,) —Vgly,)) = 0,Vy e C,
Cn+1 = {Z € Cn :Dg(z’ un) =< Dg(zrxn)}’

Xu =proj. & and neNU{0},

where Vg is the right-hand derivative of g. Let B be a constant such that 0 < 8 < C%Ty, where ¢y
is the 2-uniformly convex constant of E satisfying Corollary 2.1(2). Let {a,,; : n e NU{0},j €
N U {0}} be a sequence in (0,1) satisfying the following control conditions:

) Z;fo o, =1,Yn e NU{0}

(2) liminf,_, o apo,; >0, Vje N.
Suppose that F := ﬂlofl F(T;) N A71(0) NEP(f) # @, then the sequence {x,},en defined by
(6.4) converges strongly to projs. x as n — oo.

Remark 6.1 Observe that z, € F implies, in particular, that zy € A71(0) <= Az, = 0. But
zo = (ug, vo) for some ug € E and vy € E*; moreover, Azg = A(ug, vo) = (Qug — vo, g + Kvp).
So, Azy = 0 implies that (Quo — vo, up + Kvp) = (0,0). This is equivalent to Quy — vy = 0 and
ug + Kvg = 0. Thus we have vy = Qup which in turn implies that uy + Ky = 0. Therefore,
ug € E solves the Hammerstein-type Eq. (6.3).
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