Yao et al. Fixed Point Theory and Applications 2013, 2013:140 ® Fixed Point Theory and App|icati0n5
http://www.fixedpointtheoryandapplications.com/content/2013/1/140 a SpringerOpen Journal

RESEARCH Open Access

Affine algorithms for the split variational
inequality and equilibrium problems

Yonghong Yao'", Rudong Chen' and Yeong-Cheng Liou?

"Correspondence:
yaoyonghong@aliyun.com
'Department of Mathematics,
Tianjin Polytechnic University,
Tianjin, 300387, China

Full list of author information is
available at the end of the article

@ Springer

Abstract

An affine algorithm for the split variational inequality and equilibrium problems is
presented. Strong convergence result is given.

Keywords: affine algorithm; split method; variational inequality; equilibrium
problem

1 Introduction
In the present manuscript, we focus on the following split variational inequality and equi-

librium problem: Finding a point x* such that
x* € GVI(B,¥,C) and v (x*) € EP(F,A), (1.1)

where GVI(B, ¥/, C) is the solution set of the generalized variational inequality of finding
u € C, ¥(u) € C such that

(Bu, y(v) - ¥ (W) =0, Vy()€C, (12)

and EP(F, A) is the solution set of the equilibrium problem, which is to find x" e C such
that

F(x*,y) + <Ax%,y —xT) >0, VyeC. (1.3)
Our main motivations are inspired by the following reasons.

Reason 1 Recently, the split problems have been considered by some authors. Especially,
the split feasibility problem which can mathematically be formulated as the problem of
finding a point x with the property

xe€C and gx) eQ

has received much attention due to its applications in signal processing and image recon-
struction with particular progress in intensity modulated radiation therapy [1-13]. Note
that the involved operator g is a bounded linear operator. However, in the present paper,

the involved mapping v in (1.1) is a nonlinear mapping.
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Reason 2 The variational inequality problem [14—24] and equilibrium problem [23-27],
which include the fixed point problems and optimization problems [28—30], have been
studied by many authors. It is an interesting topic associated with the analytical and algo-
rithmic approach to the variational inequality and equilibrium problems.

Motivated and inspired by the results in the literature, we present an affine algorithm
for solving the split problem (1.1). Strong convergence theorem is given under some mild
assumptions.

2 Preliminaries
Let H be a real Hilbert space with the inner product (-, -) and the norm || - ||, respectively.
Let C be a nonempty closed convex subset of H.

2.1 Monotonicity and convexity
An operator A : C — H is said to be monotone if (x — y,Ax — Ay) > 0 for all x,y € C.
A: C — H is said to be strongly monotone if there exists a constant y > 0 such that (x —
y,Ax —Ay) > y|lx—y||? forallx,y € C. A: C — H is called an inverse-strongly-monotone
operator if there exists a > 0 such that {x — y, Ax — Ay) > a||Ax — Ay||? for all x,y € C. Let
g:C — Cbeanonlinear operator. A : C — H is said to be a-inverse strongly g-monotone
iff (g(x) — g(y),Ax — Ay) > a||Ax — Ay||* for all x,y € C and for some o > 0. Let B be a
mapping of H into 2. The effective domain of B is denoted by dom(B), that is, dom(B) =
{x € H : Bx # #}. A multi-valued mapping B is said to be a monotone operator on H iff
(x —y,u—v) >0 for all x,y € dom(B), u € Bx, and v € By. A monotone operator B on H is
said to be maximal iff its graph is not strictly contained in the graph of any other monotone
operator on H.

A function F : H — R is said to be convex if for any x,y € H and for any A € [0,1], F(Ax +
(1= 2)y) < AE() + (1= DE().

2.2 Nonexpansivity and continuity

A mapping T : C — C is said to be nonexpansive [31-38] if || 7x — Ty|| < |lx — y|| for all
x,y € C. We use Fix(T) to denote the set of fixed points of T. T : C — C is called a firmly
nonexpansive mapping if, for all x,y € C, || Tx — Ty||? < {(x — y, Tx — Ty). It is known that
T is firmly nonexpansive if and only if a mapping 27 — I is nonexpansive, where [ is the
identity mapping on H. T': C — H is said to be L-Lipschitz continuous if there exists a
constant L > 0 such that || Tx — Ty|| < L|lx — y|| for all x,y € C. In such a case, T is said to
be L-Lipschitz continuous. Given a nonempty, closed convex subset C of H, the mapping
that assigns every point x € H to its unique nearest point in C is called a metric projection
onto C and denoted by Pc, that is, Pcx € C and ||x — Pcx|| = inf{||x—y|| : y € C}. The metric
projection Pc is a typical firmly nonexpansive mapping. The characteristic inequality of
the projection is (x — Pcx,y — Pcx) <0 forallx e H, y € C.

2.3 Equilibrium problem
In this paper, we consider the split problem (1.1). In the sequel, we assume that the solution
set S of (1.1) is nonempty.

Problem 2.1 Assume that
(Al) B:C — H is an a-inverse strongly {-monotone mapping;
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(A2) ¢ : C — Cis a weakly continuous and y -strongly monotone mapping such that
R(y)=C;
(A3) F:C x C— Risabifunction;
(A4) A:C — H is a B-inverse-strongly monotone mapping.
Our objective is to

find x* € GVI(B, ¥, C) such that ¥ (x*) € EP(F, A),

where F satisfies the following conditions:
(F1) F(x,x) =0 forallx € C;
(F2) F is monotone, i.e., F(x,y) + F(y,x) <0 for allx,y € C;
(F3) foreachx,y,z € C, lim; o F(tz + (1 - t)x,y) < F(x,%);
(F4) for each x € C, y > F(x,y) is convex and lower semicontinuous.

In order to solve Problem 2.1, we need the following useful lemmas.

2.4 Useful lemmas
The following three lemmas are important tools for our main results in the next section.
Note that these lemmas are used extensively in the literature.

Lemma 2.2 (Combettes and Hirstoaga’s lemma [26]) Let C be a nonempty closed convex
subset of a real Hilbert space H. Let F : C x C — R be a bifunction which satisfies conditions
(F1)-(F4). Let A > 0 and x € C. Then there exists z € C such that

1
F(z,y) + X(y—z,z—x) >0, VyeC.

Further, if T)(x) ={z € C: F(z,y) + %(y—z,z—x) > 0 for all y € C}, then the following hold:
(a) T, is single-valued and T, is firmly nonexpansive;
(b) EP(F) is closed and convex and EP(F) = Fix(T).

Lemma 2.3 (Suzuki’s lemma [39]) Let {x,} and {y,} be bounded sequences in a Banach
space X and let {B,} be a sequence in [0,1] with 0 < liminf,_,~ 8, < limsup,_, ., Bn < 1.
Suppose %41 = (L= B)yn + Buxn for all n > 0 and limsup,,_, o (|¥ns1 = Y|l = %01 —%4]1) < O.
Then lim,, o ||y — %4l = 0.

Lemma 2.4 (Xu’s lemma [40]) Assume that {a,} is a sequence of nonnegative real numbers
such that a,,1 < (1 - y,)a, + 8,Y,, where {y,} is a sequence in (0,1) and {3,} is a sequence
suchthaty 2| v, = 00 and limsup,,_, ., 8, <0 (or > o) |84l < 00). Then lim,_, o a, = 0.

3 Algorithms and convergence analysis
In this section, we first present our algorithm for solving Problem 2.1. Assume that the
conditions in Problem 2.1 are all satisfied.

Algorithm 3.1 Let C be a nonempty closed and convex subset of a real Hilbert space H.
Step 0. (Initialization)

QC()EC.
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Step 1. (Projection step) For {x,}, let the sequence {u,} be generated iteratively by
Uy = Pcandp(x,) + (1= o) (¥ (%) — 1uBx) ], 1 =0,

where P is the metric projection, {«,} C [0.1] is a real number sequence, ¢ : C — H is an
L-Lipschitz continuous mapping and § > 0 is a constant.
Step 2. (Proximal step) Find {z,} such that

1
F(zy,y) + (Auy,y — z4) + )\—(y—zn,z,, -u,) >0, VyeC,

where {A,} C (0, 00) is a real number sequence.
Step 3. (Affine step) For the above sequences {x,} and {z,}, let the (n + 1)th sequence
{x,11} be generated by

w(xnﬂ) = /Snv/(xn) + (1 - lgn)znx n>0,
where {8,} C [0,1] is a real number sequence.
Theorem 3.2 Suppose S # ). Assume that the following restrictions are satisfied:
(C1) 1, €(a,b) C(0,28), uy € (c,d) C (0,2a) and y € (LS, 2w);
(C2) limy— oo (fbns1 — ) = 0 and lim,_, o (A1 — Xy) = 0;

(C3) limyoay, =0and ), a, =00;
(C4) :3n € [‘517%-2] C (Orl)

Then the sequence {x,} generated by Algorithm 3.1 converges strongly to x* € S, which solves
the following variational inequality:

(8<p(x*) - I/I(x*), ¥(x) - w(x*)) <0, VxeQ. (3.1)

Remark 3.3 The solution of variational inequality (3.1) is unique. As a matter of fact, if
x € S also solves (3.1), we have

(Bp(x*) - ¥ ("), ¥ @ - ¥ (x*)) <0 and (3p&) - ¥ &), ¥ (+*) - ¥ (@) <O0.
Adding up the above two inequalities, we deduce

(8@ - ¥ (@) = 89 (") + ¥ (x*), ¥ (x*) -y (®) < 0.
It follows that

[v () v @] < 8le(x*) - 0@, v (x*) - ¥ (@)
<8]o() —e@| v () - v @]

which implies that

[v () -v @] =8]e(=) -0 @]
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Since ¥ is y-strongly monotone, we have
e =l <y () - v @ ~F) = [u () @ | -]
Hence,
e =] = [0 ) -y @] <o) -] = oL 7.

This deduces the contraction because of §L < y by the assumption. Therefore, x* = x. So,
the solution of variational inequality (3.1) is unique.

Remark 3.4 Using the characteristic inequality of the projection, we have
x e GVIB,¢,C) < vy = Pc(l/f(fc) - vac), Yv > 0.
Remark 3.5

| () - uBx) = (v () — uBy)||* < |¥ ) = ¥ )| + il - 2)11Bx — B>

In fact,

| () - 11Bx) — (¥ ) — uBy) |
= v @ - v )| - 214(Bx - By, ¥ (x) - ¥ () + 11?1 Bx — By|>
< |v®) - v )| - 2ualBx - Byl> + 12| Bx - By||*

2
<|v@-vm)|" +nln-20)IBx - By|*.
Next, we prove Theorem 3.2.

Proof Let x* € Q. Hence x* € GVI(B, v, C) and v (x¥) € EP(F, A). Since i, > 0, from Re-
mark 3.4 we have ¥ (x%) = Pc[y (x*) — u,,Bx¥] for all n > 0. Thus,

ltn = (%) | = | Pc[ande @) + (1= 0t) (W (%) — nBan) | = Pc[ ¥ (x%) — punBx*] |
< [en(8(xn) — ¥ (x%) + 11, Bx¥)
+ (=) (W ) = 1Bti) = (W (5) = 12B5%) )|
< o [) — 80 (') | + 50 (1) — ¥ () + B
+ (1= ) [ (¥ (@) = 110B) = (W (xF) = B |
< 8Ly — &* | + o || S0 (x7) — ¥ (x7) + B ||
+ (1= an) [ W () = (57) |
< L1y [ Ge) 0 ()| + a5 (x%) ~ v (o) + B |
+ (=) [ ) -y (xF)
= [1- (= 8L1y)an] | () = ¥ (2F) || + |80 (xF) — ¥ (&%) + Bx*
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< [1-=sLiy)an]|¥(xn) — v (x*)
+ay([80(x7) = v (+) | + 20 B*]). (32)

By Algorithm 3.1, we have z,, = T;,, (I — A,A)u, for all n > 0. Noting that v (x*) € EP(F, A),
we deduce ¥ (x*) = T, (I — 1,A)¢ (x*) for all n > 0. It follows that

[0 Genea) = 9 () | < Bl 9 n) - v () |
+ (L= Bn) | Ta, (I = 1nA)tty = Ti, (I = 1 A)Y (xF) |
< Bul Y x) = ()| + W= B — v (+7) |
< B W) - v (x)]
+ (L= Ba)[1 - (L= 8L/y)an] | ¥ () — v (+F) |
+ (L= B (]| 89 (x*) = ¥ (x) || + 20 Bx*] )
= [1-@=8L/)A - B [¥ ) - v (+F) |

I8¢ (x*) = (¥l + 20| B | '

+(1=38L/y)A - Buan 1-8Lly

By induction

’

Sp(x%) — (%) || + 20| Bx|
_ 5| < _ i I8¢ )
1)~ 6°) | = max 50 - () Lo
Hence, {yr(x,)} is bounded. Since ¥ is y-strongly monotone, we can get (by a simi-
lar technique as that in Remark 3.3) y|lx, — 2*|| < ||[¥(x,) — v (&) So, ||lx, — x*|| <
Hoy it o|| Bxt PR .

Ll (i) = ¥ ) < £ max{lly (xo) — ¥ (") |, L2} This implies that {x,}
is bounded. Next, we show ||x,,; — x,|| — 0. From Step 2 in Algorithm 3.1, we have

1
F(zy,y) + )L—(y =2y 2y — Uy — A,,Au,,)) >0, VyeC.
n
Taking y = z,,,1, we get
1
F(zy, 2p11) + )L_<Zn+1 ~ Zny Zn — (thy — )LnAun)> > 0.
n

Similarly, we also have

F(zy41,20) + <Zn = Zns1y Zns1 — (U1 — }tn+1Aun+1)> > 0.

n+l

Adding up the above two inequalities, we get

Zn— Uy Zpsl — Unsl
F(Zn; Zn+1) +F(Zn+1: Zn) + (Aun _Aun+1yzn+1 _Zn> + <Zn+1 —Zn, X - X > 0
n n+l

By the monotonicity of F, we have

F(Zn: Zn+1) + F(Zn+1, Zn) = 0.
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So,

Zy— U z —Uu
n n n+l n+1> > 0.
)Ln )\n+1

(Auy — Athyi1, Zn — 2n) + <Zn+1 —Zp, -
Thus,

An
)"n <Aur1 - Aun+1: Zn+l — Zn) + <Zr1+1 —ZpyZp — Zp+l t 2yl — Up — —(Zn+1 - un+1) > 0.
n+l

It follows that

2
”Zn+1 - Zn” =< )"n<AMn _Aun+1’ Zn+l — Zn)

An
+{Zpal — Zpy Upa1 — Uy + | 1— P (Zns1 — Uns1)
1

n+

= ((1 - )"VIA)MVI+1 - (I - )\'}’IA)MVH Zn+l — Zn)

A
+ <Zn+1 — Zp, (1 - ! )(zn+1 - un+l)>
)\n+1

= ”(1 = Aty — (L = 1Aty ” 1zns1 = zull

An
+|1- 1Zns1 = Znll | Zis1 — Ui
}\n+1
An
< N zus1 = zall| 11 = sl + |1 = —— |1 Zs41 = thp11
)\n+1
and hence
An
1Zns1 = Zull < Ntgpsr — nll + |1 - 1Zns1 — U1l
)"Vl+l

1
=< ||Mn+l - Mn” + ;|)Vn+1 - )\n|||zn+l - un+1||~
By Algorithm 3.1, we have

i1 = tnll = | Pe[etns18@(ns1) + (1 = o) (¥ (¥s1) = M1 Binan) |
— Pe[andp(xn) + (1= o) (¥ (%) — 1By ) ]|
< [etns180@mi1) + (1 = nar) (¥ (1) = tms1 Bini) |
— [ond(n) + (1 = 0t) (¥ (%) — puBn) ]|
< 18 | @(Xni1) — @) || + 8letus1 — otul | ()|
+ (1= 1) | ¥ Bns1) = tnirBonar — (V¥ () — 1B |
+ |otnar = ol | @) || + a1 = tnl | BG) | + st thner — ctuttnl | Bxa) |
< 8L a1 — Xl + (1 = 1) | W (K1) — ¥ ()|
s =l (8] @Cen) | + W) ) + 11mer = peal | B |

+ |0‘n+1/1«n+1 - anMnl ”B(xn) ||
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< @1 (SL1Y) | Wns1) = ¥ @) || + (1= etan) | (s1) — ¥ ()|
ot = el (8] @Cen) | + | @) [[) + [ = al | B |
+ 101 st — npln| | B() |

= [1- @ = 8L/y)atp ]| ¥ (Gonan) = ¥ ()|
+ et = o (8] 0o | + 9 G |)

+ |/'Ln+1 - Mn| HB(xn) ” + |an+1/1«n+1 - an/fl«n| HB(xn) ” .

Therefore,

”Zn+1 - Zn” = [1 - (1 - 5L/V)an+l] ” w(xrwl) - 1p(xn)H
+ [@pi1 _anl((S ”‘p(xn)” + ”V’(xn)H)

+ |/1'n+1 - //«n| HB(xn) || + |an+lﬂn+1 - anﬂn| HB(xn) ||

1
+ ;l)\nﬂ — AnlllZns1 = thpar |l

It follows that

1Zns1 — znll = ”\b(xwrl) - l[’(xn)” < o1 — O5n|(8 ||§0(xn)” + ”lﬁ(xn) ”)
+ |Mn+1 - ,un| ||B(xn) || + |an+1lan+l - anﬂn| ||B(xn) ||

1
+ ; |)\n+1 - )"nl ||Zn+1 - un+1||'

Since lim,,_, oo 0t = 0, lim,,—, oo (41 — y) = 0, lim,,, o (A,41 — A,) = 0 and the sequences
{ox)} (¥ (x)} {24}, {u,} and {Bx,} are bounded, we have

limsup (|21 — zall = | ®ni1) = ¥ (x4)])) < 0.

n—o0

By Lemma 2.3, we obtain
lim |z, — ¥ (x,)] = 0.
n—0o0
Hence,
nlingo||w(xn+l) =¥ (%) ” = nlin;o(l - ,Bn)”Zn - W(?Cn)“ =0.
This together with the y -strong monotonicity of ¥ implies that
lim ||%,41 — %, = 0.
n—0oQ

By the convexity of the norm, we have

2

” Y (Xpe1) — I/f(xi) ”
= ||:3n(w(xn) - 1ab(x:i:)) +(1- ﬂn)(zn - 1ﬁ(xi)) “

2

Page 8 of 15
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I

< Bul W Gn) = v () P + A= B |20 — ¥ (+)
< Bal V@) = v () | + A= B[ | (80n) — ¥ (x) + aBa?)

+ (1= a,) (W (%) = 10aB) — (¥ () = wBa)) | T
< B W 6en) = W () |* + (@ = ) |80 () — ¥ () + 1Bt

+ (=) | (¥ () = 1nBs) = (¥ (xF) = 1B |

+ 20, (1 = 0t) | 80 (%) — W (6F) + 1 Ba* | | (¥ (%) — pnBn) — (W (x%) — 10 Bx*) | ]
< Bl W (@) - v ()]

+ (1= )1 — )| (¥ (@) = 115Bx) = (W () = Bt |* + auM, (3.3)
where M > 0 is some constant. From Remark 3.5, we derive
| (0 Goen) = 1nB) = (¥ (%) 11uB) | < [0 @) = () |+ 12— 200) | Bc — B |,
Thus,

| ) = ¥ () | < Bl Ge) = 0 () | + (0= B = ) (| ) — ¥ () |
+ (e — 2a)HBx,, - Bx* ||2) +a,M

< | v @x,) — v (x)

+ (1= B = )ittty — 20) | Bty — Ba*[|* + M.

I

So,

(1— B)(1 - an)en(2a — ) | B, — Bx*|?
= ” V(%) — 1p("::) ”2 - ” Y (Xni1) — W(x:) “2 + oM
< (lw @) = v ()| + ¥ @) = v () ) | ¥ @nir) = ¥ )| + uM.

Since a, — 0, || (%441) — ¥ (%) | = 0 and liminf, oo (1 = B,)(1 — ) (2 — ) > 0, we
obtain

lim || Bx, - Bx*| = 0.
n—00

Set yp = () — tnBsn — (Y (x%) — 1,Bx") for all . By using the property of projection, we
get
Jtn =9 (65)|* = | Peetndn) + (1= ) (¥ () = 11nBtn) | = P (xF) = pnBat] |
< {otn(8@@n) = ¥ (x*) + uBx™) + (1= cty)ys thn — ¥ (x7))
= et ~ v (<) + 10Be) + (0t + e~ ()
~ e (89) = v (&%) + uBat) + (1= @)y = + ¥ (") |}
{80 0en) = v (67 + puBa |

=

N | =
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+ (L= )| ¥ @) = v (&) | + o — v ()|
- “an (8(0(96”) - Ilf(xi) + :U'ani _yn)

+ Y () = 1ty — (Bt — BxY) |}
1

= S lonldeen) - v (x7) + puBa’

+ 1= ) =¥ ()| + oo = v (o) |

— W) =t |” — 12| Bx, — Bt |

I

— 2|8 (wn) — ¥ (") + B =y, |
+ 210, ( By — B, 80(x,) — ¥ () + 11,Bx* - y,,)
+ 2,U«n(1//(xn) — Uy, Bx, — Bxi>

- Zan(vf(xn) - uma(p(xn) - I;[/(x:) + /‘Lani _yn>}~ (34)

It follows that

= (o) | = a8 ) = () + Bt
+ - ¥ - v (@) - v @) -
+ 200t || Bry = B[ [ 8 (x) = v (xF) + 105 Bx" =
+ 24t | W () — | | B — Ba* |

+ 20 “w(xn) — Un H ||8§0(xn) - I//(xi) + /’Lani ~In “ (3.5)

From (3.3) and (3.5), we have

2

|9 Genn) = v (=) |
< Bull W) = v () |* + @ = Bo) |t — v ()|
< Bul ¥ @) = v (o) |* + A= Bt |80 (xa) — W (%) + Bt
+ (=) (1= B | Gen) = v (%) | = @ = B) [ ) — 0]
+ 245 (1= Bu)otu | By — Bx* || [ 8 () — o () + 1B =y
+ 2(1 = B) || ¥ (%) — 14 || | B — B |
+2(1 = Bt || ¥ (%) — ]| | S () = W () + B =y
|0 @) = 9 (%) |* + et | 80 () = 0 (xF) + prBa*|*
— (= B | ) — 2]
+ 2400ty || Bty — Bx* ||| 8 () — W (x°) + 11uBx™ — 3|

+ 20y ” V(%) — ty ” ”an - Bx* ”

IA

+ 20y ”W(xn) — Uy ” ”8(/)(9‘:;4) - I/f(xT) + ,u'ani —Jn ”
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Then we obtain

=B o) = | = (| Gon) = 0 (o) | + 9 Gonan) = (o) )| 0 @) = )|
+ || 89(x,) — ¥ () + 0, Bt |
+ 200y | Bty — Bx*|| [ 80 () — ¥ (x7) + puB* — 34|
+ 24| ¥ () = 1 ||| B — Bt |

+ 20‘;«1”1/[(9%) — Uy ” ”890(75;1) - w(xi) + :u'ani —Jn ”
Since limy,_, o0 01, = 0, limy,—, o6 ||V (X411) — ¥ (%,)]] = 0 and lim,,—, o || Bx,, — Bx¥|| = 0, we have
lim ||y (%) — un| = 0. (3.6)
n—00

Next, we prove limsup,,_, . (§@(x™) — ¥ (x*), u,, — ¥ (x*)) < 0, where x* is the unique solution
of (3.1). We take a subsequence {u,,} of {u,} such that

limsup(8¢ (x*) — ¥ (x*), un — ¥ (x*))

= lim (80 (x") = v (") sy = v ("))
= lim (8¢ (&) = 9 (5°), ¥ ) — ¥ (x°)) (37)

Since {x,,} is bounded, there exists a subsequence {xni],} of {x,,} which converges weakly
to some point z € C. Without loss of generality, we may assume that x,, — z. This implies
that ¥ (x,,) = ¥ (z) due to the weak continuity of 1. Now, we show z € S. We firstly show
z € EP(F,A). Since z,, = Ty, (uy, — AnAuy), for any y € C, we have

1
F(Zn:y) + )\’_(y —Zpy 2y — (un - )\nAun» 2 0
n
From the monotonicity of F, we have

1
A_<y —Zps 2y — (U — )LnAun» = F(% Zn), Vy eC.

n

Hence,

Zy; — Uy,
<y—z,,l., % +Au,,l.> > F(y,z,), VyeC. (3.8)
n;

Putv;=ty+ (1 —t)zforallt € (0,1] and y € C. Then we have v; € C. So, from (3.8) we have

an‘ - Mnl.

P

(Ve — 2 Ave) = (Ve — 2, AVvy) — <Vt — Zy;s + Aun,~> +F(vi,zy)

= (Ve = Zu;y Avy = Azy;) + (Ve = 24, Az, — Auy)

Zy: — Up,
—<V¢—Zn,w n’)\ n’>+F(vt,zni). (3.9)
s

i
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Note that ||Az,, — Au,,| < %Ilzni — uy, || = 0. Further, from the monotonicity of A, we
have (v; - z,,, Av; — Az,;) > 0. Letting i — oo in (3.9), we have (v, — z, Av;) > F(v,2). This
together with (F1), (F4) implies that

0 = F(vi,vy) < tF(vy,y) + 1= t)F(vy, 2)
S tF(ve,y) + (L= t)(ve — 2, Avy)
= tF(vy,y) + (1= D)t{y — z, Avy),

and hence 0 < F(v;,y) + (1 — t){Av;,y — z). Letting ¢t — 0, we have 0 < F(z,y) + (y — z,Az).
This implies that z € EP(F, A). Next, we only need to prove z € GVI(B, ¥, C). Set

Bv+Nc(v), veC,
@, veC.

V=

By [41], we know that R is maximal {-monotone. Let (v, w) € G(R). Since w — Bv € N¢(v)
and x, € C, we have (Y (v) — ¥ (x,),w — Bv) > 0. Noting that u, = Pcla,d¢(x,) + (1 -
an)(w(xn) - /anan)]: we get

W(V) —Up, Uy — [Oln5§0(xn) + (1 - an)(l//(xn) - Mann)D > 0.

It follows that
<w<v> O ()~ () + uann)> > 0.
n /“LVI
Then

(V) =¥ (xn)w) = (W (v) - ¥ (%), BY)

> ()~ ), BY) - <¢<v) o, ¢>

nj

ay, (

- (I/I(V) - un,—ernl-> + 1ﬁ(V) - Mnl-x 6(;0(9671,-) - w(xn,‘) + /’Lninn,->

= <W(V) - W(xn,')’BV _an,') + (¢(V) - w(xni)erni>
Uy, — w(xni)

nj

—<1ﬁ(v)—un,-, >—<1ﬁ(v)—u,,i,Bx,,i)

+ %(W(V) - u"i’ Sgﬂ(xni) - W(xnl‘) + I“L”in”i>

= —<¢(V) — Up;» un,_—l/f(xn,)> - <w(xn,-) - un,-yani)

nj

+ %(wv) = it 39 () = V) + Bt (3.10)

Since ||y (xy;) — 4yl = 0 and ¥ (x,,) — ¥ (z), we deduce that (Y (v) — ¥(z),w) > 0 by
taking i — oo in (3.10). Thus, z € R!0 by the maximal ¥ -monotonicity of R. Hence,

Page 12 of 15


http://www.fixedpointtheoryandapplications.com/content/2013/1/140

Yao et al. Fixed Point Theory and Applications 2013, 2013:140 Page 13 0of 15
http://www.fixedpointtheoryandapplications.com/content/2013/1/140

z € GVI(B, ¥, C). Therefore, z € S. From (3.7), we obtain

limsup(8¢ (x*) — ¥ (x*), un — ¥ (%))

n—00

= Tim (8¢ (x7) = ¥ ("), ¥ s,) - ¥ (7))

i—o00

= (8p(x") - ¥ ("), (@) - ¥ (")) < 0.

Note that

it = () < (en(Bptn) = W (7)) + (1 = cta)yims 1 — W ()
< 8@ (n) = @(x"), 10 = ¥ (%)) + l8p (%) = W (%), 20 = ¥ (x7))
+ (=) | ¥ (@) = Bt = (¥ () = B |4 = () |
< L8 |2y — x| |1t = ¥ () | + cu(890 (6) = (), 1 — W (%))
+ (=) [ @) = () | [ n = v (57) |
< au(LIY)| W () = ¥ () | 20 = (67 |
+ oS (") = ¥ (), un — ¥ (+7))
(=) [ @) = v () | en = v (27) |
(1= @=L8/y )] | () = v (6) | | 200 = v (") |
+an(8g(a) = ¥ (x7), un — ¥ (7))
)

1-(1-Lé/y)ay, "
- S ) - v ()]

+an(8<p(x*) —(x%), u, — ‘/f(xT»

2 2

+ —||un v

It follows that

ot = (@) < [1 = Q= Lory)an] |9 n) = v ()
+ 2080 (%) = Y (7). s = ¥ ().

Therefore,

[ Ga) = () = Bl o) = v () [ 0= B s = v ()|
< Bl v ) -y ()|
(1= B)[1= (= 5Ly )] [ ) = v () |
+2(1 = B)an(8p(x") — ¥ (x*), un — ¥ (x7))
= 1= =sL1)A - B | () =¥ (+7) |
+2(1 = Bu)an(8p(x") — ¥ (x*), un — ¥ (x¥))
= [1-@=8L/)A - Ba] [ ) v (+*) |
+(L=8L/y)(1-B,)

2

2
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2
(1 00) - 06— ()
= W=y | ) =¥ (&) + Surm

where y, = (1= 8L/y)(1 - By)a, and 8, = 2 (8 (x*) — ¥ (x*), u,, — ¥ (x¥)). It is easily seen

1-8L/y
that ), ¥, = 00 and limsup,_, ., §, < 0. We can therefore apply Lemma 2.4 to conclude
that ¥ (x,) — ¥ (x*) and x,, — x*. This completes the proof. O

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the final manuscript.

Author details
'Department of Mathematics, Tianjin Polytechnic University, Tianjin, 300387, China. ?Department of Information
Management, Cheng Shiu University, Kaohsiung, 833, Taiwan.

Acknowledgements

Yonghong Yao was supported in part by NSFC 11071279 and NSFC 71161001-G0105. Rudong Chen was supported in
part by NSFC 11071279. Yeong-Cheng Liou was supported in part by NSC 101-2628-E-230-001-MY3 and NSC
101-2622-E-230-005-CC3.

Received: 11 October 2012 Accepted: 14 May 2013 Published: 29 May 2013

References
1. Censor, Y, Elfving, T: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8,
221-239(1994)
2. Censor, Y, Bortfeld, T, Martin, B, Trofimov, A: A unified approach for inversion problems in intensity modulated
radiation therapy. Phys. Med. Biol. 51, 2353-2365 (2006)
3. Censor, Y, Elfving, T, Kopf, N, Bortfeld, T: The multiple-sets split feasibility problem and its applications for inverse
problems. Inverse Probl. 21, 2071-2084 (2005)
4. Byrne, C: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse
Probl. 20, 103-120 (2004)
Yang, Q: The relaxed CQ algorithm for solving the split feasibility problem. Inverse Probl. 20, 1261-1266 (2004)
Qu, B, Xiu, N: A note on the CQ algorithm for the split feasibility problem. Inverse Probl. 21, 1655-1665 (2005)
Zhao, J, Yang, Q: Several solution methods for the split feasibility problem. Inverse Probl. 21, 1791-1799 (2005)
Xu, HK: A variable Krasnosel'skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22,
2021-2034 (2006)
9. Dang, Y, Gao, Y: The strong convergence of a KM-CQ-like algorithm for a split feasibility problem. Inverse Probl. 27,
015007 (2011)
10. Wang, F, Xu, HK: Approximating curve and strong convergence of the CQ algorithm for the split feasibility problem.
J.Inequal. Appl. (2010). doi:10.1155/2010/102085
11. Xu, HK: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26,
105018 (2010)
12. Yao, Y, Kim, TH, Chebbi, S, Xu, HK: A modified extragradient method for the split feasibility and fixed point problems.
J. Nonlinear Convex Anal. 13(3), 383-396 (2012)
13. Yao, Y, Liou, YC, Shahzad, N: A strongly convergent method for the split feasibility problem. Abstr. Appl. Anal. 2012,
Article ID 125046 (2012)
14. Stampacchia, G: Formes bilineaires coercivites sur les ensembles convexes. C. R. Math. Acad. Sci. Paris 258, 4413-4416
(1964)
15. Korpelevich, GM: An extragradient method for finding saddle points and for other problems. Ekon. Mat. Metody 12,
747-756 (1976)
16. Glowinski, R: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)
17. lusem, AN: An iterative algorithm for the variational inequality problem. Comput. Appl. Math. 13, 103-114 (1994)
18. Noor, MA: Some development in general variational inequalities. Appl. Math. Comput. 152, 199-277 (2004)
19. Facchinei, F, Pang, JS: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in
Operations Research, vol. I. Springer, New York (2003)
20. Facchinei, F, Pang, JS: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in
Operations Research, vol. II. Springer, New York (2003)
21. Xu, HK, Kim, TH: Convergence of hybrid steepest-descent methods for variational inequalities. J. Optim. Theory Appl.
119, 185-201 (2003)
22. Yao, JC: Variational inequalities with generalized monotone operators. Math. Oper. Res. 19, 691-705 (1994)
23. Ceng, LG, Yao, JC: Strong convergence theorem by an extragradient method for fixed point problems and variational
inequality problems. Taiwan. J. Math. 10, 1293-1303 (2006)

N O


http://www.fixedpointtheoryandapplications.com/content/2013/1/140
http://dx.doi.org/10.1155/2010/102085

Yao et al. Fixed Point Theory and Applications 2013, 2013:140
http://www.fixedpointtheoryandapplications.com/content/2013/1/140

24.

25.

26.
27.

28.

29.

30.

31

32.
33

34.
35.
36.
37.
38.
39.

40.
41.

Ceng, LC, Al-Homidan, S, Ansari, QH, Yao, JC: An iterative scheme for equilibrium problems and fixed point problems
of strict pseudo-contraction mappings. J. Comput. Appl. Math. 223, 967-974 (2009)

Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123-145
(1994)

Combettes, PL, Hirstoaga, A: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117-136 (2005)
Yao, Y, Cho, YJ, Liou, YC: Algorithms of common solutions for variational inclusions, mixed equilibrium problems and
fixed point problems. Eur. J. Oper. Res. 212, 242-250 (2011)

Qin, X, Cho, SY, Kang, SM: Some results on fixed points of asymptotically strict quasi-¢-pseudocontractions in the
intermediate sense. Fixed Point Theory Appl. 2012, Article ID 143 (2012)

Zegeye, H, Shahzad, N, Alghamdi, MA: Strong convergence theorems for a common point of solution of variational
inequality, solutions of equilibrium and fixed point problems. Fixed Point Theory Appl. 2012, Article ID 119 (2012).
doi:10.1186/1687-1812-2012-119

Qin, X, Agarwal, RP, Cho, SY, Kang, SM: Convergence of algorithms for fixed points of generalized asymptotically
quasi-y-nonexpansive mappings with applications. Fixed Point Theory Appl. 2012, Article ID 58 (2012).
doi:10.1186/1687-1812-2012-58

Browder, FE: Convergence of approximation to fixed points of nonexpansive nonlinear mappings in Hilbert spaces.
Arch. Ration. Mech. Anal. 24, 82-90 (1967)

Halpern, B: Fixed points of nonexpansive maps. Bull. Am. Math. Soc. 73, 957-961 (1967)

Geobel, K, Kirk, WA: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28.
Cambridge University Press, Cambridge (1990)

Lions, PL: Approximation de points fixes de contractions. C. R. Hebd. Séances Acad. Sci., Sér. A, Sci. Math. 284,
1357-1359 (1977)

Opial, Z: Weak convergence of the sequence of successive approximations of nonexpansive mappings. Bull. Am.
Math. Soc. 73, 595-597 (1967)

Wittmann, R: Approximation of fixed points of non-expansive mappings. Arch. Math. 58, 486-491 (1992)

Moudafi, A: Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241, 46-55 (2000)

Xu, HK: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279-291 (2004)
Suzuki, T: Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces.
Fixed Point Theory Appl. 2005, 103-123 (2005)

Xu, HK: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 2, 1-17 (2002)

Zhang, LJ, Chen, JM, Hou, ZB: Viscosity approximation methods for nonexpansive mappings and generalized
variational inequalities. Acta Math. Sin. 53, 691-6988 (2010)

doi:10.1186/1687-1812-2013-140
Cite this article as: Yao et al.: Affine algorithms for the split variational inequality and equilibrium problems. Fixed
Point Theory and Applications 2013 2013:140.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

Page 15 of 15


http://www.fixedpointtheoryandapplications.com/content/2013/1/140
http://dx.doi.org/10.1186/1687-1812-2012-119
http://dx.doi.org/10.1186/1687-1812-2012-58

	Afﬁne algorithms for the split variational inequality and equilibrium problems
	Abstract
	Keywords

	Introduction
	Preliminaries
	Monotonicity and convexity
	Nonexpansivity and continuity
	Equilibrium problem
	Useful lemmas

	Algorithms and convergence analysis
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


