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Abstract
Let (X ,d) be a metric space and S, T be mappings from X to a set of all fuzzy subsets
of X . We obtained sufficient conditions for the existence of a common α-fuzzy fixed
point of S and T .
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1 Introduction
Fixed point theorems play a fundamental role in demonstrating the existence of solutions
to a wide variety of problems arising in mathematics, physics, engineering, medicine and
social sciences. The study of fixed point theorems in fuzzy mathematics was instigated by
Weiss [], Butnariu [], Singh and Talwar [], Estruch and Vidal [], Wang et al. [], Mihet
[], Qiu et al. [] and Beg and Abbas []. Heilpern [] introduced the concept of fuzzy
contraction mappings and established the fuzzy Banach contraction principle on a com-
plete metric linear spaces with the d∞-metric for fuzzy sets. Azam and Beg [] proved
common fixed point theorems for a pair of fuzzy mappings satisfying Edelstein, Alber and
Guerr-Delabriere type contractive conditions in ametric linear space. Azam et al. [] pre-
sented some fixed point theorems for fuzzy mappings under Edelstein locally contractive
conditions on a compactmetric space with the d∞-metric for fuzzy sets. Frigon and Regan
[] generalized the Heilpern theorem under a contractive condition for -level sets (i.e.,
[Tx]) of a fuzzy contraction T on a complete metric space, where -level sets are not as-
sumed to be convex and compact. Amemiya and Takahashi [] studied some mathemat-
ical properties of contractive type set-valued and fuzzy mappings to obtain fixed points of
fuzzy mappings by using the concept of w-distance (see []) in complete metric spaces.
Recently, Zhang et al. [] proved some common fixed point theorems for contraction
mappings in a new fuzzy metric space.
The aim of this paper is to obtain a common α-fuzzy fixed point of a pair of fuzzy map-

pings S and T on a complete metric space under a generalized contractive condition for
α-level sets (i.e., [Sx]α , [Tx]α) of S and T in connection with Hausdorff metric for fuzzy
sets. Our result (Theorem ) generalizes the results proved by Azam and Arshad [, The-
orem ], Bose and Sahani [] and Vijayaraju and Marudai [, Theorem .] among oth-
ers.
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2 Preliminaries
Let (X,d) be a metric space and CB(X) be the family of nonempty closed and bounded
subsets of X. For A,B ∈ CB(X), define

H(A,B) =max
{
sup
a∈A

d(a,B), sup
b∈B

d(A,b)
}
,

where

d(x,A) = inf
y∈A

d(x, y).

A fuzzy set in X is a function with domain X and values in [, ]. If A is a fuzzy set and
x ∈ X, then the function-valueA(x) is called the grade ofmembership of x inA. The α-level
set of A is denoted by [A]α and is defined as follows:

[A]α =
{
x : A(x) ≥ α

}
if α ∈ (, ],

[A] =
{
x : A(x) > 

}
.

Here, B denotes the closure of the set B. Let F (X) be the collection of all fuzzy sets in a
metric space X. For A,B ∈ F (X), A ⊂ Bmeans A(x) ≤ B(x) for each x ∈ X. We denote the
fuzzy set χ{x} by {x} unless and until it is stated, where χA is the characteristic function of
the crisp set A. If there exists an α ∈ [, ] such that [A]α , [B]α ∈ CB(X), then define

pα(A,B) = inf
x∈[A]α ,y∈[B]α

d(x, y),

Dα(A,B) =H
(
[A]α , [B]α

)
.

If [A]α , [B]α ∈ CB(X) for each α ∈ [, ], then define

p(A,B) = sup
α

pα(A,B),

d∞(A,B) = sup
α

Dα(A,B).

We write p(x,B) instead of p({x},B). A fuzzy set A in a metric linear space V is said to be
an approximate quantity if and only if [A]α is compact and convex in V for each α ∈ [, ]
and

sup
x∈V

A(x) = .

We denote the collection of all approximate quantities in ametric linear space X byW (X).
Let X be an arbitrary set, Y be a metric space. A mapping T is called a fuzzy mapping if
T is a mapping from X into F (Y ). A fuzzy mapping T is a fuzzy subset on X × Y with
a membership function T(x)(y). The function T(x)(y) is the grade of membership of y
in T(x).

Definition  Let S, T be fuzzy mappings from X into F (X). A point z in X is called an
α-fuzzy fixed point of T if z ∈ [Tz]α . The point z is called a common α-fuzzy fixed point of
S and T if z ∈ [Sz]α ∩ [Tz]α . When α = , it is called a common fixed point of fuzzy maps.
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For the sake of convenience, we first state some known results for subsequent use in the
next section.

Lemma  [] Let (X,d) be a metric space and A,B ∈ CB(X), then for each a ∈ A,

d(a,B)≤ H(A,B).

Lemma  [] Let (X,d) be a metric space and A,B ∈ CB(X), then for each a ∈ A, β > ,
there exists an element b ∈ B such that d(a,b)≤ H(A,B) + β .

Lemma  [] Let V be a metric linear space, T : V → W (V ) be a fuzzy mapping and
x ∈ V . Then there exists x ∈ V such that {x} ⊂ T(x).

3 Common fuzzy fixed points
In this section, we establish Theorem  on the existence of an α-fuzzy fixed point of a
fuzzy mapping and also obtain a fixed point of fuzzy mappings (see Corollaries  and )
and multivalued mappings (see Corollary ).

Theorem  Let (X,d) be a complete metric space and let S, T be fuzzy mappings from X
to F (X) satisfying the following conditions:
(a) for each x ∈ X , there exists α(x) ∈ (, ] such that [Sx]α(x) , [Tx]α(x) are nonempty

closed bounded subsets of X and
(b)

H
(
[Sx]α(x) , [Ty]α(y)

) ≤ ad
(
x, [Sx]α(x)

)
+ ad

(
y, [Ty]α(y)

)
+ ad

(
x, [Ty]α(y)

)
+ ad

(
y, [Sx]α(x)

)
+ ad(x, y) ()

for all x, y ∈ X , where a, a, a, a, a are nonnegative real numbers and
∑

i= ai < 
and either a = a or a = a. Then there exists z ∈ X such that z ∈ [Sz]α(z) ∩ [Tz]α(z).

Proof We consider the following three possible cases:
(i) a + a + a = ;
(ii) a + a + a = ;
(iii) a + a + a 	= , a + a + a 	= .
Case (i): For x ∈ X, there exists α(x) ∈ (, ] such that [Sx]α(x) is a nonempty closed

bounded subset of X. Take y ∈ [Sx]α(x) and similarly z ∈ [Ty]α(y) . Then by Lemma , we
obtain

d
(
y, [Ty]α(y)

) ≤ H
(
[Sx]α(x) , [Ty]α(y)

)
.

Now, inequality () implies that

d
(
y, [Ty]α(y)

) ≤ ad
(
x, [Sx]α(x)

)
+ ad

(
y, [Ty]α(y)

)
+ ad

(
x, [Ty]α(y)

)
+ ad

(
y, [Sx]α(x)

)
+ ad(x, y).

Using a + a + a =  together with the fact that d(y, [Sx]α(x) ) = , we obtain

d
(
y, [Ty]α(y)

) ≤ ad
(
y, [Ty]α(y)

)
.
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It follows that y ∈ [Ty]α(y) , which further implies that

d
(
y, [Sy]α(y)

) ≤ H
(
[Ty]α(y) , [Sy]α(y)

)
.

Again, inequality () gives d(y, [Sy]α(y) ) = . It follows that

y ∈ [Sy]α(y) ∩ [Ty]α(y) .

Case (ii): It can be easily seen that

z ∈ [Sz]α(z) ∩ [Tz]α(z) .

Case (iii): Let

λ =
(
a + a + a
 – a – a

)
, μ =

(
a + a + a
 – a – a

)
.

If a = a, then λ,μ <  and so  < λμ < . Moreover, if a = a,

 < λμ =
(
a + a + a
 – a – a

)(
a + a + a
 – a – a

)
=

(
a + a + a
 – a – a

)(
a + a + a
 – a – a

)
=

(
a + a + a
 – a – a

)(
a + a + a
 – a – a

)
< .

Choose x ∈ X, then by hypotheses there exists α(x) ∈ (, ] such that [Sx]α(x) is a
nonempty closed bounded subset of X. For convenience, we denote α(x) by α. Let
x ∈ [Sx]α ; for this x, there exists α ∈ (, ] such that [Tx]α is a nonempty closed
bounded subset of X. Since a + a + a > , by Lemma , there exists x ∈ [Tx]α such
that

d(x,x)≤ H
(
[Sx]α , [Tx]α

)
+ a + a + a.

It implies that

d(x,x) ≤ H
(
[Sx]α , [Tx]α

)
+ a + a + a

≤ ad
(
x, [Sx]α

)
+ ad

(
x, [Tx]α

)
+ ad

(
x, [Tx]α

)
+ ad

(
x, [Sx]α

)
+ ad(x,x) + a + a + a

≤ (a + a)d(x,x) + ad(x,x) + ad(x,x) + a + a + a

≤ (a + a + a)d(x,x) + (a + a)d(x,x) + a + a + a

≤ (a + a + a)d(x,x) + a + a + a

≤ λd(x,x) + λ.

http://www.fixedpointtheoryandapplications.com/content/2013/1/14
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By the same argument, we can find α ∈ (, ] and x ∈ [Sx]α such that

d(x,x) ≤ H
(
[Sx]α , [Tx]α

)
+ λ(a + a + a)

≤ ad
(
x, [Sx]α

)
+ ad

(
x, [Tx]α

)
+ ad

(
x, [Tx]α

)
+ ad

(
x, [Sx]α

)
+ ad(x,x) + λ(a + a + a)

≤ ad(x,x) + ad(x,x) + ad(x,x)

+ ad(x,x) + ad(x,x) + λ(a + a + a)

≤ (a + a + a)d(x,x) + (a + a)d(x,x) + λ(a + a + a)

≤ μd(x,x) + λμ.

By induction, we produce a sequence {xn} of points of X,

xk+ ∈ [Sxk]αk+ ,

xk+ ∈ [Txk+]αk+ , k = , , , . . . ,

such that

d(xk+,xk+) ≤ H
(
[Sxk]αk+ , [Txk+]αk+

)
+ (λμ)k(a + a + a),

d(xk+,xk+) ≤ H
(
[Sxk+]αk+ , [Txk+]αk+

)
+ (λμ)kλ(a + a + a).

It implies that

d(xk+,xk+) ≤ ad
(
xk , [Sxk]αk+

)
+ ad

(
xk+, [Txk+]αk+

)
+ ad

(
xk , [Txk+]αk+

)
+ ad

(
xk+, [Sxk]αk+

)
+ ad(xk ,xk+) + (λμ)k(a + a + a)

≤ (a + a + a)d(xk ,xk+) + (a + a)d(xk+,xk+)

+ (λμ)k(a + a + a)

≤ λd(xk ,xk+) + λ(λμ)k .

Similarly,

d(xk+,xk+) ≤ ad
(
xk+, [Sxk+]αk+

)
+ ad

(
xk+, [Txk+]αk+

)
+ ad

(
xk+, [Txk+]αk+

)
+ ad

(
xk+, [Sxk+]αk+

)
+ ad(xk+,xk+) + (λμ)kλ(a + a + a)

≤ (a + a + a)d(xk+,xk+) + (a + a)d(xk+,xk+)

+ (λμ)kλ(a + a + a)

≤ μd(xk+,xk+) + (λμ)k+.

http://www.fixedpointtheoryandapplications.com/content/2013/1/14
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It follows that for each k = , , , . . . ,

d(xk+,xk+) ≤ λd(xk ,xk+) + λ(λμ)k

≤ λ
[
μd(xk–,xk) + (λμ)k

]
+μkλk+

≤ λμd(xk–,xk) + λ(λμ)k

≤ λμλd(xk–,xk–) + λ(λμ)k

≤ · · · ≤ λ(λμ)kd(x,x) + (k + )λ(λμ)k

and

d(xk+,xk+) ≤ μd(xk+,xk+) + (λμ)k+

≤ · · · ≤ (λμ)k+d(x,x) + (k + )(λμ)k+.

Then for p < q, we have

d(xp+,xq+) ≤ d(xp+,xp+) + d(xp+,xp+) + d(xp+,xp+)

+ · · · + d(xq,xq+)

≤
[
λ

q–∑
i=p

(λμ)i +
q∑

i=p+

(λμ)i
]
d(x,x)

+ λ

q–∑
i=p

(i + )(λμ)i +
q∑

i=p+

i(λμ)i.

Similarly, we obtain

d(xp,xq+)≤
[ q∑

i=p

(λμ)i + λ

q–∑
i=p

(λμ)i
]
d(x,x)

+
q∑
i=p

i(λμ)i + λ

q–∑
i=p

(i + )(λμ)i,

d(xp,xq)≤
[ q–∑

i=p

(λμ)i + λ

q–∑
i=p

(λμ)i
]
d(x,x)

+
q–∑
i=p

i(λμ)i + λ

q–∑
i=p

(i + )(λμ)i

and

d(xp+,xq) ≤
[
λ

q–∑
i=p

(λμ)i +
q–∑
i=p+

(λμ)i
]
d(x,x)

+
q–∑
i=p

(i + )(λμ)i +
q–∑
i=p+

i(λμ)i.
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Since (λμ) < , it follows from Cauchy’s root test
∑

i(λμ)i,
∑

(i+)(λμ)i are convergent
series. Therefore, {xn} is a Cauchy sequence. Since X is complete, there exists u ∈ X such
that xn → u. Now,

d
(
u, [Su]α(u)

) ≤ d(u,xn) + d
(
xn, [Su]α(u)

)
≤ d(u,xn) +H

(
[Txn–]αn , [Su]α(u)

)
≤ d(u,xn) + ad

(
u, [Su]α(u)

)
+ ad

(
xn–, [Txn–]αn

)
+ ad

(
u, [Txn–]αn

)
+ ad

(
xn–, [Su]α(u)

)
+ ad(u,xn–)

≤ d(u,xn) + ad
(
u, [Su]α(u)

)
+ ad(xn–,xn)

+ ad(u,xn) + a
[
d(xn–,u) + d

(
u, [Su]α(u)

)]
+ ad(u,xn–)

≤ ( + a)d(u,xn) + (a + a)d(u,xn–) + ad(xn–,xn)

+ (a + a)d
(
u, [Su]α(u)

)
.

It further implies that

d
(
u, [Su]α(u)

) ≤
[

 + a
 – a – a

]
d(u,xn) +

[
a + a

 – a – a

]
d(u,xn–)

+
[

a
 – a – a

]
d(xn–,xn).

Letting n→ ∞, we have d(u, [Su]α(u)) = . It implies that u ∈ [Su]α(u). Similarly, by using

d
(
u, [Tu]α(u)

) ≤ d(u,xn+) + d
(
xn+, [Tu]α(u)

)
,

we can show that u ∈ [Tu]α(u), which implies that u ∈ [Su]α(u) ∩ [Tu]α(u).
The proof of the following corollary illustrates a link betweenmultivaluedmappings and

fuzzy mappings. It is well known [] that

(X,d) 
→ (
CB(X),H

) 
→ (
E(X),d∞

)
are isometric embeddings under x→ {x} and A→ χA, respectively, where

E(X) =
{
A ∈ F(X) : [A]α ∈ CB(X),∀α ∈ [, ]

}
and {x} is a crisp set. �

In the following, we furnish an illustrative example to highlight the utility of Theorem .

Example  Let X = {, , }, {}, {}, {} be crisp sets. Define d : X ×X →R as follows:

d(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

 if x = y,

 if x 	= y and x, y ∈ X – {},
 if x 	= y and x, y ∈ X – {},

 if x 	= y and x, y ∈ X – {}.

http://www.fixedpointtheoryandapplications.com/content/2013/1/14
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Define fuzzy mappings S,T : X →F (X) as follows:

T()(t) = T()(t) =

⎧⎪⎪⎨⎪⎪⎩

 if t = ,

 if t = ,

 if t = ,

T()(t) =

⎧⎪⎪⎨⎪⎪⎩
 if t = ,

 if t = ,

 if t = ,

and

S()(t) = S()(t) = S()(t) =

⎧⎪⎪⎨⎪⎪⎩

 if t = ,

 if t = ,

 if t = .

Then, for α(x) = 
 ,

[Tx]α(x) =
{
t : T(x)(t) = α(x)

}
=

⎧⎨⎩{} if x 	= ,

{} if x = 

and

H
({}, {}) =max

{
sup
u∈{}

d
(
u, {}), sup

v∈{}
d
({}, v)} =




.

Now,

d∞
(
T(),T()

) ≥ Dα

(
T(),T()

)
=H

({}, {}) = 


, d(, ) =



.

Since d∞(T(),T()) > αd(, ) for each α <  and X is not linear, therefore [, Theo-
rems ., .] and main results in [–, ] are not applicable to find  ∈ [T] 


. Now,

[Sx]α(x) = {t : S(x)(t) = 
 } = {} for all x ∈ X and

H
(
[Sx]α(x) , [Ty]α(y)

)
=

⎧⎨⎩H({}, {}) =  if y 	= ,

H({}, {}) = 
 if y = .

It follows that for

a = a = a = a = , a =



,

ad(x, [Sx]α(x) ) + ad(y, [Ty]α(y) ) + ad(x, [Ty]α(y) ) + ad(y, [Sx]α(x) ) + ad(x, y) = 
 if y = .

Hence, for a = a = a = a = , a = 
 , the conditions of Theorem  are satisfied to

obtain  ∈ [S] 


∩ [T] 

. Since a 	= a, the results proved by Vijayaraju and Marudai [,

Theorem .] and Azam and Arshad [, Theorem ] are also not applicable.
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Corollary  Let (X,d) be a complete metric space and F ,G : X → CB(X) be multivalued
mappings. Suppose that for all x, y ∈ X,

H(Fx,Gy) ≤ ad(x,Fx) + ad(y,Gy) + ad(x,Gy) + ad(y,Fx) + ad(x, y),

where a, a, a, a, a are nonnegative real numbers and
∑

i= ai <  and either a = a or
a = a. Then there exists u ∈ X such that u ∈ Fu∩Gu.

Proof Consider a mapping α : X → (, ] and a pair of fuzzy mappings S,T : X → F (X)
defined by

S(x)(t) =

⎧⎨⎩α(x), t ∈ Fx,

, t /∈ Fx,

T(x)(t) =

⎧⎨⎩α(x), t ∈Gx,

, t /∈Gx.

Then

[Sx]α(x) =
{
t : S(x)(t)≥ α(x)

}
= Fx, [Tx]α(x) =Gx.

Thus, Theorem  can be applied to obtain u ∈ X such that

u ∈ [Su]α(u) ∩ [Tu]α(u) = Fu∩Gu. �

Corollary  [] Let (X,d) be a completemetric linear space and S,T : X →W (X) be fuzzy
mappings, and for all x, y ∈ X,

d∞
(
S(x),T(y)

) ≤ ap
(
x,S(x)

)
+ ap

(
y,T(y)

)
+ ap

(
x,T(y)

)
+ ap

(
y,S(x)

)
+ ad(x, y),

where a, a, a, a, a are nonnegative real numbers and
∑

i= ai <  and either a = a or
a = a. Then there exists u ∈ X such that {u} ⊂ T(u), {u} ⊂ S(u).

Proof Let x ∈ X, then by Lemma  there exists y ∈ X such that y ∈ [Sx]. Similarly, we can
find z ∈ X such that z ∈ [Tx]. It follows that for each x ∈ X, [Sx]α(x), [Tx]α(x) are nonempty
closed bounded subsets of X. As α(x) = α(y) = , by the definition of a d∞-metric for fuzzy
sets, we have

H
(
[Sx]α(x), [Ty]α(y)

) ≤ d∞
(
S(x),T(y)

)
for all x, y ∈ X. It implies that

H
(
[Sx]α(x), [Ty]α(y)

) ≤ d∞
(
S(x),T(y)

)
≤ ap

(
x,S(x)

)
+ ap

(
y,T(y)

)
+ ap

(
x,T(y)

)
+ ap

(
y,S(x)

)
+ ad(x, y)
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for all x, y ∈ X. Since [Sx] ⊆ [Sx]α for each α ∈ [, ], therefore d(x, [Sx]α) ≤ d(x, [Sx]) for
each α ∈ [, ]. It implies that p(x,S(x))≤ d(x, [Sx]), similarly, p(x,T(x))≤ d(x, [Tx]). This
further implies that for all x, y ∈ X,

H
(
[Sx] , [Ty]

) ≤ ad
(
x, [Sx]

)
+ ad

(
y, [Ty]

)
+ ad

(
x, [Ty]

)
+ ad

(
y, [Sx]

)
+ ad(x, y).

Now, by Theorem , we obtain u ∈ X such that u ∈ [Su] ∩ [Tu], i.e., {u} ⊂ T(u), {u} ⊂
S(u). �

In the following, we suppose that T̂ (for details, see [, ]) is the set-valued mapping
induced by fuzzy mappings T : X →F (X), i.e.,

T̂x =
{
y : T(x)(y) =max

t∈X
T(x)(t)

}
.

Corollary  Let (X,d) be a complete metric space and S,T : X →F (X) be fuzzy mappings
such that for all x ∈ X, Ŝ(x), T̂(x) nonempty closed bounded subsets of X and

H (̂Sx, T̂x) ≤ ad(x, Ŝx) + ad(y, T̂y) + ad(x, T̂y)

+ ad(y, Ŝx) + ad(x, y)

for all x, y ∈ X, where a, a, a, a, a are nonnegative real numbers and
∑

i= ai <  and
either a = a or a = a. Then there exists a point x∗ ∈ X such that T(x∗)(x∗) ≥ T(x∗)(x)
and S(x∗)(x∗) ≥ S(x∗)(x) for all x ∈ X.

Proof By Corollary , there exists x∗ ∈ X such that x∗ ∈ Ŝx∗ ∩ T̂x∗. Then by [, Lemma ],
we obtain

T
(
x∗)(x∗) ≥ T

(
x∗)(x), S

(
x∗)(x∗) ≥ S

(
x∗)(x)

for all x ∈ X. �

Remark  The result proved byVijayaraju andMarudai [, Theorem.] andAzam and
Arshad [, Theorem] is the casewhen a 	= a and a = a inTheorem. Corollary  also
generalizes the results proved by Heilpern [] and Frigon and Regan [, Theorems .,
.] for

S = T ,

ai = , i = , , ,  and a 	= .

4 Conclusion
In this paper, we obtained fixed point results for fuzzy set-valuedmappings under a gener-
alized contractive condition related to the d∞-metric which is useful for computingHaus-
dorff dimensions. These dimensions help us to understand e∞-space which is used in high
energy physics. Our results are also useful in geometric problems arising in high energy
physics. This is because events in this case are mostly fuzzy sets.
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