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Abstract
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1 Introduction
Let F(x) be a multi-valued mapping from Rn into Rn with nonempty values, and let X be
a nonempty closed convex set in Rn. The problem of generalized variational inequalities
(GVI) [, ] is to find x∗ ∈ X such that there exists ω∗ ∈ F(x∗) satisfying

〈
ω∗,x – x∗〉 ≥ , ∀x ∈ X, (.)

where 〈·, ·〉 stands for the Euclidean inner product of vectors in Rn. The solution set of
problem (.) is denoted by X∗. Certainly, the GVI reduces to the classical variational in-
equalities (VI) when F is a single-valued mapping, which has been well studied in the past
decades [, ].
For the GVI, theories and solution methods have been extensively considered in the

literature [, –], and it is well known that the existence of solutions is an important
topic for the GVI []. Generally, there are mainly two approaches to attack the solution
existence problem of the GVI. One is an analytic approach which first reformulates the
GVI as a well-studied mathematical problem and then invokes an existence theorem for
the latter problem []. The second is a constructive approach in which the existence can
be verified by the behavior of the proposed method. The algorithm that is considered in
this paper belongs to the second approach.
First, we give a short summary to the constructive approach on the existence theory for

the VI. For this approach, the equivalence between the existence of solutions to the VI
problem and the boundedness of the sequence generated by some modified extragradient
methods was first established by Sun in []. Later, Wang et al. [] established the same
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theory by a new type of extragradient-type method. Furthermore, the generated sequence
possesses an expansion property with respect to the starting point and converges to a
solution point if the solution set of the VI is nonempty. Now a question is posed naturally:
as the GVI problem is an extension of the VI, can this theory be extended to the GVI? This
constitutes the main motivation of the paper.
In this paper, inspired by the work in [], we propose a new type of extragradient pro-

jection method for the problem GVI. We first establish the existence results for the GVI
under pseudomonotonicity and continuity assumption of the underlying mapping F , and
then show the global convergence of the proposed method.
The rest of this paper is organized as follows. In Section , we give some related concepts

and conclusions. In Section , we present the description of the algorithm and establish
some properties of the algorithm. The global convergence of the sequence is also estab-
lished.

2 Preliminaries
For a nonempty closed convex set K ⊂ Rn and a vector x ∈ Rn, the orthogonal projection
of x onto K , i.e.,

argmin
{‖y – x‖ | y ∈ K

}
,

is denoted by PK (x). In what follows, we state some well-known properties of the projec-
tion operator which will be used in the sequel.

Lemma . [] Let K be a nonempty, closed and convex subset in Rn. Then, for any x, y ∈
Rn and z ∈ K , the following statements hold:

(i) 〈PK (x) – x, z – PK (x)〉 ≥ ;
(ii) ‖PK (x) – PK (y)‖ ≤ ‖x – y‖ – ‖PK (x) – x + y – PK (y)‖.

Remark . In fact, (i) in Lemma . provides also a sufficient and necessary condition
for a vector u ∈ K to be the projection of the vector x; i.e., u = PK (x) if and only if

〈u – x, z – u〉 ≥ , ∀z ∈ K .

Definition . Let K be a nonempty subset of Rn. A multi-valued mapping F : K → Rn

is said to be
(i) monotone if and only if

〈u – v,x – y〉 ≥ , ∀x, y ∈ K ,u ∈ F(x), v ∈ F(y);

(ii) pseudomonotone if and only if, for any x, y ∈ K , u ∈ F(x), v ∈ F(y),

〈u, y – x〉 ≥  �⇒ 〈v, y – x〉 ≥ .

Now let us recall the definition of a continuous multi-valued mapping F .

Definition . Assume that F : X → Rn is a multi-valued mapping, then
(i) F is said to be upper semicontinuous at x ∈ X if for every open set V containing

F(x), there is an open set U containing x such that F(y) ⊂ V for all y ∈ X ∩U ;
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(ii) F is said to be lower semicontinuous at x ∈ X if given any sequence {xk} converging
to x and any y ∈ F(x), there exists a sequence yk ∈ F(xk) that converges to y.

F is said to be continuous at x ∈ X if it is both upper semicontinuous and lower semicon-
tinuous at x.

For the simplicity of our description, we list the assumptions needed in the sequel.

Assumption . Suppose that X is a nonempty closed convex set in Rn. Themulti-valued
mapping F : X → Rn is pseudomonotone and continuous on X with nonempty compact
convex values.

3 Main results
For x ∈ Rn, ξ ∈ F(x), we first define the projection residue

r(x, ξ ) = x – PX(x – ξ ).

It is well known that the projection residue is related intimately to the solution set X∗.

Proposition . For x ∈ X and ξ ∈ F(x), they solve problem (.) if and only if

x = PX(x – ξ ).

The basic idea of the designed algorithm is as follows. At each step of the algorithm,
compute the projection residue r(xk , ξ k) at iterate xk . If it is a zero vector, then stop with
xk being a solution of the GVI; otherwise, find a trial point yk by a back-tracking search
at xk along the residue r(xk , ξ k), and the new iterate is obtained by projecting x onto the
intersection of X with two halfspaces respectively associated with yk and xk . Repeat this
process until the projection residue is a zero vector.

Algorithm . Choose σ ,γ ∈ (, ), x ∈ X, k = .
Step : Given the current iterate xk ∈ X, if ‖r(xk , ξ )‖ =  for some ξ ∈ F(xk), stop; else

take any ξ k ∈ F(xk) and compute

zk = PX
(
xk – ξ k).

Then, let

yk = ( – ηk)xk + ηkzk ,

where ηk = γmk , withmk being the smallest nonnegative integerm satisfying: ∃ζ k ∈ F(xk –
γmr(xk , ξ k)) such that

〈
ζ k , r

(
xk , ξ k)〉 ≥ σ

∥∥r(xk , ξ k)∥∥. (.)

Step : Let xk+ = PH
k∩H

k∩X(x), where

H
k =

{
x ∈ Rn | 〈x – yk , ζ k 〉 ≤ ,∀ζ k ∈ F

(
yk

)}
,

H
k =

{
x ∈ Rn | 〈x – xk ,x – xk

〉 ≤ 
}
.

Select k = k +  and go to Step .
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Now, we first discuss the feasibility of the stepsize rule (.).

Lemma. If xk is not a solution of problem (.), then there exists the smallest nonnegative
integer m satisfying (.).

Proof By the definition of r(xk , ξ k) and Lemma ., we know that

〈
PX

(
xk – ξ k) – (

xk – ξ k),xk – PX
(
xk – ξ k)〉 ≥ ,

which implies

〈
ξ k , r

(
xk , ξ k)〉 ≥ ∥∥r(xk , ξ k)∥∥ > . (.)

Since γ ∈ (, ), we get

lim
m→∞

(
xk – γmr

(
xk , ξ k)) = xk .

By this and the fact that F is lower semicontinuous, there exists ζm ∈ F(xk – γmr(xk , ξ k))
such that

lim
m→∞ ζm = ξ k .

So,

lim
m→∞

〈
ζm, r

(
xk , ξ k)〉 = 〈

ξ k , r
(
xk , ξ k)〉 ≥ ∥∥r(xk , ξ k)∥∥ > ,

which implies the conclusion. �

The following lemma shows that the halfspace H
k in Algorithm . strictly separates xk

and the solution set X∗ if X∗ is nonempty.

Lemma . If X∗ �= ∅, the halfspace H
k in Algorithm . separates the point xk from the set

X∗.Moreover,

X∗ ⊆H
k ∩X, ∀k ≥ .

Proof By the definition of r(xk , ξ k) and Algorithm ., we know

yk = ( – ηk)xk + ηkzk = xk – ηkr
(
xk , ξ k),

which can be written

ηkr
(
xk , ξ k) = xk – yk .

Then, by this and (.), we get

〈
ζ k ,xk – yk

〉
> , (.)

where ζ k is a vector in F(yk). So, by the definition of H
k and (.), we get xk /∈H

k .
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On the other hand, for any x∗ ∈ X∗ and x ∈ X, we have

〈
ω∗,x – x∗〉 ≥ , ω∗ ∈ F

(
x∗).

Since F is pseudomonotone on X, we get

〈
ω,x – x∗〉 ≥ , ∀ω ∈ F(x). (.)

Let x = yk in (.), for any ζ k ∈ F(yk), we have

〈
ζ k , yk – x∗〉 ≥ ,

which implies x∗ ∈H
k . Moreover, it is easy to see that X∗ ⊆H

k ∩X, ∀k ≥ . �

The following lemma says that if the solution set is nonempty, then X∗ ⊆ H
k ∩ H

k ∩ X
and thus H

k ∩H
k ∩X is a nonempty set.

Lemma . If the solution set X∗ �= ∅, then X∗ ⊆H
k ∩H

k ∩X for all k ≥  under Assump-
tion ..

Proof From the analysis above, it is sufficient to prove that X∗ ⊆ H
k for all k ≥ . The

proof will be given by induction. Obviously, if k = ,

X∗ ⊆H
 = Rn.

Now, suppose that

X∗ ⊆H
k

holds for k = l ≥ . Then

X∗ ⊆H
l ∩H

l ∩X.

For any x∗ ∈ X∗, by Lemma . and the fact that

xl+ = PH
l ∩H

l ∩X
(
x

)
,

it holds that

〈
x∗ – xl+,x – xl+

〉 ≤ .

Thus X∗ ⊆ H
l+. This shows that X∗ ⊆ H

k for all k ≥ , and the desired result follows.
�

For the case that the solution set is empty, we have that H
k ∩ H

k ∩ X is also nonempty
from the following lemma, which implies the feasibility of Algorithm ..
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Lemma . Suppose that X∗ = ∅, then H
k ∩H

k ∩X �= ∅ for all k ≥  under Assumption ..

Before proving Lemma ., we present a fundamental existence result for the GVI prob-
lem defined over a compact convex region []. For the sake of completeness, we give the
proof process.

Lemma . Let X ⊆ Rn be a nonempty bounded closed convex set and let the multi-valued
mapping F : X → Rn be lower semicontinuous with nonempty closed convex values. Then
the solution set X∗ is nonempty.

Proof Since the multi-valued mapping F is lower semicontinuous and has nonempty
closed convex values, by Michael’s selection theorem (see, for instance, Theorem .
in []), it admits a continuous selection; that is, there exists a continuous mapping
G : X → Rn such that G(x) ∈ F(x) for every x ∈ X. Since X is a nonempty bounded closed
convex set, the VI(X,G), which consists of finding an x ∈ X such that

〈
G(x), y – x

〉 ≥ , ∀y ∈ X,

has a solution (see Lemma . in []), i.e., the solution set X ′ of the problem VI(X,G) is
nonempty. It follows from X ′ ⊆ X∗ that X∗ is nonempty. �

Proof of Lemma . On the contrary, suppose that there exists k ≥  such thatH
k ∩H

k ∩
X = ∅. Then there exists a positive numberM such that

{
xk |  ≤ k ≤ k

} ⊆ B
(
x,M

)

and

{
xk – ξ k |  ≤ k ≤ k, ξ k ∈ F

(
xk

)} ⊆ B
(
x,M

)
,

where

B
(
x,M

)
=

{
x ∈ Rn | ∥∥x – x

∥∥ ≤ M
}
.

Let Y = X ∩ B(x, M) and consider the GVI(F ,Y ). From Lemma ., we know that the
solution set Y ∗ of GVI(F ,Y ) is nonempty. In order to avoid confusion with the sequence
{H

k}, {H
k }, and {xk}, we denote the three corresponding sequences by {H̄

k}, {H̄
k } and {x̄k},

respectively, when Algorithm . is applied toGVI(F ,Y ) with a starting point x.We claim
that

(i) the set has at least k +  elements: x̄, x̄, . . . , x̄k ;
(ii) x̄k = xk , H̄

k =H
k , H̄


k =H

k for  ≤ k ≤ k;
(iii) xk is not a solution of GVI(F ,Y ).
Since Y ∗ �= ∅, using Lemma ., we know that H̄

k ∩ H̄
k ∩ X �= ∅, so H

k ∩H
k ∩ X �= ∅,

which contradicts the supposition that H
k ∩H

k ∩X = ∅. �

From Lemma ., if the solution set of problem (.) is empty, then Algorithm . gen-
erates an infinite sequence. More generally, we have the following conclusion.

http://www.fixedpointtheoryandapplications.com/content/2013/1/139
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Theorem . Suppose that Assumption . holds.Assume that Algorithm . generates an
infinite sequence {xk}. If the solution set X∗ is nonempty, then the sequence {xk} is bounded
and all its cluster points belong to the solution set. Otherwise,

lim
k→+∞

∥∥xk – x
∥∥ = +∞

if the solution set X∗ is empty.

Proof First, we suppose that the solution set is nonempty. Since

xk+ = PH
k∩H

k∩X
(
x

)
,

by Lemma . and the definition of the projection, it holds that

∥∥xk+ – x
∥∥ ≤ ∥∥x∗ – x

∥∥

for any x∗ ∈ X∗. So, {xk} is a bounded sequence.
Since xk+ ∈H

k , it is obvious that

PH
k

(
xk+

)
= xk+

from the definition of the projection operator. For xk , since

〈
z – xk ,x – xk

〉 ≤ , ∀z ∈H
k ,

it holds that xk = PH
k
(x) from Remark .. Thus, using Lemma ., one has

∥∥PH
k

(
xk+

)
– PH

k

(
x

)∥∥ ≤ ∥∥xk+ – x
∥∥ –

∥∥PH
k

(
xk+

)
– xk+ + x – PH

k

(
x

)∥∥;

i.e.,

∥∥xk+ – xk
∥∥ ≤ ∥∥xk+ – x

∥∥ –
∥∥xk – x

∥∥,

which can be written as

∥∥xk+ – xk
∥∥ +

∥∥xk – x
∥∥ ≤ ∥∥xk+ – x

∥∥.

Thus, the sequence {‖xk – x‖} is nondecreasing and bounded, and hence convergent,
which implies that

lim
k→∞

∥∥xk+ – xk
∥∥ = . (.)

On the other hand, by xk+ ∈H
k , we get

〈
xk+ – yk , ζ k 〉 ≤ . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/139
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Since

yk = ( – ηk)xk + ηkzk = xk – ηkr
(
xk , ξ k)

and by (.) we have

〈
xk+ – yk , ζ k 〉 = 〈

xk+ – xk + ηkr
(
xk , ξ k), ζ k 〉 ≤ ,

which implies

ηk
〈
r
(
xk , ξ k), ζ k 〉 ≤ 〈

xk – xk+, ζ k 〉 ≤ .

Using the Cauchy-Schwarz inequality and (.), we obtain

ηkσ
∥∥r(xk , ξ k)∥∥ ≤ ηk

〈
r
(
xk , ξ k), ζ k 〉 ≤ ∥∥xk+ – xk

∥∥∥∥ζ k∥∥. (.)

Since F is continuous with compact values, Proposition . in [] implies that {F(yk) :
k ∈ N} is a bounded set, and so the sequence {ζ k : ζ k ∈ F(yk)} is bounded. By (.) and
(.), it follows that

lim
k→∞

ηk
∥∥r(xk , ξ k)∥∥ = .

For any convergent sequence {xkj} of {xk}, its limit is denoted by x̄, i.e.,

lim
j→∞xkj = x̄.

Without loss of generality, suppose that {ηkj} has a limit. Then

lim
j→∞ηkj = 

or

lim
j→∞

∥∥r(xkj , ξ kj
)∥∥ = .

For the first case, by the choice of ηkj in Algorithm ., we know that

〈
ζ , r

(
xkj , ξ kj

)〉
< σ

∥∥r(xkj , ξ kj
)∥∥ (.)

for all ζ ∈ F(xkj –
ηkj
γ
r(xkj , ξ kj )).

Since

lim
j→∞

(
xkj –

ηkj

γ
r
(
xkj , ξ kj

))
= x̄

and F is lower semicontinuous on X, ∃ζ kj ∈ F(xkj –
ηkj
γ
r(xkj , ξ kj )) such that

lim
j→∞ ζ kj = ξ ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/139
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where ξ is a vector in F(x̄). So, by (.) we obtain

lim
j→∞

〈
ζ kj , r

(
xkj , ξ kj

)〉
=

〈
ξ , r(x̄, ξ )

〉 ≤ lim
j→∞σ

∥∥r(xkj , ξ kj
)∥∥ = σ

∥∥r(x̄, ξ )∥∥. (.)

Using the similar arguments of (.), we have

〈
ξ , r(x̄, ξ )

〉 ≥ ∥∥r(x̄, ξ )∥∥.

Combining this and (.), we know that r(x̄, ξ ) =  and thus x̄ is a solution of problem (.).
For the second case

lim
j→∞

∥∥r(xkj , ξ kj
)∥∥ = ,

it is easy to see that the limit point x̄ of xkj is a solution of problem (.).
Now, we consider the case that the solution set is empty. Since the inequality

∥∥xk+ – xk
∥∥ ≤ ∥∥xk+ – x

∥∥ –
∥∥xk – x

∥∥

also holds in this case, the sequence {‖xk – x‖} is still nondecreasing. Next, we claim that

lim
k→+∞

∥∥xk – x
∥∥ = +∞.

Otherwise, {‖xk – x‖} is a bounded sequence. A similar discussion as above would lead
to the conclusion that every cluster point of {xk} is a solution of problem (.), which con-
tradicts the emptiness of the solution set. �

Theorem . Under the assumption of Theorem ., if the solution set X∗ is nonempty,
then the sequence {xk} globally converges to a solution x∗ such that x∗ = PX∗ (x); otherwise,
limk→+∞ ‖xk – x‖ = +∞. That is, the solution set of problem (.) is empty if and only if the
generated sequence diverges to infinity.

Proof First, we suppose that the solution set is nonempty. From Theorem ., we know
that the sequence {xk} is bounded and that every cluster point x∗ of {xk} is a solution of
problem (.). Suppose that the subsequence {xkj} converges to x∗, i.e.,

lim
j→∞xkj = x∗.

Let x̄ = PX∗ (x). Since x̄ ∈ X∗, by Lemma . we have

x̄ ∈H
kj– ∩H

kj– ∩X

for all j. So, by the iterative sequence of Algorithm ., we have

∥∥xkj – x
∥∥ ≤ ∥∥x̄ – x

∥∥.

http://www.fixedpointtheoryandapplications.com/content/2013/1/139
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Thus,

∥∥xkj – x̄
∥∥ =

∥∥xkj – x + x – x̄
∥∥

=
∥∥xkj – x

∥∥ +
∥∥x – x̄

∥∥ + 
〈
xkj – x,x – x̄

〉
≤ ∥∥x̄ – x

∥∥ +
∥∥x – x̄

∥∥ + 
〈
xkj – x,x – x̄

〉
.

Letting j → ∞, we have

∥∥x∗ – x̄
∥∥ ≤ 

∥∥x̄ – x
∥∥ + 

〈
x∗ – x,x – x̄

〉
= 

〈
x∗ – x̄,x – x̄

〉 ≤ ,

where the last inequality is due to Lemma . and the fact that x̄ = PX∗ (x) and x∗ ∈ X∗. So,

x∗ = x̄ = PX∗
(
x

)
.

Thus the sequence {xk} has a unique cluster point PX∗ (x), which shows the global con-
vergence of {xk}.
For the case that the solution set is empty, the conclusion can be obtained directly from

Theorem .. �

4 Discussion
Certainly, the proposed extragradient method for the GVI in this paper has a good theo-
retical property in theory, as the generated sequence not only has an expansion property
w.r.t. the starting point, but also the existence of the solution to the problem can be veri-
fied through the behavior of the generated sequence. However, the proposed algorithm is
not easy to be realized in practice as the termination criterion is not easy to execute. This
is an interesting topic for further research.
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