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Abstract

In this paper, we introduce a new general iterative algorithm for an infinite family of
nonexpansive operators in Hilbert spaces. Under suitable assumptions, we prove that
the sequence generated by the iterative algorithm converges strongly to a common
point of the sets of fixed points, which solves a variational inequality. Our results
improve and extend the corresponding results announced by many others. As
applications, at the end of the paper, we apply our results to the split common fixed
point problem.
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1 Introduction

Let H be a real Hilbert space with the inner product (-,-) and the norm || - ||. Let T be a
nonexpansive operator. The set of fixed points of T is denoted by Fix(7'). In 2000, Moudafi
[1] introduced the viscosity approximation method for a nonexpansive operator and con-

sidered the sequence {x,} by
KXn+l = O‘nfxn + (1 —a,)Tx, (1.1)

where f is a contraction on H and {«,} is a sequence in (0,1). In 2004, Xu [2] proved that
under some conditions on {«,}, the sequence {x,} generated by (1.1) strongly converges to

x* in Fix(T') which is the unique solution of the variational inequality
(I —f)x*, 2 —x*) >0, VxeFix(T).

It is well known that iterative methods for nonexpansive operators have been used to
solve convex minimization problems; see, e.g., [3, 4]. A typical problem is to minimize
a quadratic function over the set of fixed points of a nonexpansive operator 7 on a real
Hilbert space H:

1
min —(Ax,x) — {(x,b), (1.2)
x€Fix(T) 2
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where b is a given point in H and A is a strongly positive bounded linear operator. In [3],
Xu proved that the sequence {x,} defined by the following iterative method:

Xns1 = ([ = a,A)Tx, + b, 1.3)

converges strongly to the unique solution of the minimization problem (1.2). In [5], Marino
and Xu combined the iterative method (1.3) and the viscosity method (1.1) and considered
the following general iterative method:

Xni1 = UV fy + ([ — 0, A) T, (14)

They proved that the sequence {x,} generated by (1.4) converges strongly to the unique
solution of the variational inequality

((A-yfa*,x—x*) >0, VxeFix(T),
which is the optimality condition for the minimization problem

1
min —{
x€Fix(T) 2

Ax,x) — h(x),

where / is a potential function for yf (i.e., /' (x) = yf(x) for x € H).
On the other hand, Yamada [4] in 2001 introduced the following hybrid iterative
method:

Xpi1 = Txy — Ay FIx,, n>0, (15)
where F is a k-Lipschitzian and n-strongly monotone operator with k > 0, n > 0 and
0 < 1 < 2n/k2. Under some appropriate conditions, he proved that the sequence {x,} gen-
erated by (1.5) converges strongly to the unique solution of the variational inequality

(FX,x—x) >0, VxeFix(T).

Recently, combining (1.4) and (1.5), Tian [6] considered the following general iterative
method:

KXn+l = an)’fxn + (I — po, F)Tx,. (L.6)
Improving and extending the corresponding results given by Marino, Xu and Yamada, he
proved that the sequence {x,} generated by (1.6) converges strongly to the unique solution
x* € Fix(T) of the variational inequality

((yf — uF)x,x — 5c> <0, VxeFix(T).

Based on the above results of Marino, Xu, Yamada and Tian, much generalization work

has been made by the corresponding authors; for instance, [7-23]. The problem of finding
an element in the intersection of the fixed point sets of an infinite family of nonexpansive
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operators has attracted much attention because of its extraordinary utility and broad ap-
plicability in many branches of mathematical science and engineering. For example, if the
nonexpansive operators are projection onto some closed convex sets C; (i € N) in a real
Hilbert space H, then such a fixed point problem becomes the convex feasibility problem
of finding a point in (), C;. Many previous results [24—31] and many results not cited
here considered the common fixed point about an infinite family of nonexpansive opera-
tors by W,,-mappings.

Motivated and inspired by the above results, we consider the following iterative algo-
rithm without W,,-mappings:

Yn = Buxn + Yoy (Bict = B) Tien,
X1 = Y VX + (I — payF)yp,

(1.7)

where {«,} is a sequence in (0, 1] and {8,,} is a strictly decreasing sequence in (0,1]. Under
some appropriate conditions, we proved the sequence {x,} generated by (1.7) converges
strongly to the unique solution of the variational inequality:

[e9]
(WF-yV)Ez-%)>0, Vze( |Fix(T)).
i=1

Our results improve and extend the corresponding results announced by many others. As
applications, at the end of the paper, we apply our results to the split common fixed point
problem.

2 Preliminaries
Throughout this paper, we write x,, — x and x,, — x to indicate that {x,} converges weakly
to x and converges strongly to x, respectively.

Anoperator T : H — H is said to be nonexpansive if || Tx— Ty|| < ||[x—y|| forallx,y € H.1t
is well known that Fix(T) is closed and convex. It is known that A is called strongly positive
if there exists a constant y > 0 such that (Ax,x) > y ||| for all x € H. The operator F is
called n-strongly monotone if there exists a constant 7 > 0 such that

(x =y, Fx—Fy) = nlx -yl

forallx,y € H.
In order to prove our main results, we collect the following lemmas in this section.

Lemma 2.1 (Demiclosedness principle [32]) Let H be a Hilbert space, C be a closed convex
subsetof H,and T : C — C be a nonexpansive operator with Fix(T) # 0. If {x,,} is a sequence
in C weakly convergingtox € C and {(I-T)x,} converges stronglytoy € C,then (I-T)x = y.
In particular, if y = 0, then x € Fix(T).

Lemma 2.2 [2] Assume that {a,} is a sequence of nonnegative real numbers such that
Aps1 = (1 - Vn)ﬂn + (Srn n= O;

where {y,} is a sequence in (0,1) and {3,} is a sequence such that
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(©) X0 v =00,
(ii) limsup,_, o f,—z <0o0r Y ;2 18, <o0.
Then lim,_, o a,, = 0.

Lemma 2.3 [33] Let H be a real Hilbert space, let V : H — H be an L-Lipschitzian oper-
ator with L > 0, and let F : H — H be a k-Lipschitzian continuous operator and n-strongly
monotone operator with k >0, n > 0. Then, for 0 <y <, uF — y'V is strongly monotone
with coefficient un — y L.

Lemma 2.4 [34] Let C be a closed convex subset of a real Hilbert space H, given x € H and
y € C. Then y = Pcx if and only if the following inequality holds:

(x-y2z-y)=0
foreveryzeC.

3 Main results

Lemma 3.1 Let {T,} : H— H be an infinite family of nonexpansive operators, let F : H —
H be a k-Lipschitzian and n-strongly monotone operator with k > 0 and n > 0, and let
V' : H — H be an L-Lipschitzian operator. Let 0 < u < i—g and0 <y < M = . Assume
that S, = Bul + Y . (Bie1 — Bi)Ti, where {B,} is a strictly decreasing sequence with By =1

and B, € (0,1]. Consider the following mapping G, on H defined by
Gux = o,y Vx + (I — pa, F)S,x,

where {a,,} is a sequence in (0,1). Then G,, is a contraction.

Proof Observe that
1Gux — Guyll < any IV = Vyll + (1 = u ) [[Spx — Spyl

<auyLllx—yll + (1= ay1) | Bu(x - 9) + Y _(Bia = B)(Tix - Tiy)

i=1

<apyLlx-yl+( —anr)<ﬂn||x—y|| + > (i - ﬁl-)ux—yn)

i=1
=y Llx -yl + 01— an7)llx -yl

= (1-au(t —yL)lx-yl.
Since 0 <1 -w,(t — yL) <1, G, is a contraction. This completes the proof. O

Since G, is a contraction, using the Banach contraction principle, G, has a unique fixed
point x, € H such that

% =,y V) + (I - pa,F)S,x).

For simplicity, we denote x,, for x) without confusion.
Now we state and prove our main results in this paper.
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Theorem 3.2 Let {T,,} be an infinite family of nonexpansive self-mappings of a real Hilbert
space H, let F be a k-Lipschitzian and n-strongly monotone operator on H with k > 0 and
n >0, and let V be an L-Lipschitzian operator. Suppose that Q2 = (-, Fix(T}) is nonempty.
Suppose that {x,} is generated by the following algorithm:

Yn = Bun + Z?:l(/gi—l - Bi)Tixn,
Xp =0CQpY Vxn + (I - /’LanF)yn:

(3.1)

where 0 <t < i—;’ and 0 <y < 7 witht = u(n - %ukz). If the following conditions are satis-

fied:
(i) {on}isasequencein (0,1] and lim,_» a, = 0;
(ii) {Bu} is a strictly decreasing sequence in (0,1] and By = 1.
Then {x,} converges strongly to x € 2, which solves the variational inequality:

(WF -y V)%,z-%)>0, VzeQ. (3.2)
Equivalently, we have Po(I — uF + y V)x = x.

Proof We proceed with the following steps:
Step 1: First we show that {x,,} is bounded.
In fact, let p € @, then for every i € N, T;p = p. Observe that

n
lyn =l < Bullxn = pll + Y (Bict = B Tixn — Tipll < |12 — pll.

i=1

Thus it follows that

%6 = Il = ||tny Vatu + (I = potuF)yn = p|
= |ln(y Vitw — uEp) + (I = patuF)y, — (I - petn F)p||
<=, 0)llyn —pll +au(lly Vi — y VoIl + Iy Vo — nEpll)
< (= a?)llyn =Pl + any Llx —pll +aully Vo — wFpl|

< (L-au(t = yL)) 1% = pll + aully Vo - wEpll.

Then we have

llcn — pll < ly Vb — ukpll,

T—yL

which implies that {x,} is bounded. Hence we can obtain {y,}, {T;x,}, {Fy,} and {Vx,} are
bounded. Note that

960 = yull = | ny Vatw + I = watuF)yn = yu | = ctully Vaow — Eyll,
we immediately obtain that

lim [}, - y,] = 0. (33)
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Step 2: We show lim,,_, «, ||x, — Tix,|| = 0.
Since p € 2, we note that
%5 = P> = 1 Tixey = pII* = | Titn = 260 + % — pII?

= | Tt = %all® + 1 = pII* + 2(T it — % %0 — b)),
which implies that

E”Tixn _xn”2 =< (xn - Tixmxn —P>

Thus

1 n n
5 2 (Bict = BN Tty = al> < D _(Bics = Bi) o = T, 0~ p)
i=1

i=1

= <(1 = Ban = Y _(Bict = B) Tk, % —p>

i=1
= <(1 - ﬂn)xn —Ynt ,ann;xn —19>
= (xn =Y Xn _p)
< % = yullllxn = pI-.

Then we immediately obtain lim,,_, » Z:‘zl(ﬁi_l — B Tixy — x,]1? = 0. Since {B,} is strictly

decreasing, it follows that
lim || Tix, —x,| =0 (3.4)
H—0Q

for every i € N. Since S, = Bl + > 11 (Bi-1 — Bi) T;» thus
It = Sutull> <> (Bict = B T — 2>
i=1

It shows that
lim ||x, — S,x,| = 0. (3.5)
n— 00

Step 3: We show that there exists a subsequence {x,, } of {x,} such that x,, — x.

Since {x,} is bounded, there exist a point X € H and a subsequence {x,, } of {x,} such
that x,, — ¥. By Lemma 2.1 and (3.4), we obtain X € Fix(T;) for any i € N. This shows that
x € Q. On the other hand, we note that

Xy, — %=y Va, + ([ — pa,F)y, —x
= (I - au(WF =y V))yn — (I —ay(uF =y V))x

—au(UF =y V)x + a,(y Ve, — y V).

Page 6 of 15
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Hence we obtain

I = X1 = (I = atu(WF =y V))yn = (I = ctu(WF =y V))Z, % ~ %)
— ou((E = y V)%, 20 — X) + 0t (¥ Vitw = ¥ Vi, % — X)
< || (1 = nluF = ¥y V))yu = (I = cu(F = y V))& [l — ||
— an((WF = ¥ V)%, % — &) + 2y Ll| % — Yl 10 — X
< (1= au(t = yL)) lxn = XII* = atu{(WF = y V)%, x, - X)

+ oy L%y =yl 1% — X1].

Then it follows that

((,uF -y V)x, x, —56).

%0 = Yllllo6n — X1 =

~N2
e |
oo =37 = m—

In particular,

- yL - - -
[, — %> < - 1%, = Vi 1, = X = ((WF =y V), %, — X).

—-yL T—yL

From x,, — X and (3.3), it follows that x,, — .
Step 4: We show that & solves the variational inequality (3.2).
Observe that

Xy =y Vi + ([ — wa,F)S,x,.
Hence, we conclude that
(WF =y V)xy = (WEF =y V) (x4 — Spxn) + WFSyx — y VS,
=(WF =y V)& — Spx) + (v Ve = Y VSux) — v Vit + WFS,x,

1
= (:U“F - )/V)(x,, - Snxn) + (J/ Vxn - yVSnxn) - ([ - Sn)xw
(0%

n
Since S, is nonexpansive, we have that / — S,, is monotone. Note that forany z € @, S,z = z.

Then we deduce

<(MF - Vv)xnrxn - Z) = _ai<(l - Sn)xn - (1 - Sn)z:xn - Z>

+ <(MF =y VU = Sp)%, % — Z) + (Y Vit =y VSuXn, %0 — 2)

<((E =y V)U = Su)%ns%n — 2) + Y LI|%n — Skl 1% — 2.
Now, replacing n with n; in the above inequality, and letting k — 0o, by (3.5) we have

((F =y V)% &~ 2) = Hm((uF =y V), %0, = 2)

< 1im (((WF = y V) (g = S ) %y = 2)

k—0
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+ )/L||x,,k - Snkxnk ” ”xnk - Z”)

=0.

That is, ((LF — yV)x,z—x) > 0 for every z € Q. It follows that & is a solution of the vari-
ational inequality (3.2). Since uF — y V' is (un — y L)-strongly monotone and (uk — yL)-
Lipschitzian, the variational inequality (3.2) has a unique solution. So, we conclude that
x, — ¥ as n — oo. The variational inequality (3.2) can be written as

(I-pF+yV)i-%2z-%<0, VzeQ.
By Lemma 2.4, we have Po(I - uF + y V)x = X. O

Theorem 3.3 Let {T),} be an infinite family of nonexpansive self-mappings of a real Hilbert
space H, let F be a k-Lipschitzian and n-strongly monotone operator on H with k > 0 and
n >0, and let V be an L-Lipschitzian operator. Suppose that Q = (5, Fix(T;) is nonempty.
Suppose that x, e H, 0 < u < ]2(—2 and 0 <y < 1 with T = u(n - %,ukz). Let By =1, {a,} be
a sequence in (0,1], and let {B,} be a strictly decreasing sequence in (0,1]. If the following
conditions are satisfied:
(i) lim,_ o0, =0;

(ii) D02 oy = 00;

(itD) Doo2) ltuer — o] < 003

(V) 351 1Bt — Bul < 00.
Then {x,} generated by (1.7) converges strongly to x € 2, which solves the variational in-
equality

(WF -y V)%,z-%)>0, VzeQ. (3.6)
Equivalently, we have Po(I — uF + y V)x = X.

Proof We proceed with the following steps:

Step 1: First show that there exists x € Q such that x = Po(I — uF + y V).

In fact, by Lemma 2.3, wF — y V is strongly monotone. So, the variational inequality (3.6)
has only one solution. We set ¥ € 2 to indicate the unique solution of (3.6). The variational
inequality (3.6) can be written as

(I-puF+yV)Z-%2z-%<0, VzeQ.
So, by Lemma 2.4, it is equivalent to the fixed point equation
Po(I - puF+yV)x=x.

Step 2: Now we show that {x,} is bounded.
Let p € , then for every i € N, T;p = p. Observe that

yn =Pl < BullxXw — pIl + Z(ﬁm = Bl Tixy — p

i=1

< Bullxn —pll + Y _(Bisr = B)llxu —pll = 1% - pll.

i=1
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Thus it follows that

%041 =PIl = | @ny Vieu + (I = petuF)y, - p||
= ||Oln(J/ Vxn - MFP) + (1 - l’wlnF)yn - (1_ /LanF)p“
<@ =au)llyn—pll +an(lly Van -y Vol + Iy Vo - nEpl)

= (= an?)llyn —pll + awyLlix, — pll + anlly Vp — nFpl|

ly Vb — ubpl|
< [1= aulz = y L)% = pll + cn(x - y L) 22—
T—yL
ly Vo — ukpl|
<maxj %, - pll, ————
Vo — uF,
5---§max{||x1—p||, lyVp—u pll}'
T—yL

Therefore, {x,} is bounded. Hence we can obtain that {y,}, {Tix,}, {Fy,} and {Vx,} are
bounded.

Step 3: we show lim,,_, o [|%,41 — %] = 0.

We observe that

Xns1 = %n = Uy Vit + ([ = pa, F)yy — a1y Vo — (I = oty 1 F)yna
= Oln)/(Vxn - Vxn—l) + (Oln - O5;'1—1))/ Vxn—l
+ ((1 - ManF)yn -(I- /'LanF)yn—l) + (1 — ) W EYy1.
It follows that

11 = %l < @y |V, = Va1l + loty — |y | V|l

+ (1 =0, D) yn = Y1 | + l0tuy — | | Fypa . (3.7)
We have
n n-1
lyn =yl = || Buxn + Z(ﬁi—l = Bi)Tixn — Bn1%n-1 — Z(/Si—l - Bi) Tixna
i=1 i=1

< Bullxn = xuall + 1Bn = Bu-tlllxn-1ll

n
+ Y (Bior = B Tt = Tixucr | + 1Bn — Bua | Tt

i=1
< 1%n =Xl + 1Bn — ﬁn—l'(”xn—l” + ”Tnxn—l”)' (3.8)

Combining (3.7) and (3.8), we obtain that

%641 = %all < 0ty LUKy = 2n-a | + ot = et | (¥ Vit | + sl Eynea )
+ (1= 0 0) 1y = e[l + 1B = Bt (1= 2 ®) (Ica | + | Tptna 1)
= (L=t =y D) 1%n = %pa |l + Loty = | (¥ | Vit | + 12l Eynall)
+ 1B = Bual (L= @) (1%l + I Tt [1)-

Using (ii), (iii), (iv) and Lemma 2.2, we have lim,_, o [|¥41 — %, || = 0.
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Step 4: We show lim,,_, o, || Tix, — x,|| = 0 for all i € N.
Since p € 2, we note that

%, = plI* > | T — Tip||* = || Tikn — % + %0 — plI*
= | Titn = %ull® + 1% — pI* + 2( T — X, % — p),

which implies that

1
E”Tixn _xn”2 S (xn - Tixmxn —P> (39)

From (1.7) and (3.9), we deduce

1 n
5 2B ﬁ,)||Txn—xn||2<Z(ﬂl — Bi) (= Tin, X0 — )
i=1

i=1

= <(1 = Bn)xu — Z(ﬁi—l = B Tix, %y —P>

= (L= Bu)%n = Yu + Buns Xn — P)
= Xy = Y Xn — D)

= (xn —Xn+1rXn —P> + (xn+1 =V ¥n —P>

Using (1.7), we can have

5 Z(/gi—l - ,Bl)” Tixn —xn||2 =< <xn — X+l Xn —P) + Oln()/ Vxn - ,U-Fynrxn —P>

< %0 = Xna 1% — Pl + cnlly View — wEynll %, - pl.-

Noting that lim,_,  [|%; — %41 = 0 and lim,,_, o &, = 0, we immediately obtain
lim Z(ﬁl — B Tixn = xull> = 0.

Since {,} is strictly decreasing, it follows that for every i e N,
lim || Tix, — %, = 0. (3.10)
n—00

Step 5: Show limsup,,_, . ((yV — uF)x,x, — %) <0, where ¥ = Po(I — uF + y V)x.
Since {x,} is bounded, there exist a point v € H and a subsequence {x,, } of {x,} such that

hmsup<(yV WF)X, x,, —x) = hm ((yV W)X, %, — 56)

n—0o0

and x,, — v. Now, applying (3.10) and Lemma 2.1, we conclude that v € Fix(T;) for every
i € N. Hence, v € Q. Since Q is closed and convex, by Lemma 2.4, we get

hmsup((y\/ uF)x,xn—x)—hm<(yV WE)x, x,, — x)

n—00

=((yV-uF)xv-%<0. (3.11)
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Step 6: Show x,, = X = Pq(I — uF + y V) ().
Since x € 2, we have T;x = X for every i € N. Using (1.7), we have

e = %12 = Jlotny Vien + (I = pauF)y, - |
= || (1 = totuF)y, — (I = payF) + an(y Vivy — uF&)|*
< | = potuF)y — (I = potnFYE | + 20t (y Vit = 10F5, 011 — )
< (1= an?)*[lyn = &I + 200,y (Vity — VE, X1 — %)
+ 20, (y VX — WFX, %41 — X)
< (L= ay7)* [l — ZII* + Ly (lltn — XI1” + o1 — ZII)

+ 20, (y VX — uFx,x,,1 — X),

which implies that

. (1-a,7)* +anyL 7 20 X x .

Ien = E)* < el = EP 4 (Y VE — uFE 21 — )

1-a,yL 1-anyl

20,(t —yL =

< (122D e
l—anyL
2an(r —yL)[ 1
. o, (Tt —yL) (Y V& — uF% %00 — %) |.
l-a,yL [T-yL

Consequently, according to (3.11) and Lemma 2.2, we deduce that {x,} converges strongly

to x = Po(I — uF + y V)x. This completes the proof. O

Corollary 3.4 Let T be a nonexpansive self-mapping of a real Hilbert space H, let F be a
k-Lipschitzian and n-strongly monotone operator on H with k >0 and n >0, and let V' be
an L-Lipschitzian operator. Suppose that Q = Fix(T) is nonempty. Suppose that x, € H and
that {x,} is generated by the following algorithm:

X1 =y V(x,) + ([ — po, F) Ty,

where 0 < u < i—g and 0 <y < 7 witht = u(n - %/Lkz). Let {a,} be in (0,1]. If the following
conditions are satisfied:
(i) lim,_ s, =0;
(ii) D02 oy = 00;
(iii) D2y It = el < 00.

Then {x,} converges strongly to x € 2, which solves the variational inequality
(WF-yV)x,z-%)>0, VzeQ.
Equivalently, we have Po(I — uF + y V)X = x.

Proof Set {T,} to be the sequences of operators defined by T, = T for all # € N in Theo-
rem 3.3. Then by Theorem 3.3, we obtain the desired result. O
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4 Application in the split common fixed point problem
Let H; and H, be Hilbert spaces, let A : H} — H, be a bounded linear operator. The split
common fixed point problem (SCFPP) is to find a point x* € H; satisfied with

14 r
& e[ \Fix(Uh),  Ax* e[ |Fix(T)),
i=1 j=1
where U;: Hy — H, (i=1,2,...,p)and Tj : Hy — H (j=1,2,...,r) are nonlinear operators.
The concept of the SCFPP in finite-dimensional Hilbert spaces was firstly introduced by

Censor and Segal in [35]. Now we consider a generalized split common fixed point prob-
lem (GSCFPP) which is to find a point

x e[ Fix(U),  Ax* e[ )Fix(T)). (4.1)
i=1 j=1

We know that if for all i and j, U; and T} are nonexpansive operators, the GSCFPP is equiv-
alent to the following common fixed point problem:

o0 o0
x* e ﬂFix(Ui), x* e ﬂFix(V,),

i=1 j=1

where V; =1 - yA*(I - T))A with 0 <y < W for every j € N (see [36]). The solution set
of GSCFPP (4.1) is denoted by S.

Theorem 4.1 Let {U,} and {T,} be sequences of nonexpansive operators on real Hilbert
spaces Hy and H,, respectively. Let F be a k-Lipschitzian and n-strongly monotone operator
on Hy withk >0andn > 0.Let V bean L-Lipschitzian operator. Suppose that S is nonempty.
Suppose that x; € H and that {x,} is generated by the following algorithm:

Yn = ,ann + Z?ﬂ(ﬂi—l - ﬂl)ul(l - VA*(] - Ti)A)xnr
X1 = oy V() + (I — ety F)yp,

where 0 < |4 < i—g and 0 <y < witht = u(n— %,ukz). Let {a,} be in (0,1], {B,} be a strictly
decreasing sequence in (0,1] and By = 1. If the following conditions are satisfied:
(i) lim,_ s, =0;
(ii) D02 oy = 00;
(i) Do02; leter — | < 005
(iv) Doy 1Bt = Bul < 0.

Then {x,} converges strongly to x € S, which solves the variational inequality
((,uF— yV)?c,Z—fc) >0, Vzel.
Equivalently, we have Po(I — uF + y V)X = x.

Proof Set {T,} to be the sequences of operators defined by T, := U,(I — yA*(I - T,,)A) for
all # € N in Theorem 3.3. By Theorem 3.3, we can obtain

lim || U (1 - yA*(I - T)A)x, — %, ] = 0

n—00
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in Step 4. But it does not imply that the set of cluster points of the weak topology w,,(x;,)
is a subset of S. In order to prove this, we only show lim,_, || T;:Ax, — x,|| = 0 and
limy, o | Uiy = x| = 0.
Since p € @, T;Ap = Ap. Hence, for every i € N,
1A%, — Apl* = | TiA%, — TiAp|)* = | TiAx, — Ap|®
= || T:Ax, — Axy + Axy —AP||2

= | T, A%, — Ax, |* + | A%, — AplI> + 2(TiAx,, — Ax,,, Ax, — Ap),

which yields that
1 2
(Ti:Axy — Axp, Axy — Ap) < D) | T:Ax, — Ax,|| (4.2)

for every i € N. Using (4.2), we note that

n

Bultu —p) + Y _(Bisr — B)(Ui(I - yA*(I - T))A)x, - p)

i=1

ly. —pI? =

< Bulltn —pI> + Y (Bis — B + yA*(T: ~ DAx, — p|

i=1

n
< Bullxa —pI* + > _(Bit = B) (Il — p1I” + Y IAI || TiAx, — Ax, |
i=1

+2y (Ax, — Ap, TiAx, — Axy,))

n
<l =pI” + Y (Bior - B(¥*IAIP | TiAx, — A, ||

i=1
- 7 TiAx, - Ax,|1%)

n

= s = pl* + ¥ (Y IAI* = 1) ) _(Bio1 = B TiAx, — Ax,|I”.
i=1

Thus
y (1= v IAIP) Y (Bia = B TiAx, — A,
i=1
= [l = pI* = lyu - pII”
= (1% = pll = llyn = 211) (Il = p1l + 17 - pII)
< %0 = yull (160 = 21 + Iy = 1)

It follows that lim,,_, o, || T;A%, —Ax,|| = 0. Now we show that lim,,_, ., ||U;x, —%,| = 0. Note
that

[ Uien = ull < ||Uizew — Ui(I = y A (I = TA) x| + | U(I - y A* (I = T))A) % — 2|
< |#n = (I = yA*U = T)A)x, || + | Ui(I = yA* (I = TDA) %, — x|

<VIAN|(T;: = DAx, || + |Ui(I - yA* (I = T)A) %y — % ).
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Then we have lim,_, ||Ux, — x,|| = 0 for every i € N. Then we can have w,(x,) C S.
Hence, by Theorem 3.3, we obtain the desired result. d
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