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Abstract

In the present paper, an extension of the Edelstein contraction theorem for cyclic
contractions in a fuzzy metric space is established, which also can be considered as a
generalization of the fuzzy Edelstein contraction theorem introduced by Grabiec.
Additionally, we extend a fixed point theorem in G-complete fuzzy metric spaces
given by Shen et al. to M-complete fuzzy metric spaces. Meantime, two examples are
constructed to illustrate the corresponding results, respectively.

1 Introduction

The contraction type mappings in fuzzy metric spaces play a crucial role in fixed point
theory. In 1988, Grabiec [1] first defined the Banach contraction in a fuzzy metric space
and extended fixed point theorems of Banach and Edelstein to fuzzy metric spaces. Fol-
lowing Grabiec’s approach, Mishra et al. [2] obtained some common fixed point theorems
for asymptotically commuting mappings in fuzzy metric spaces. In the sequel, Vasuki [3]
offered a generalization of Grabiec’s fuzzy Banach contraction theorem and proved a com-
mon fixed point theorem for a sequence of mappings in a fuzzy metric space. Afterwards,
Cho [4] presented the concept of compatible mappings of type («) in fuzzy metric spaces
and then studied the fixed point theory. Several years later, Singh and Chauhan [5] intro-
duced the concept of compatible mapping and proved two common fixed point theorems
in the fuzzy metric space with the strongest triangular norm. In 2002, Sharma [6] fur-
ther extended some known results of fixed point theory for compatible mappings in fuzzy
metric spaces. In the same year, Gregori and Sapena [7] introduced the notion of fuzzy
contractive mapping and presented some fixed point theorems for complete fuzzy metric
spaces in the sense of George and Veeramani, and also for Kramosil and Michalek’s fuzzy
metric spaces which are complete in Grabiec’s sense. Soon after, Mihet [8] proposed a
fuzzy Banach theorem for (weak) B-contraction in M-complete fuzzy metric spaces. Later,
Mihet [9, 10] further studied the fixed point theory for the different contraction mappings
in fuzzy metric spaces, and introduced some new contraction mappings, such as Edelstein
fuzzy contractive mappings, fuzzy v -contraction of (g, 1) type, etc. Based on the defini-
tion of fuzzy contractive mapping introduced by Mihet [9], Abbas et al. [11] proposed the
notion of p-weak contraction and obtained several results of fixed point in a G-complete
metric space. Recently, Shen et al. [12] constructed a novel class of ¢-contractions and
proved a fixed point theorem for this kind of mappings in an M-complete fuzzy metric
space.
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In 2003, Kirk et al. [13] first introduced a novel class of contractive conditions, namely,
cyclical contractive conditions, and extended several fixed point theorems including
Banach, Edelsetin, Carsti and a fixed point theorem for nonexpansive mappings in a
Banach space. Motivated by the notion of cyclic contraction, Piacurar and loan [14] pro-
posed the concept of cyclic ¢-contraction. Based on this type of contractive condition,
they constructed a fixed point theorem in a classical complete metric space. Moreover,
several problems related to the fixed point are investigated, such as data dependence,
well-posedness, limit shadowing property, and so on. Hereafter, Karapinar [15] proposed
the concept of cyclic weak ¢-contraction, and then discussed some main results pro-
posed by Péacurar and Ioan [14] under this kind of contractive conditions. Following these
ideas mentioned above, Shen et al. [16] extended the notion of cyclic ¢-contraction to
fuzzy metric spaces, and proposed a fixed point theorem for this type of mappings in
G-complete fuzzy metric spaces in the sense of George and Veeramani. Simultaneously,
some of the results concerned with the fixed point proposed by Péicurar and Ioan [14]
were also generalized to fuzzy metric spaces. Analogously, Gopal et al. [17] also intro-
duced the notion of cyclic weak ¢-contraction in fuzzy metric spaces and obtained some
results on the existence and uniqueness of a fixed point in fuzzy metric spaces in the sense
of G-completeness. Furthermore, Murthy et al. [18] generalized the concept of cyclic weak
@-contraction to cyclic weak (¢, ¥)-contraction and utilized these contractive mappings
to prove a fixed point theorem in a G-complete fuzzy metric space.

In this paper, we present an extension of the Edelstein contraction theorem for cyclic
contractions in a fuzzy metric space. Our results can also be viewed as a generalization
of the fuzzy Edelstein contraction theorem proposed by Grabiec [1]. Besides, we also gen-
eralized a fixed theorem in G-complete fuzzy metric spaces given by Shen et al. [16] to
M-complete fuzzy metric spaces. In addition, it should be pointed out that the function
¢ of cyclic g-contraction proposed by us is different from that of cyclic ¢-contraction
introduced in [17, 18].

2 Preliminaries
For completeness and clarity, in this section, some related concepts and conclusions are

summarized and introduced below. Let N denote the set of all positive integers.

Definition 2.1 (Schweizer and Sklar [19]) A binary operation *: [0,1] x [0,1] — [0,1] is
called a continuous triangular norm (in short, continuous t-norm) if it satisfies the follow-
ing conditions:

(TN-1) * is commutative and associative;

(TN-2) * is continuous;

(TN-3) a*1=aforeverya € [0,1];

(TN-4) axb <c*dwhenevera<c,b<danda,b,cdec[0,1].

Definition 2.2 (George and Veeramani [20]) A fuzzy metric space is an ordered triple
(X, M, %) such that X is a nonempty set, * is a continuous ¢-norm and M is a fuzzy set on
X x X x (0, 00) satisfying the following conditions for all x,y,z € X, s,¢ > 0:

(FM-1) M(x,y,t) > 0;

(FM-2) M(x,y,t) =1ifand only if x = y;

(FM-3) M(x,y,t) = M(y,x, t);
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(EM-4) M(x,y,t) * M(y,2,5) < M(x,2,t +5);
(FM-5) M(x,y,-):(0,00) — (0,1] is continuous.

Definition 2.3 (George and Veeramani [20]) Let (X, M, *) be a fuzzy metric space. Then:
(i) A sequence {x,} in X is said to converge to x in X, denoted by lim,_, o x,, = x (or
x, — %), if and only if lim,,_, oo M(x,,%,£) = 1 for all £ > 0, i.e., for each r € (0,1) and
t > 0, there exists ng € N such that M(x,,x,t) >1—r for all n > ny;
(i) A sequence {x,} is an M-Cauchy sequence if and only if for all € > 0, there exists
no € N such that M(x,,,x,,£) >1 — € for any m,n > ng and ¢ > 0;
(iii) A fuzzy metric space (X, M, x) is called M-complete if every M-Cauchy sequence is
convergent.
Notice that a fuzzy metric space is called compact if every sequence contains a convergent
subsequence.

Lemma 2.1 (Grabiec [1]) Let lim,—, o x, = x and lim,,_, o y, = y. If M(x,y, -) is continuous,
then limy,_, oo M(%y,, y, £) = M(x,,t) for any t > 0.

Lemma 2.2 (Grabiec [1], fuzzy Edelstein contraction theorem) Let (X, M, *) be a compact

fuzzy metric space. T : X — X a mapping satisfying the following condition:
M(Tx, Ty, -) > M(x,y,-)
forallx #y. Then T has a unique fixed point.

Definition 2.4 (Pacurar and Rus [14]) Let X be a nonempty set, r be a positive integer
and f : X — X be a mapping. X = |J,_, X; is a cyclic representation of X with respect to f
if

(i) Xi,i=1,2,...,r, are nonempty sets;

(il) f(X1) CXy,...,.f (X)) C X f(X,) C X5

Definition 2.5 A function ¢ : [0,1] — [0,1] is called a comparison function if it satisfies:
(i) ¢ is nondecreasing and left continuous;
(if) @(¢) > tforall t € (0,1).

Lemma 2.3 (Vetro [21]) If ¢ is a comparison function, then
i) e@) =1
(i) limy— .00 @"(t) =1 for all t € (0,1), where ¢"(t) denotes the composition of ¢(t) with
itself n times.

Definition 2.6 (Shen et al. [16]) Let (X, M, *) be a fuzzy metric space, r be a positive
integer, A1, A,,...,A, € Py(X), where P.(X) denotes the collection of nonempty closed
subsets of X, Y = J!_; A; and f : Y — Y a mapping. If

(i) U, A is cyclic representation of Y with respect to f;

(ii) there exists a comparison function ¢ : [0,1] — [0, 1] such that

M(f(x),f (), t) = o(M(x,7,1))
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foranyx € A;, y € Aj;1 and t > 0, where A,,1 = A;, then f is called cyclic
@-contraction in the fuzzy metric space.

3 Main results

In this section, we prove an extended fuzzy Edelstein contraction theorem for cyclic con-
tractive mappings in a fuzzy metric space. Meantime, we also prove that a fixed point
theorem given by Shen et al. [16] does hold even if G-completeness of the fuzzy metric
space is replaced by M-completeness.

Theorem 3.1 (The extended fuzzy Edelstein contraction theorem) Let (X, M, ) be a fuzzy
metric space, r be a positive integer, A1, As, ..., Ay € Pa(X), at least one of which is compact.
Y =, Auf:Y = Y a mapping. Assume that

(C1) U, A; is a cyclic representation of Y with respect to f;

(C2) M(fx),f»),-) > M(x,y,-) foranyx € A;, y € A1 (#y),i=1,2,...,r.
Then f has a unique fixed point x* € (\._, A;.

Proof Without loss of generality, we assume that A; is compact. Define d(£) = sup{M(x,
y,t):x € A1,y € A,} for each £ > 0. According to Definition 2.2, we know that 0 < d(t) <1.
Since A; is compact, for an arbitrary but fixed ¢ > 0, there exist xy € A; and a sequence
{yn} C A, such that lim,,_, oo M(x0, Y, t) = d(t). Now, we claim that d(¢) = 1 for each given
t > 0. Otherwise, we can assume that 0 < d(t) < 1. By the condition (FM-2), we know that
X0 7y, for each n € N. Furthermore, we can obtain that f*(x) #f(y,) for 1 < i <r. Thus,
for every n € N, we have

M x0)o f ™ ) £) > M(f7 (x0), " ¥n)> 2)
> > M(f(xo),f(yn), t) > M(x0, Y, £).

Since the sequence {f"*!(y,)} C A; and the compactness of A, there exists a subsequence
of {f"(y,)} such that it converges to some z € A;. According to the foregoing inequality
and Lemma 2.1, by supposing that n — oo, it follows that

M(f"(x0), 2, £) = d(2).

According to the arbitrariness of ¢, if M(f"*!(x¢), z, t) = 1, then we have f"*!(x,) = z. Fur-
thermore, we can obtain that M(f?"(xo),f"(2),t) = 1. Obviously, this is a contradiction.
On the other hand, if M(f"*!(x¢),z, ) < 1, then we have f™*!(xy) # z. Thus, by the condi-
tions (C1) and (C2), we can obtain

M(fzr(xo),fr_l(Z), t) N M(er—l(xo)’fZV—Z(z), t)
>0 M(f(x0),2,8) > d(2).

As f¥(xy) € A1 and f"}(z) € A,, this implies a contradiction. Therefore, we conclude
that d(t) =1 for each t > 0, and A; N A, # . By (C1), f(A1 NA,) C Ay and f(A1 NA,) C Ay,
we have f(4; N A,) C A; N A,. Obviously, A; N Ay # 0.

Now, we redefine the sets A} = A; N Ay, A, = Ay NAs,..., A, = A, NA;. In view of (Cl),
these sets are both nonempty and closed. As A} is compact, the conditions (C1) and (C2)
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are satisfied by f with respect to the family {A}}, i =1,2,...,r. By repeating the above pro-
cess, we obtain A] N A), # ), which implies A; N Ay N A3 # 0.

Continuing in this manner, we can obtain

A= hAi#@.

i=1

Consider the restriction f|4 of f on A. Obviously, the mapping f|4 : A — A satisfies the
condition (C2) and A is compact. By Lemma 2.2, we conclude that f|4 has a unique fixed
point in A. However, by the condition (C1), it can easily be shown that the uniqueness
follows from the fact that any fixed point of f necessarily lies in A. O

Remark1 Theorem 3.1 can be regarded as an extension of the fuzzy Edelstein contraction
theorem (Lemma 2.2) given by Grabiec [1], and it is not related with the compactness and
completeness of the fuzzy metric space (X, M, x).

Example 1 Let X = [0,4] be endowed with the usual metric d(x,y) = |x — y|. Define
M(x,y,t) = m for all ¥,y € X and ¢ > 0. Clearly, (X, M, %) is a fuzzy metric space with
respect to t-norm a x b = ab.

Let f : X — X be defined as f(x) = 2 — 7. Set A; = [0,2], Ay = [1,4]. Owing to f(A;) =
[1,2] C [1,4] = Ay, f(Az) =[O, %] C [0,2] = A1, we can obtain that A; U A; is a cyclic repre-

sentation of X with respect to f. In addition, for any x € A, y € A, and x #y, we have

t t
= T > = M(x,y,t).
t+sle—yl t+lx—yl

M(f().f (), 2)

Thus, all the conditions of Theorem 3.1 are satisfied and x = % is the unique fixed point

of f.

Theorem 3.2 Let (X, M, *) be an M-complete fuzzy metric space, r be a positive integer,
Ay Ay, A € Pa(X), Y = U Ai ¢ : [0,1] — [0,1] be a comparison function, andf : Y —
Y be a mapping. Assume that

(C1) Ui, A is a cyclic representation of Y with respect to f;

(C2) f is a cyclic p-contraction.
Then f has a unique fixed point x* € (.| A; and the iterative sequence {x,},>0 (%, =
f(x,-1), n € N) converges to x* for any initial point xo € Y.

Proof Letx, € Y bean arbitrary initial point. Define t,(£) = M(x,,, x,,,1, ) forallm € NU{0},
¢t > 0. Now, we show that f has a fixed point. In particular, if there exists an np € NU
{0} such that x,,y.1 = %y, i.e., f (%) = %4y, then it is obvious that x,, is a fixed point of f.
Otherwise, the inequality x,, # x,,.,1 holds for each #, which implies that 0 < 7,(¢) < 1 for all
n e NU{0} and ¢ > 0. By (C2), {z,(¢)} is monotone increasing and bounded from below for
every t > 0 with respect to n. So, lim,,_, » 7,,(t) = T(£) < 1. Suppose that 0 < t(¢) < 1. Since

Tn+1(t) = M(xn+1’xn+2: t) > w(M(xm Xn+ls t)) = (/)(Tn(t))

for each ¢, letting n — 0o, we conclude that 7(£) > ¢(z(¢)). Obviously, which is a contra-
diction. Thus, we obtain lim,,_, o, 7,,(£) = 1.
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Next, we show that the iterative sequence {x,},>0 is an M-Cauchy sequence. Suppose
that it is not. Then there exist € € (0,1), ¢ > 0, and two sequences {p(n)} and {g(n)} such
that for every n € NU {0}, so we obtain that

pn)>qn) >n, M), Xgm),t) <1—€.

Furthermore, for each #, we can choose the smallest number p(n) greater than g(#) such
that

M(xp(n)—l: Xq(n)-1> t) >1- €, M(xp(n)—ly Xq(n) t) >1-e.
For each n € NU {0}, we put s,,(£) = M(%p(n), X4(n)» £). Then we have

l-e> Sn(t) = M(xp(n):xq(n)¢ t)
= M(xp(n)—b Xp(n)» t/2) * M(xp(,,)_l,xq(,,), t/2)
= Tp(n)—l(t/z) * (1 - G)'
Since Tp()-1(t/2) = 1 as n — oo for the foregoing ¢, letting n — oo, we conclude that
the sequence {s,(¢)} converges to 1 — €. Moreover, for p(n) > g(n), there exists 0 <j <r-1

such that p(n) — q(n) + j =1 mod r for infinitely many ».
Case I: If j = 0, then, for such #, we have

$(t) = MXp(n)s Xq(n)» £)

> M(xp(n): Xp(n)+1> t/3) % M(xp(n)ﬂ» Xg(n)+1> t/3) * M(xq(n)ﬂrxq(n): t/3)

v

‘Ep(,,)(t/g) * w(M(xp(,,),xq(n), t/3)) * ‘L'q(n)(t/3)

= Ty (t/3) * (p(s,,(t)) * Ty (£/3).
Letting n — 00, we obtain that
l-e>p(l-€)>1-e.

Clearly, this leads to a contradiction.
Case II: If j # 0, similarly, for such n, we can obtain

$u(t) = M(Xp(n)s Xg(n)> )
> M (%p(n)s Xp(n 151G + 3)) 5 M (%001, Xpiy 20 8/ ( + 3)) -+
* M(xp(,,)+j,xp(,,)+j+1, L+ 3)) * M(xp(,,)+j+1,xq(,,)+1, LG+ 3))
* M(xq(,,)+1,xq(,,), L+ 3))
> Ty(n) (81 + 3)) * Tp(mys1 (/G + 3)) -+ 5k Ty (£1( + 3))

* w(M(xp(n)+;, Xq(n)» L+ 3))) * Ty(n) (t/(] + 3))

Supposing that # — 0o, we can get the same contradiction as Case L.

Page 6 of 9
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Moreover, we consider another case. That is, there exists ny € N U {0} such that
M(xy,%4,t) <1 — € for all m,n > ny. Therefore, for any p € N, it is obvious that
M(Xngsps1s Xngeps2,£) < 1 — €. By (C2), we know that the sequence {M (%1 p+1, Xng+p+2,£)}
is monotone increasing and bounded with respect to p for each ¢. So, there exists

a(t) € (0,1 - €] such that lim,_. oo M (X +p+1, Xng+p+2, £) = (£). Thus, we can obtain

M(xno +p+2s Kng +p+3> t) = 4 (M(xn() +p+1s Xng +p+2> t)) .

Letting p — o0, for the forgoing ¢, we have «(£) > ¢(«(¢)), which is also a contradiction.

Based on the above analysis, we obtain that {x,},>0 is an M-Cauchy sequence in the
M-complete fuzzy metric subspace Y. Furthermore, we conclude that there exists an x* €
Y such that lim,,_, o x,, = x*.

Now, we show that x* is a fixed point of f. By the condition (C1), it follows that the
iterative sequence {x,},>0 has an infinite number of terms in each A;, i =1,2,...,r. Since
Y is M-complete, from each A;, i = 1,2,...,r, we can extract a subsequence of {x,},>0
which converges to x* as well. Because each A4;, i =1,2,...,r, is closed, we conclude that
x* € (i, A; and thus ([, A; # 0.

Set Z = ()., A;. Clearly, Z is closed and M-complete. Consider the restriction of f on Z,
thatis, f|z : Z — Z. Next, we show that f|z has a unique fixed pointin Z C Y.

For the forgoing x* € Z, there exists i, (n € N) such that x, € A; . Therefore, we can
choose A;, ;1 such that f|z(x*) € A;,.1. Accordingly, for any ¢ > 0, we can obtain

M(F12(), ) = M (), )
= M(f(x*):f(xn)r t/2) * M(xn+1; X", t/2)
> (M (x*,%,,2/2)) % M (%01, %", £12).
By supposing that n — 0o, we conclude that M(f|z(x*),x*,¢) = 1 for any ¢ > 0, i.e.,
flz(x*) = x*. That is to say, x* is a fixed point of f|z, which is obtained by iteration from
the initial point xy € Y.

To show uniqueness, we assume that y € (), 4; is another fixed point of . As x*,y €

A; for every i € {1,2,...,r}, we obtain that

M(x",3,8) = M(flz(x").f120),2)
= M(f(x").f0),1)
> o(M(x",,1))
> M(x*,,t).
This leads to a contradiction. Thus, x* is a unique fixed point of f.
Finally, we have to prove that the iterative sequence {x,},>0 converges to x* for any start-

ing point xy € Y. Sincexp € Y = U:Zl A;, there exists iy € {1,2,...,r} such that xy € A;;. As
x* e ﬂ;’ilAi, we know that x* € A, ,; as well. Then, for any ¢ > 0, we have

M(f(x),f (%), ) = o (M(x,x",2)).
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By induction, we can obtain

M (s, £) = M(F(x0), 2 )
= M(f" (o). f (x"). 2)
= M(f (") o). f ("), 2)
> p(M(f" (x0), 27, 1)

> > " (M(x0,%%,2)).

According to Lemma 2.3, supposing xy # x*, it follows immediately that x, — x* as
n — oo. Hence, the iterative sequence {x,},>0 converges to the unique fixed point x* of f
for any initial point xy € Y. This completes the proof of the theorem. O

Remark 2 Based on Theorem 3.2, the remaining results concerning fixed point theory
given in [16] can be directly obtained in the sense of M-completeness.

Example 2 Let X = [0,3] be equipped with the ordinary metric d(x,y) = |x-y|, (z) = /T
for all T € [0,1]. Define M(x,y,t) = e‘mf_ﬂ for all x,y € X and ¢ > 0. Clearly, (X, M, *) is an
M-complete fuzzy metric space with respect to £-norm a x b = ab.

Let f : X — X be defined as

1, xe[0,1],

3%, x€(1,3].

fx) =

Set Ay = [2,3], Ay = [0, 3], it is obvious that f(A;) = [0,1] € Ay, f(A2) = [2,1] € A;. Be-
sides, for any x € A;, y € A, we have

A0 0) = [fx) —f0)] < %m <=yl = d(xy),

it follows that M(f(x),f(»),t) = e’mx);ﬂy)‘ >e P ©(M(x,y,t)) for every t > 0. Thus, f

is a cyclic ¢-contraction in the fuzzy metric space (X, M, ). Now, all the conditions of

Theorem 3.2 are satisfied and then f has a unique fixed point, thatis x = 1.

4 Conclusion

In this paper, we have proposed an extended version of the Edelstein contraction theo-
rem for cyclic contraction mappings in a fuzzy metric space, which can be considered as
a generalization of the fuzzy Edelstein contraction theorem introduced by Grabiec [1]. It
should be noted that the existence of a unique fixed point, in our results, does not depend
on the compactness and completeness of a fuzzy metric space. Moreover, we have also
generalized a fixed point theorem given by Shen et al. [16] to an M-complete fuzzy met-
ric space. The conclusion has shown that the original proposition and the corresponding
conclusions are true even if G-completeness is replaced by M-completeness.
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