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Abstract
In this paper, tripled coincidence points of mappings satisfying some nonlinear
contractive conditions in the framework of partially ordered b-metric spaces are
obtained. Our results extend the results of Berinde and Borcut (Nonlinear Anal.
74:4889-4897, 2011) and Borcut (Appl. Math. Comput. 218:7339-7346, 2012) from the
context of ordered metric spaces to the setting of ordered b-metric spaces. Moreover,
some examples of the main result are given. Finally, some tripled coincidence point
results for mappings satisfying some contractive conditions of integral type in
complete partially ordered b-metric spaces are deduced. Also, an application is given
to support our results.
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1 Introduction and preliminaries
Existence of coupled fixed points in partially ordered metric spaces was first investigated
in  byGuo and Lakshmikantham [], and then in [, ]. Further results in this direction
under weak contraction conditions in different metric spaces were proved in, e.g., [–].
Recently, Berinde and Borcut [] introduced a new concept of a tripled fixed point and

obtained some tripled fixed point theorems for contractive type mappings in partially or-
dered metric spaces. For a survey of tripled fixed point theorems and related topics, we
refer the reader to [–].

Definition . [, ] Let (X ,�) be a partially ordered set, f :X  →X and g :X →X .
. An element (x, y, z) ∈X  is called a tripled fixed point of f if f (x, y, z) = x,

f (y,x, y) = y and f (z, y,x) = z.
. An element (x, y, z) ∈X  is called a tripled coincidence point of the mappings f and

g if f (x, y, z) = gx, f (y,x, y) = gy and f (z, y,x) = gz.
. An element (x, y, z) ∈X  is called a tripled common fixed point of f and g if

x = g(x) = f (x, y, z), y = g(y) = f (y,x, y) and z = g(z) = f (z, y,x).
. We say that f has the mixed g-monotone property if f (x, y, z) is g-nondecreasing in

x, g-nonincreasing in y and g-nondecreasing in z, that is, if for any x, y, z ∈X ,

x,x ∈X , gx � gx ⇒ f (x, y, z) � f (x, y, z),

y, y ∈X , gy � gy ⇒ f (x, y, z) � f (x, y, z)
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and

z, z ∈X , gz � gz ⇒ f (x, y, z) � f (x, y, z).

Definition . [] Let X be a nonempty set. We say that the mappings f :X  → X and
g :X →X commute if g(f (x, y, z)) = f (gx, gy, gz) for all x, y, z ∈X .

In [], Berinde and Borcut proved the following result and formulated it as Theorems 
and .

Theorem . [] Let (X,�) be a partially ordered set and suppose there is a metric d on X
such that (X,d) is a complete metric space. Let F : X → X be a mapping having the mixed
monotone property on X. Assume that there exist constants j,k, l ∈ [, ) with j + k + l < 
for which

d
(
F(x, y, z),F(u, v,w)

) ≤ jd(x,u) + kd(y, v) + ld(z,w)

for all x, y, z,u, v,w ∈ X with x � u, y � v and z � w. Suppose either F is continuous or
(X,d,�) is regular. If there exist x, y, z ∈ X such that x � F(x, y, z), y � F(y,x, y)
and z � F(z, y,x), then there exist x, y, z ∈ X such that F(x, y, z) = x, F(y,x, y) = y and
F(z, y,x) = z.

In [], Borcut and Berinde proved the following result and formulated it as Theorem .

Theorem . Let (X,�) be a partially ordered set and suppose there is a metric d on X
such that (X,d) is a complete metric space. Let F : X → X and g : X → X be such that F
has the mixed g-monotone property on X. Assume that there exist constants j,k, l ∈ [, )
with j + k + l <  such that

d
(
F(x, y, z),F(u, v,w)

) ≤ jd(gx, gu) + kd(gy, gv) + ld(gz, gw)

for all x, y, z,u, v,w ∈ X with gx � gu, gy � gv and gz � gw. Suppose that F(X) ⊆ g(X), g
is continuous and commutes with F and also suppose either F is continuous or (X,d,�) is
regular. If there exist x, y, z ∈ X such that x � F(x, y, z), y � F(y,x, y) and z �
F(z, y,x), then there exist x, y, z ∈ X such that F(x, y, z) = gx, F(y,x, y) = gy and F(z, y,x) =
gz.

Notice that Theorem . follows from Theorem . by taking g = iX (the identity map).
In [], Borcut obtained the following.

Theorem . [, Corollary ] Let (X ,�) be a partially ordered set and suppose there is a
metric d on X such that (X ,d) is a complete metric space. Let f :X  →X and g :X →X
be such that f has the g-mixed monotone property. Assume that there exists k ∈ [, ) such
that

d
(
f (x, y, z), f (u, v,w)

) ≤ kmax
{
d(gx, gu),d(gy, gv),d(gz, gw)

}

for all x, y, z,u, v,w ∈ X with gx � gu, gy � gv and gz � gw. Suppose f (X ) ⊆ g(X ), g is
continuous and commutes with f and also suppose either
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(a) f is continuous, or
(b) X has the following properties:

(i) if a non-decreasing sequence xn → x, then xn � x for all n;
(ii) if a non-increasing sequence yn → y, then yn � y for all n.

If there exist x, y, z ∈ X such that gx � f (x, y, z), gy � f (y,x, z) and gz �
f (z, y,x), then f and g have a tripled coincidence point.

The concept of a b-metric space was introduced by Czerwik in []. Since then, several
papers have been published on the fixed point theory of various classes of single-valued
and multi-valued operators in b-metric spaces (see, e.g., [–]).
Consistent with [] and [], the following definitions and results will be needed in the

sequel.

Definition . [] LetX be a (nonempty) set and s≥  be a given real number. A function
d :X ×X → 
+ is a b-metric if, for all x, y, z ∈X , the following conditions are satisfied:

(b) d(x, y) =  iff x = y,
(b) d(x, y) = d(y,x),
(b) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X ,d) is called a b-metric space.

It should be noted that the class of b-metric spaces is effectively larger than that ofmetric
spaces since a b-metric is a metric when s = , and there are b-metric spaces which are not
metric spaces. Here, we present an easy example of this kind (see also [, p.]).

Example . [] Let (X ,d) be a metric space and ρ(x, y) = (d(x, y))p, where p >  is a real
number. Then ρ is a b-metric with s = p–. However, (X ,ρ) is not necessarily a metric
space.
For example, let X be the set of real numbers and let d(x, y) = |x – y| be the usual Eu-

clidean metric. Then ρ(x, y) = (x – y) is a b-metric on 
 with s = , but is not a metric
on 
.

Also, the following example of a b-metric space was given in [].

Example . [] Let X be the set of Lebesgue measurable functions on [, ] such that

∫ 



∣∣f (x)∣∣ dx < ∞.

Define D :X ×X → [,∞) by

D(f , g) =
∫ 



∣∣f (x) – g(x)
∣∣ dx.

As (
∫ 
 |f (x)–g(x)| dx)/ is ametric onX , then, from the previous example,D is a b-metric

on X with s = .
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The purpose of this paper is to obtain some tripled coincidence point theorems for two
mappings satisfying a (ψ ,ϕ)-contractive condition in ordered b-metric spaces. Our results
extend, unify and generalize the comparable results in [, , ] from the context of ordered
metric spaces to the setup of ordered b-metric spaces.
We also need the following definitions.

Definition . [] Let (X ,d) be a b-metric space. Then a sequence {xn} in X is called:
(a) b-convergent if there exists x ∈X such that d(xn,x) →  as n→ ∞. In this case, we

write limn→∞ xn = x.
(b) b-Cauchy if d(xn,xm) →  as n,m → ∞.

Proposition . (See [, Remark .]) In a b-metric space (X ,d), the following assertions
hold:

(p) A b-convergent sequence has a unique limit.
(p) Each b-convergent sequence is b-Cauchy.
(p) In general, a b-metric is not continuous (see also an example in []).

Definition . [] Let (X ,d) and (X ′,d′) be two b-metric spaces.
() The space (X ,d) is b-complete if every b-Cauchy sequence in X b-converges.
() A function f :X →X ′ is b-continuous at a point x ∈X if it is b-sequentially

continuous at x, that is, whenever {xn} is b-convergent to x, {f (xn)} is b-convergent
to f (x).

Definition . Let (X ,d) be a b-metric space. Mappings f :X  →X and g :X →X are
called compatible if

lim
n→∞d

(
gf (xn, yn, zn), f (gxn, gyn, gzn)

)
= ,

lim
n→∞d

(
gf (yn,xn, yn), f (gyn, gxn, gyn)

)
= ,

and

lim
n→∞d

(
gf (zn, yn,xn), f (gzn, gyn, gxn)

)
= 

hold whenever {xn}, {yn} and {zn} are sequences in X such that

lim
n→∞ f (xn, yn, zn) = lim

n→∞ gxn,

lim
n→∞ f (yn,xn, yn) = lim

n→∞ gyn,

and

lim
n→∞ f (zn, yn,xn) = lim

n→∞ gzn.

Definition . Let X be a nonempty set. Then (X ,d,�) is called a partially ordered b-
metric space if d is a b-metric on a partially ordered set (X ,�).
The space (X ,d,�) is called regular if the following conditions hold:

http://www.fixedpointtheoryandapplications.com/content/2013/1/130
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(i) if a non-decreasing sequence xn → x, then xn � x for all n,
(ii) if a non-increasing sequence yn → y, then yn � y for all n.

The notion of an altering distance function was introduced by Khan et al. [] as follows.

Definition . [] The function ψ : [,∞)→ [,∞) is called an altering distance func-
tion if the following properties are satisfied:
. ψ is continuous and strictly increasing.
. ψ(t) =  if and only if t = .

2 Main results
We use the following simple lemma in proving our main results.

Lemma . Let (X ,d,�) be an ordered b-metric space (with the parameter s) and let f :
X  →X and g :X →X .
(a) If a relation 
 is defined on X  by

X 
U ⇐⇒ x � u∧ y� v∧ z � w, X = (x, y, z),U = (u, v,w) ∈X ,

and a mapping D :X  ×X  → 
+ is given by

D(X,U) =max
{
d(x,u),d(y, v),d(z,w)

}
, X = (x, y, z),U = (u, v,w) ∈X ,

then (X ,D,
) is an ordered b-metric space (with the same parameter s).The space (X ,D)
is b-complete iff (X ,d) is b-complete.
(b) If the mapping f has the g-mixed monotone property, then the mapping F :X  →X 

given by

FX =
(
f (x, y, z), f (y,x, y), f (z, y,x)

)
, X = (x, y, z) ∈X ,

is G-nondecreasing w.r.t. 
, i.e.,

GX 
GU �⇒ FX 
 FU ,

where G :X  →X  is defined by

GX = (gx, gy, gz), X = (x, y, z) ∈X .

(c) If f is continuous from (X ,D) to (X ,d), then F is continuous in (X ,D).
(d) If f and g are compatible, then F and G are compatible.

Let (X ,d,�) be an ordered b-metric space, f : X  → X and g : X → X . In the rest of
this paper, unless otherwise stated, for all x, y, z,u, v,w ∈X , let

Mf (x, y, z,u, v,w)

=max
{
d
(
f (x, y, z), f (u, v,w)

)
,d

(
f (y,x, y), f (v,u, v)

)
,d

(
f (z, y,x), f (w, v,u)

)}
,

http://www.fixedpointtheoryandapplications.com/content/2013/1/130
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and

Mg(x, y, z,u, v,w) =max
{
d(gx, gu),d(gy, gv),d(gz, gw)

}
.

Now, the main result is presented as follows.

Theorem . Let (X ,d,�) be a partially ordered b-metric space with the parameter s > ,
and let f :X  →X and g :X →X be such that f (X )⊆ g(X ). Assume that

ψ
(
sεMf (x, y, z,u, v,w)

) ≤ ψ
(
Mg(x, y, z,u, v,w)

)
– ϕ

(
Mg(x, y, z,u, v,w)

)
()

for all x, y, z,u, v,w ∈X with gx� gu, gy� gv and gz � gw, or gu� gx, gv � gy and gw� gz,
where ψ ,ϕ : [,∞)→ [,∞) are altering distance functions and ε > .
Assume also that
() f has the mixed g-monotone property;
() g is b-continuous and compatible with f .
Also, suppose that either
(a) f is b-continuous and (X ,d) is b-complete, or
(b) (X ,d) is regular and (g(X ),d) is b-complete.
If there exist x, y, z ∈ X such that gx � f (x, y, z), gy � f (y,x, y) and gz �

f (z, y,x), then f and g have a tripled coincidence point in X .

Proof Let D be the b-metric and 
 be the partial order on X  defined in Lemma ..
Also, define the mappings F ,G : X  → X  by FX = (f (x, y, z), f (y,x, y), f (z, y,x)) and GX =
(gx, gy, gz),X = (x, y, z) as in Lemma .. Then (X ,D,
) is an ordered b-metric space (with
the same parameter s as X ) and F is a G-nondecreasing mapping on it such that F(X ) ⊆
G(X ). Moreover, the contractive condition () implies that

ψ
(
sεD(FX,FU)

) ≤ ψ
(
D(GX,GU)

)
– ϕ

(
D(GX,GU)

)
()

holds for all X,U ∈X  such thatGX andGU are
-comparable. Since ϕ has non-negative
values and ψ is strictly increasing, () implies that

D(FX,FU)≤ 
sε
D(GX,GU), ()

where  < /sε < /s for all X,U ∈ X  such that GX and GU are 
-comparable. We will
prove in the next lemma that under these circumstances, it follows that F and G have a
coincidence point X = (x̄, ȳ, z̄) ∈ X  which is obviously a tripled coincidence point of f
and g . �

The following lemma is an ‘ordered variant’ of the basic result of Czerwik [] (adapted
for two mappings).

Lemma . Let (X ,d,�) be a partially ordered b-metric space and let f and g be two
self-mappings on X . Assume that there exists λ ∈ [, s ) such that

d(fx, fy) ≤ λd(gx, gy) ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/130
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for all x, y ∈X with gx� gy or gx� gy. Let the following conditions hold:

(i) f is g-nondecreasing with respect to � and f (X )⊆ g(X );
(ii) there exists x ∈X such that gx � fx;
(iii) f and g are continuous and compatible and (X ,d) is complete, or
(iii′) (X ,d,�) is regular and one of f (X ) or g(X ) is complete.

Then f and g have a coincidence point in X .

Proof Because of fX ⊆ gX and (ii), we can define a Jungck sequence by

yn = fxn = gxn+,

for all n = , , , . . . .
It can be proved by induction that yn � yn+ for all n. If yn = yn+ for some n, then xn+ is

a coincidence point of f and g . Hence, we suppose that yn �= yn+ for all n. It can be proved
in a standard way (see, e.g., [, Lemma .]) that {yn} is a Cauchy sequence.
Suppose first that (iii) holds. Then there exists

lim
n→∞ fxn = lim

n→∞ gxn = z ∈X .

Further, since f and g are continuous and compatible, we get that

lim
n→∞ fgxn = fz, lim

n→∞ gfxn = gz

and

lim
n→∞d(fgxn, gfxn) = .

We will show that fz = gz. Indeed, we have

d(fz, gz) ≤ s
[
d(fz, fgxn) + d(fgxn, gz)

]
= sd(fz, fgxn) + sd(fgxn, gz)

≤ sd(fz, fgxn) + s
[
d(fgxn, gfxn) + d(gfxn, gz)

]
→ s ·  + s ·  + s ·  =  ()

as n→ ∞, and it follows that fz = gz. It means that f and g have a coincidence point.
In the case (iii′), it follows that

lim
n→∞ fxn = lim

n→∞ gxn = gu

for some u ∈ X . Because of regularity, we have gxn � gu. Applying () with x = xn and
y = u, we have

d(fxn, fu) ≤ λd(gxn, gu) →  (n→ ∞).

It follows that d(fxn, fu) →  when n → ∞, that is, fxn → fu. Hence, f and g have a
coincidence point u ∈ X. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/130
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Let

M(x, y, z,u, v,w) =max
{
d(x,u),d(y, v),d(z,w)

}
.

Taking g = iX (the identity mapping onX ) in Theorem ., we obtain the following tripled
fixed point result.

Corollary . Let (X ,d,�) be a b-complete partially ordered b-metric space and let f :
X  →X be a mapping having the mixed monotone property. Assume that

ψ
(
sεMf (x, y, z,u, v,w)

) ≤ ψ
(
M(x, y, z,u, v,w)

)
– ϕ

(
M(x, y, z,u, v,w)

)
, ()

for all x, y, z,u, v,w ∈ X with x � u, y � v and z � w, or u � x, v � y and w � z, where
ψ ,ϕ : [,∞)→ [,∞) are altering distance functions and ε > .
Also, suppose that either
(a) f is b-continuous, or
(b) (X ,d) is regular.
If there exist x, y, z ∈ X such that x � f (x, y, z), y � f (y,x, y) and z �

f (z, y,x), then f has a tripled fixed point in X .

Taking ψ(t) = t and ϕ(t) = t
+t for all t ∈ [,∞), in Corollary ., we obtain the following

tripled fixed point result.

Corollary . Let (X ,d,�) be a b-complete partially ordered b-metric space and let f :
X  →X be a mapping having the mixed monotone property. Assume that

sεMf (x, y, z,u, v,w) ≤ M(x, y, z,u, v,w)
 +M(x, y, z,u, v,w)

()

for some ε >  and all x, y, z,u, v,w ∈ X with x � u, y � v and z � w, or u � x, v � y and
w� z.
Also, suppose that either
(a) f is b-continuous, or
(b) (X ,d) is regular.
If there exist x, y, z ∈ X such that x � f (x, y, z), y � f (y,x, y) and z �

f (z, y,x), then f has a tripled fixed point in X .

Remark . . Let in Theorem .,

Mf (x, y, z,u, v,w) = d
(
f (x, y, z), f (u, v,w)

)
.

Then the contractive condition () reduces to the following:

ψ
(
sεd

(
f (x, y, z), f (u, v,w)

)) ≤ ψ
(
Mg(x, y, z,u, v,w)

)
– ϕ

(
Mg(x, y, z,u, v,w)

)
, ()

which appeared in [] in the context of G-metric spaces.
Choosing the condition () instead of (), brings at least two new features to the tripled

fixed point theory.
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a. We obtain more general tripled coincidence point theorems, because when f and g
satisfy condition (), then they also satisfy ().

b. The technique of the proof is essentially simpler than the one used in [], that is, we
need not use Lemma  from [].

. We can replace the contractive condition () by the following:

ψ
(
sεM′

f (x, y, z,u, v,w)
) ≤ ψ

(
Mg(x, y, z,u, v,w)

)
– ϕ

(
Mg(x, y, z,u, v,w)

)
, ()

where

M′
f (x, y, z,u, v,w)

=


[
d
(
f (x, y, z), f (u, v,w)

)
+ d

(
f (y,x, y), f (v,u, v)

)
+ d

(
f (z, y,x), f (w, v,u)

)]
.

The following corollary can be deduced from our previously obtained results.

Corollary . Let (X ,d,�) be a partially ordered b-complete b-metric space with s > .
Let f :X  →X be a mapping with the mixed monotone property such that

ψ
(
sεMf (x, y, z,u, v,w)

) ≤ ψ

(
d(x,u) + d(y, v) + d(z,w)



)

– ϕ
(
max

{
d(x,u),d(y, v),d(z,w)

})
, ()

for some ε >  and all x, y, z,u, v,w ∈ X with x � u, y � v and z � w, or u � x, v � y and
w� z. Also, suppose that either
(a) f is b-continuous, or
(b) (X ,d,�) is regular.
If there exist x, y, z ∈ X such that x � f (x, y, z), y � f (y,x, y) and z �

f (z, y,x), then f has a tripled fixed point in X .

Proof If f satisfies (), then f satisfies (). Hence, the result follows from Corollary ..
�

In Theorem ., if we take g = iX , ψ(t) = t and ϕ(t) = ( – k)t for all t ∈ [,∞), where
k ∈ [, ), we obtain the following result.

Corollary . Let (X ,d,�) be a partially ordered b-complete b-metric space with s > .
Let f :X  →X be a mapping having the mixed monotone property and

max
{
d
(
f (x, y, z), f (u, v,w)

)
,d

(
f (y,x, y), f (v,u, v)

)
,d

(
f (z, y,x), f (w, v,u)

)}

≤ k
sε

max
{
d(x,u),d(y, v),d(z,w)

}
,

for some k ∈ [, ), ε >  and all x, y, z,u, v,w ∈ X with x � u, y � v and z � w, or u � x,
v � y and w� z. Also, suppose that either
(a) f is b-continuous, or
(b) (X ,d,�) is regular.

http://www.fixedpointtheoryandapplications.com/content/2013/1/130
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If there exist x, y, z ∈ X such that x � f (x, y, z), y � f (y,x, y) and z �
f (z, y,x), then f has a tripled fixed point in X .

Corollary . Let (X ,d,�) be a partially ordered b-complete b-metric space with s > .
Let f :X  →X be a mapping with the mixed monotone property such that

max
{
d
(
f (x, y, z), f (u, v,w)

)
,d

(
f (y,x, y), f (v,u, v)

)
,d

(
f (z, y,x), f (w, v,u)

)}

≤ k
sε

[
d(x,u) + d(y, v) + d(z,w)

]
()

for some k ∈ [, ), ε >  and all x, y, z,u, v,w ∈ X with x � u, y � v and z � w, or u � x,
v � y and w� z. Also, suppose that either
(a) f is b-continuous, or
(b) (X ,d) is regular.
If there exist x, y, z ∈ X such that x � f (x, y, z), y � f (y,x, y) and z �

f (z, y,x), then f has a tripled fixed point in X .

Proof If f satisfies (), then f satisfies the contractive condition of Corollary .. �

In the following theorem, we give a sufficient condition for the uniqueness of the com-
mon tripled fixed point (see also [, , ]).

Theorem . In addition to the hypotheses of Theorem ., suppose that f and g
commute and that for all (x, y, z) and (x∗, y∗, z∗) ∈ X , there exists (u, v,w) ∈ X  such
that (f (u, v,w), f (v,u, v), f (w, v,u)) is comparable with (f (x, y, z), f (y,x, y), f (z, y,x)) and
(f (x∗, y∗, z∗), f (y∗,x∗, y∗), f (z∗, y∗,x∗)). Then f and g have a unique common tripled fixed
point.

Proof We shall use the notation as in the proof of Theorem .. It was proved in this
theorem that the set of tripled coincidence points of f and g , i.e., the set of coincidence
points of F and G in X , is nonempty. We shall show that if X and X∗ are coincidence
points of F and G, that is, GX = FX and GX∗ = FX∗, then GX =GX∗.
Choose an element U = (u, v,w) ∈ X  such that FU = (f (u, v,w), f (v,u, v), f (w, v,u)) is

comparable with FX and FX∗. Let U = U and choose U ∈ X  so that GU = FU. Then
we can inductively define a sequence {GUn} such that GUn+ = FUn. Since GX and GU

are 
-comparable, we may assume that GX 
 GU. Using the mathematical induction, it
is easy to prove that GX 
GUn for all n≥ . Applying (), one obtains that

ψ
(
sεD(GX,GUn+)

)
= ψ

(
sεD(FX,FUn)

)
≤ ψ

(
D(GX,GUn)

)
– ϕ

(
D(GX,GUn)

)
≤ ψ

(
D(GX,GUn)

)
. ()

From the properties of ψ , we deduce that the sequence {D(GX,GUn)} is non-increasing.
Hence, if we proceed as in Theorem ., we can show that

lim
n→∞D(GX,GUn) = ,

that is, {GUn} is b-convergent to GX.

http://www.fixedpointtheoryandapplications.com/content/2013/1/130
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Similarly, we can show that {GUn} is b-convergent to GX∗. Since the limit is unique, it
follows that GX =GX∗.
Since GX = FX, by commutativity of f and g , we have GGX =GFX = FGX. Let GX = A.

Then GA = FA. Thus, A is another coincidence point of f and g . Then A = GX = GA.
Therefore, A = (a,b, c) is a tripled common fixed point of f and g .
To prove the uniqueness, assume that P is another common fixed point of F andG. Then

P =GP = FP and also GP =GA. Thus, P =GP =GA = A. Hence, the tripled common fixed
point is unique. �

3 Examples
The following examples support our results.

Example . Let X = (–∞,∞) be endowed with the usual ordering and the complete
b-metric d(x, y) = (x – y), where s = . Define f :X  →X and g :X →X as

f (x, y, z) =



√

(x – y + z), g(x) = x

√
.

Let ψ ,ϕ : [,∞)→ [,∞) be defined by ψ(t) =
√
t and ϕ(t) =

⎧⎨
⎩

t
 , t ≤ ,
√
t
 , t > .

Now, we have

ψ
(
sd

(
f (x, y, z), f (u, v,w)

))
=

√



[
(x – y + z) – (u – v +w)

]

=
√




[
(x

√
 – u

√
) + (v

√
 – y

√
) + (z

√
 –w

√
)

]

≤
√




[
(x

√
 – u

√
) + (y

√
 – v

√
) + (z

√
 –w

√
)

]

≤ 


√
max

{
(x

√
 – u

√
), (y

√
 – v

√
), (z

√
 –w

√
)

}

= ψ
(
max

{
d(gx, gu),d(gy, gv),d(gz, gw)

})
– ϕ

(
max

{
d(gx, gu),d(gy, gv),d(gz, gw)

})
.

Analogously, we can show that

ψ
(
sd

(
f (y,x, y), f (v,u, v)

)) ≤ ψ
(
max

{
d(gx, gu),d(gy, gv),d(gz, gw)

})
– ϕ

(
max

{
d(gx, gu),d(gy, gv),d(gz, gw)

})

and

ψ
(
sd

(
f (z, y,x), f (w, v,u)

)) ≤ ψ
(
max

{
d(gx, gu),d(gy, gv),d(gz, gw)

})
– ϕ

(
max

{
d(gx, gu),d(gy, gv),d(gz, gw)

})
.

Thus,

ψ
(
sMf (x, y, z,u, v,w)

) ≤ ψ
(
Mg(x, y, z,u, v,w)

)
– ϕ

(
Mg(x, y, z,u, v,w)

)
.
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Hence, all of the conditions of Theorem . are satisfied (with ε = ). Moreover, (, , ) is
a tripled coincidence point of f and g .

Example . Let X = 
 be endowed with the usual order and the b-metric d(x, y) = (x –
y) with s = . Consider the mapping f :X  →X given by

f (x, y, z) =
x – y + z


,

and functions ψ ,ϕ : [, +∞) → [, +∞) defined as ψ(t) = t and ϕ(t) = 
 t. Take ε =  in

Corollary .. The contractive condition () is satisfied since

ψ
(
sd

(
f (x, y, z), f (u, v,w)

))

= 
(
x – y + z


–
u – v +w



)

=



[
(x – u) + (v – y) + (z –w)

] ≤ 


[
(x – u) + (y – v) + (z –w)

]

≤ 


max
{
(x – u), (y – v), (z –w)

}

= ψ
(
max

{
d(x,u),d(y, v),d(z,w)

})
– ϕ

(
max

{
d(x,u),d(y, v),d(z,w)

})
.

It follows that f has a tripled fixed point (which is (, , )).
Note that if instead of the b-metric d we try to use the standard metric ρ(x, y) = |x – y|

(with all other data unchanged), the conclusion cannot be obtained. Indeed, the inequality

ψ
(
ρ
(
f (x, y, z), f (u, v,w)

)) ≤ ψ
(
max

{
ρ(x,u),ρ(y, v),ρ(z,w)

})
– ϕ

(
max

{
ρ(x,u),ρ(y, v),ρ(z,w)

})

does not hold since for x = , y = z = u = v = w =  it reduces to 
 ≤ 

 .

Example . LetX = {(a, ,a) : a ∈ [, +∞)}∪{(,a, ) : a ∈ [, +∞)} ⊂ R with the order
� be defined as

(a,b, c) � (a,b, c) ⇐⇒ a ≤ a, b ≤ b, c ≤ c.

Let d be given as

d(x, y) =max
{|a – a|, |b – b|, |c – c|

}
,

where x = (a,b, c) and y = (a,b, c). Clearly, (X ,d) is a complete b-metric space with
s = .
Let g :X →X and f :X  →X be defined as follows:

f (x, y, z) = x,

and g(a, ,a) = (,a, ) and g(,a, ) = (a, ,a).
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Let ψ ,ϕ : [,∞)→ [,∞) be two arbitrary altering distance functions.
According to the order defined onX and the definition of g , we see that for any element

x ∈X , gx is comparable only with itself.
By a careful computation, it is easy to see that all of the conditions of Theorem . (case

(a)) are satisfied. Finally, Theorem . guarantees the existence of a tripled coincidence
point for f and g , i.e., the point ((, , ), (, , ), (, , )).

4 Applications
In this section, we obtain some tripled coincidence point theorems for a mapping satisfy-
ing a contractive condition of integral type in a complete ordered b-metric space.
We denote by � the set of all functions μ : [, +∞) → [, +∞) verifying the following

conditions:
(I) μ is a positive Lebesgue integrable mapping on each compact subset of [, +∞);
(II) for all ε > ,

∫ ε

 μ(r)dr > .

Corollary . Replace the contractive condition () of Theorem . by the following:
There exists a μ ∈ � such that

∫ ψ(sεMf (x,y,z,u,v,w))


μ(r)dr ≤

∫ ψ(Mg (x,y,z,u,v,w))


μ(r)dr –

∫ ϕ(Mg (x,y,z,u,v,w))


μ(r)dr. ()

Let the other conditions of Theorem . be satisfied. Then f and g have a tripled coinci-
dence point.

Proof Consider the function �(x) =
∫ x
 μ(r)dr. Then () becomes

�
(
ψ

(
sεMf (x, y, z,u, v,w)

)) ≤ �
(
ψ

(
Mg(x, y, z,u, v,w)

))
– �

(
ϕ
(
Mg(x, y, z,u, v,w)

))
.

Taking ψ = � ◦ψ and ϕ = � ◦ϕ and applying Theorem ., we obtain the proof (it is easy
to verify that ψ and ϕ are altering distance functions). �

Corollary . Substitute the contractive condition () of Theorem . by the following:
There exists a μ ∈ � such that

ψ

(∫ sεMf (x,y,z,u,v,w)


μ(r)dr

)

≤ ψ

(∫ Mg (x,y,z,u,v,w)


μ(r)dr

)
– ϕ

(∫ Mg (x,y,z,u,v,w)


μ(r)dr

)
. ()

Let the other conditions of Theorem . be satisfied. Then f and g have a tripled coinci-
dence point.

Proof Again, as in Corollary ., define the function �(x) =
∫ x
 φ(r)dr. Then () reduces

to

ψ
(
�

(
sεMf (x, y, z,u, v,w)

)) ≤ ψ
(
�

(
Mg(x, y, z,u, v,w)

))
– ϕ

(
�

(
Mg(x, y, z,u, v,w)

))
.

Now, if we define ψ = ψ ◦ � and ϕ = ϕ ◦ � and apply Theorem ., then the proof is
completed. �
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Corollary . Replace the contractive condition () of Theorem . by the following:
There exists a μ ∈ � such that

ψ

(∫ ψ(sεMf (x,y,z,u,v,w))


μ(r)dr

)

≤ ψ

(∫ ψ(Mg (x,y,z,u,v,w))


μ(r)dr

)
– ϕ

(∫ ϕ(Mg (x,y,z,u,v,w))


μ(r)dr

)
()

for altering distance functions ψ, ψ, ϕ and ϕ. If the other conditions of Theorem . are
satisfied, then f and g have a tripled coincidence point.

Similar to [], let N be a fixed positive integer. Let {μi}≤i≤N be a family of N functions
which belong to �. For all t ≥ , we define

I(t) =
∫ t


μ(r)dr,

I(t) =
∫ It


μ(r)dr =

∫ ∫ t
 μ(r)dr


μ(r)dr,

I(t) =
∫ It


μ(r)dr =

∫ ∫ ∫ t
 μ(r)dr

 μ(r)dr


μ(r)dr,

· · · ,

IN (t) =
∫ I(N–)t


μN (r)dr.

We have the following result.

Corollary . Replace the inequality () of Theorem . by the following condition:

ψ
(
IN

(
sεMf (x, y, z,u, v,w)

)) ≤ ψ
(
IN

(
Mg(x, y, z,u, v,w)

))
– ϕ

(
IN

(
Mg(x, y, z,u, v,w)

))
.

()

Let the other conditions of Theorem . be satisfied.Then f and g have a tripled coincidence
point.

Proof Consider 
̂ = ψ ◦ IN and �̂ = ϕ ◦ IN . Then the above inequality becomes


̂
(
sεMf (x, y, z,u, v,w)

) ≤ 
̂
(
Mg(x, y, z,u, v,w)

)
– �̂

(
Mg(x, y, z,u, v,w)

)
.

Applying Theorem ., we obtain the desired result (it is easy to verify that 
̂ and �̂ are
altering distance functions). �

Another consequence of the main theorem is the following result.

Corollary . Substitute the contractive condition () of Theorem . by the following:
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There exist μ,μ ∈ � such that

∫ sεMf (x,y,z,u,v,w)


μ(r)dr ≤

∫ Mg (x,y,z,u,v,w)


μ(r)dr –

∫ Mg (x,y,z,u,v,w)


μ(r)dr.

Let the other conditions of Theorem . be satisfied.Then f and g have a tripled coincidence
point.

Proof It is clear that the function t → ∫ t
 μi(r)dr is an altering distance function. �

5 Existence of a solution for a system of integral equations
Motivated by the work in [], we study the existence of solutions for a system of nonlinear
integral equations using the results proved in the previous sections.
Consider the integral equations in the following system.

x(t) = P(t) +
∫ T


S(t, r)

[
f
(
r,x(r)

)
+ k

(
r, y(r)

)
+ h

(
r, z(r)

)]
dr,

y(t) = P(t) +
∫ T


S(t, r)

[
f
(
r, y(r)

)
+ k

(
r,x(r)

)
+ h

(
r, y(r)

)]
dr,

z(t) = P(t) +
∫ T


S(t, r)

[
f
(
r, z(r)

)
+ k

(
r, y(r)

)
+ h

(
r,x(r)

)]
dr.

()

We will consider the system () under the following assumptions:
(i) f ,k,h : [,T]× 
 → 
 are continuous;
(ii) P : [,T] → 
 is continuous;
(iii) S : [,T]× 
 → [,∞) is continuous;
(iv) there exists q >  such that for all x, y ∈ 
,

 ≤ f (r, y) – f (r,x)≤ q(y – x),

≤ k(r,x) – k(r, y)≤ q(y – x),

and

 ≤ h(r, y) – h(r,x)≤ q(y – x);

(v)

p–qp max
t∈[,T]

(∫ T



∣∣S(t, r)∣∣dr
)p

< ;

(vi) there exist continuous functions α,β ,γ : [,T] → 
 such that

α(t)≤ P(t) +
∫ T


S(t, r)

[
f
(
r,α(r)

)
+ k

(
r,β(r)

)
+ h

(
r,γ (r)

)]
dr,

β(t)≥ P(t) +
∫ T


S(t, r)

[
f
(
r,β(r)

)
+ k

(
r,α(r)

)
+ h

(
r,β(r)

)]
dr,
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and

γ (t)≤ P(t) +
∫ T


S(t, r)

[
f
(
r,γ (r)

)
+ k

(
r,β(r)

)
+ h

(
r,α(r)

)]
dr.

We consider the space X = C([,T],
) of continuous functions defined on [,T] en-
dowed with the b-metric given by

d(u, v) = max
t∈[,T]

∣∣u(t) – v(t)
∣∣p

for all u, v ∈X , where s = p– and p ≥ . We endow X with the partial order � given by

x � y ⇐⇒ x(t)≤ y(t)

for all t ∈ [,T].
It is known that (X ,d,�) is regular [].
Our result is the following.

Theorem . Under assumptions (i)-(vi), the system () has a solution in X , where X =
C([,T],
).

Proof As in [], we consider the operators F :X  →X and g :X →X defined by

F(x,x,x)(t) = P(t) +
∫ T


S(t, r)

[
f
(
r,x(r)

)
+ k

(
r,x(r)

)
+ h

(
r,x(r)

)]
dr,

and g(x) = x for all t ∈ [,T], x,x,x,x ∈X .
F has the mixed monotone property (see [, Theorem ]).
Let x, y, z,u, v,w ∈ X , with x � u, y � v and z � w. Since F has the mixed monotone

property, we have

F(u, v,w) � F(x, y, z).

On the other hand,

d
(
F(x, y, z),F(u, v,w)

)
= max

t∈[,T]
∣∣F(x, y, z)(t) – F(u, v,w)(t)

∣∣p.

Note that for all t ∈ [,T], from (iv) and the fact that for all a,b, c ≥ , (a + b + c)p ≤
p–ap + p–bp + p–cp, we have

(∣∣F(x, y, z)(t) – F(u, v,w)(t)
∣∣)p

=
∣∣∣∣
∫ T


S(t, r)

[
f
(
r,x(r)

)
– f

(
r,u(r)

)]
dr

+
∫ T


S(t, r)

[
k
(
r, y(r)

)
– k

(
r, v(r)

)]
dr

+
∫ T


S(t, r)

[
h
(
r, z(r)

)
– h

(
r,w(r)

)]
dr

∣∣∣∣
p
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≤
(∣∣∣∣

∫ T


S(t, r)

[
f
(
r,x(r)

)
– f

(
r,u(r)

)]
dr

∣∣∣∣
+

∣∣∣∣
∫ T


S(t, r)

[
k
(
r, y(r)

)
– k

(
r, v(r)

)]
dr

∣∣∣∣
+

∣∣∣∣
∫ T


S(t, r)

[
h
(
r, z(r)

)
– h

(
r,w(r)

)]
dr

∣∣∣∣
)p

≤
(
p–

∣∣∣∣
∫ T


S(t, r)

[
f
(
r,x(r)

)
– f

(
r,u(r)

)]
dr

∣∣∣∣
p

+ p–
∣∣∣∣
∫ T


S(t, r)

[
k
(
r, y(r)

)
– k

(
r, v(r)

)]
dr

∣∣∣∣
p

+ p–
∣∣∣∣
∫ T


S(t, r)

[
h
(
r, z(r)

)
– h

(
r,w(r)

)]
dr

∣∣∣∣
p)

≤ p–
[(∫ T



∣∣S(t, r)[f (r,x(r)) – f
(
r,u(r)

)]∣∣dr
)p

+
(∫ T



∣∣S(t, r)[k(r, y(r)) – k
(
r, v(r)

)]∣∣dr
)p

+
(∫ T



∣∣S(t, r)[h(r, y(r)) – h
(
r, v(r)

)]∣∣dr
)p]

≤ p–qp
[(

max
r∈[,T]

∣∣x(r) – u(r)
∣∣)p

+
(
max
r∈[,T]

∣∣y(r) – v(r)
∣∣)p

+
(
max
r∈[,T]

∣∣z(r) –w(r)
∣∣)p](∫ T



∣∣S(t, r)∣∣dr
)p

= p–qp
[
max
r∈[,T]

∣∣x(r) – u(r)
∣∣p + max

r∈[,T]
∣∣y(r) – v(r)

∣∣p

+ max
r∈[,T]

∣∣z(r) –w(r)
∣∣p](∫ T



∣∣S(t, r)∣∣dr
)p

.

Thus,

max
t∈[,T]

(
F(x, y, z)(t) – F(u, v,w)(t)

)p

≤ p–qp
[
d(x,u) + d(y, v) + d(z,w)

]
max
t∈[,T]

(∫ T



∣∣S(t, r)∣∣dr
)p

≤ p–qpmax
{
d(x,u),d(y, v),d(z,w)

}
max
t∈[,T]

(∫ T



∣∣S(t, r)∣∣dr
)p

. ()

Repeating this idea, using the definition of the b-metric d, we get

max
t∈[,T]

(
F(y,x, y)(t) – F(v,u, v)(t)

)p

≤ p–qp
[
d(y, v) + d(x,u) + d(y, v)

]
max
t∈[,T]

(∫ T



∣∣S(t, r)∣∣dr
)p

≤ p–qpmax
{
d(y, v),d(x,u)

}
max
t∈[,T]

(∫ T



∣∣S(t, r)∣∣dr
)p

≤ p–qpmax
{
d(x,u),d(y, v),d(z,w)

}
max
t∈[,T]

(∫ T



∣∣S(t, r)∣∣dr
)p

()

http://www.fixedpointtheoryandapplications.com/content/2013/1/130


Parvaneh et al. Fixed Point Theory and Applications 2013, 2013:130 Page 18 of 19
http://www.fixedpointtheoryandapplications.com/content/2013/1/130

and

max
t∈[,T]

(
F(z, y,x)(t) – F(w, v,u)(t)

)p

≤ p–qp
[
d(x,u) + d(y, v) + d(z,w)

]
max
t∈[,T]

(∫ T



∣∣S(t, r)∣∣dr
)p

≤ p–qpmax
{
d(x,u),d(y, v),d(z,w)

}
max
t∈[,T]

(∫ T



∣∣S(t, r)∣∣dr
)p

. ()

Hence, from the above three inequalities, we have

max
{
d
(
F(x, y, z),F(u, v,w)

)
,d

(
F(y,x, y),F(v,u, v)

)
,d

(
F(z, y,x),F(w, v,u)

)}

≤ p–qp max
t∈[,T]

(∫ T



∣∣S(t, r)∣∣dr
)p

max
{
d(x,u),d(y, v),d(z,w)

}

≤ p–qpmaxt∈[,T](
∫ T
 |S(t, r)|dr)p

p–
max

{
d(x,u),d(y, v),d(z,w)

}
.

But from (v), we have

p–qp max
t∈[,T]

(∫ T



∣∣S(t, r)∣∣dr
)p

< .

This proves that the operator F satisfies the contractive condition appearing in Corol-
lary . (with ε = ).
Let α, β , γ be the functions appearing in assumption (vi). Then by (vi) we get

α � F(α,β ,γ ), β � F(β ,α,β), γ � F(γ ,β ,α).

Applying Corollary ., we deduce the existence of x,x,x ∈ X such that x =
F(x,x,x), x = F(x,x,x) and x = F(x,x,x). �
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16. Hussain, N, Ðorić, D, Kadelburg, Z, Radenovi ć, S: Suzuki-type fixed point results in metric type spaces. Fixed Point

Theory Appl. 2012, 126 (2012)
17. Hussain, N, Shah, MH: KKM mappings in cone b-metric spaces. Comput. Math. Appl. 62, 1677-1684 (2011)
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