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1 Introduction
A metric space X is a CAT() space if it is geodesically connected and if every geodesic
triangle in X is at least as ‘thin’ as its comparison triangle in the Euclidean plane. The ini-
tials of the term ‘CAT’ are in honor of E. Cartan, A. D. Alexanderov and V. A. Toponogov.
A CAT() space is a generalization of the Hadamard manifold, which is a simply con-
nected, complete Riemannian manifold such that the sectional curvature is non-positive.
In fact, it is very well known that any complete simply connected Riemannian manifold
with non-positive sectional curvature is a CAT() space. The complex Hilbert ball with a
hyperbolic metric is a CAT() space (see []). Other examples include Pre-Hilbert spaces,
R-trees (see []) and Euclidean buildings (see []). A CAT() space plays a fundamental
role in various areas of mathematics (see Bridson and Haefliger [], Burago, Burago and
Ivanov [], Gromov []).Moreover, there are applications in biology and computer science
as well [, ].
Fixed point theory in a CAT() space has been first studied by Kirk (see [, ]). He

showed that every nonexpansive mapping defined on a bounded closed convex subset
of a complete CAT() space always has a fixed point. Since then the fixed point theory
in a CAT() space has been rapidly developed and many papers have appeared (see, e.g.,
[–]). It is worth mentioning that the results in a CAT() space can be applied to any
CAT(k) space with k ≤  since any CAT(k) space is a CAT(k′ ) space for every k′ ≥ k (see
[, p.]). Throughout the paper, N and R denote the set of natural numbers and the set
of real numbers, respectively.
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The Mann iteration process is defined by the sequence {xn},
⎧⎨
⎩
x ∈ K ,

xn+ = ( – an)xn + anTxn, n ∈N,
(.)

where {an} is a sequence in (, ).
Further, the Ishikawa iteration process is defined as the sequence {xn},

⎧⎪⎪⎨
⎪⎪⎩
x ∈ K ,

xn+ = ( – an)xn + anTyn,

yn = ( – bn)xn + bnTxn, n ∈N,

(.)

where {an} and {bn} are the sequences in (, ). This iteration process reduces to theMann
iteration process when bn =  for all n ∈N.
Agarwal, O’Regan and Sahu [] introduced the S-iteration process in a Banach space,

⎧⎪⎪⎨
⎪⎪⎩
x ∈ K ,

xn+ = ( – an)Txn + anTyn,

yn = ( – bn)xn + bnTxn, n ∈N,

(.)

where {an} and {bn} are the sequences in (, ). Note that (.) is independent of (.)
(and hence of (.)). They showed that their process is independent of those of Mann and
Ishikawa and converges faster than both of these (see [, Proposition .]).
Schu [], in , considered the modified Mann iteration process which is a general-

ization of the Mann iteration process,
⎧⎨
⎩
x ∈ K ,

xn+ = ( – an)xn + anTnxn, n ∈ N,
(.)

where {an} is a sequence in (, ).
Tan and Xu [], in , studied the modified Ishikawa iteration process which is a

generalization of the Ishikawa iteration process,

⎧⎪⎪⎨
⎪⎪⎩
x ∈ K ,

xn+ = ( – an)xn + anTnyn,

yn = ( – bn)xn + bnTnxn, n ∈N,

(.)

where the sequences {an} and {bn} are in (, ). This iteration process reduces to the mod-
ified Mann iteration process when bn =  for all n ∈N.
Recently, Agarwal, O’Regan and Sahu [] introduced the modified S-iteration process

in a Banach space,

⎧⎪⎪⎨
⎪⎪⎩
x ∈ K ,

xn+ = ( – an)Tnxn + anTnyn,

yn = ( – bn)xn + bnTnxn, n ∈N,

(.)
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where the sequences {an} and {bn} are in (, ). Note that (.) is independent of (.) (and
hence of (.)). Also, (.) reduces to (.) when n = .
We now modify (.) in a CAT() space as follows.
LetK be a nonempty closed convex subset of a completeCAT() spaceX and T : K → K

be an asymptotically quasi-nonexpansive mapping with F(T) �= ∅. Suppose that {xn} is a
sequence generated iteratively by

⎧⎪⎪⎨
⎪⎪⎩
x ∈ K ,

xn+ = ( – an)Tnxn ⊕ anTnyn,

yn = ( – bn)xn ⊕ bnTnxn, n ∈ N,

(.)

where and throughout the paper {an}, {bn} are the sequences such that  ≤ an, bn ≤  for
all n ∈N.
In this paper, we study the modified S-iteration process for asymptotically quasi-

nonexpansive mappings on the CAT() space and generalize some results of Khan and
Abbas [] which studied the S-iteration process in aCAT() space for nonexpansivemap-
pings. This paper contains three sections. In Section , we first collect some known pre-
liminaries and lemmas that will be used in the proofs of our main theorems. We give the
main results related to the strong convergence theorems of the modified S-iteration pro-
cess in a CAT() space in Section . Under some suitable condition, we obtain the main
theorems which state that {xn} converges strongly to a fixed point of T . Our results can
be applied to an S-iteration process since the modified S-iteration process reduces to the
S-iteration process when n = .

2 Preliminaries and lemmas
Let us recall some definitions and known results in the existing literature on this concept.
Let (X,d) be a metric space and K its nonempty subset. Let T : K → K be a mapping.

A point x ∈ K is called a fixed point of T if Tx = x. We will also denote by F(T) the set of
fixed points of T , that is, F(T) = {x ∈ K : Tx = x}.
The concept of quasi-nonexpansiveness was introduced by Diaz and Metcalf [] in

, the concept of asymptotically nonexpansiveness was introduced by Goebel and Kirk
[] in . The iterative approximation problems for asymptotically quasi-nonexpansive
mapping were studied by Liu [], Fukhar-ud-din et al. [], Khan et al. [] and Beg et al.
[] in a Banach space and a CAT() space.

Definition  Let (X,d) be a metric space and K be its nonempty subset. Then T : K → K
is said to be
() nonexpansive if d(Tx,Ty) ≤ d(x, y) for all x, y ∈ K ,
() asymptotically nonexpansive if there exists a sequence {un} ∈ [,∞) with the

property limn→∞ un =  and such that d(Tnx,Tny) ≤ ( + un)d(x, y) for all x, y ∈ K ,
() quasi-nonexpansive if d(Tx,p) ≤ d(x,p) for all x ∈ K , p ∈ F(T),
() asymptotically quasi-nonexpansive if there exists a sequence {un} ∈ [,∞) with the

property limn→∞ un =  and such that d(Tnx,p) ≤ ( + un)d(x,p) for all x ∈ K ,
p ∈ F(T),

() semi-compact if for a sequence {xn} in K with limn→∞ d(xn,Txn) = , there exists a
subsequence {xnk } of {xn} such that xnk → p ∈ K .

http://www.fixedpointtheoryandapplications.com/content/2013/1/12
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Remark  From Definition , it is clear that the class of quasi-nonexpansive mappings
and asymptotically nonexpansive mappings includes nonexpansive mappings, whereas
the class of asymptotically quasi-nonexpansive mappings is larger than that of quasi-
nonexpansive mappings and asymptotically nonexpansive mappings. The reverse of these
implications may not be true.

Let (X,d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or more briefly,
a geodesic from x to y) is a map c from a closed interval [, l] ⊂ R to X such that c() =
x, c(l) = y and d(c(t), c(t′)) = |t – t′| for all t, t′ ∈ [, l]. In particular, c is an isometry and
d(x, y) = l. The image of c is called a geodesic (ormetric) segment joining x and y. When it
is unique, this geodesic is denoted by [x, y]. The space (X,d) is said to be a geodesic space
if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if
there is exactly one geodesic joining x to y for each x, y ∈ X. A subset Y ⊂ X is said to be
convex if Y includes every geodesic segment joining any two of its points.
A geodesic triangle �(x,x,x) in a geodesic metric space (X,d) consists of three points

in X (the vertices of �) and a geodesic segment between each pair of vertices (the edges
of �). A comparison triangle for a geodesic triangle �(x,x,x) in (X,d) is a triangle
�(x,x,x) = �(x,x,x) in the Euclidean plane R such that

dR (xi,xj) = d(xi,xj)

for i, j ∈ {, , }. Such a triangle always exists (see []).
A geodesic metric space is said to be a CAT() space [] if all geodesic triangles of an

appropriate size satisfy the following comparison axiom.
Let � be a geodesic triangle in X and let � be a comparison triangle for �. Then � is

said to satisfy the CAT() inequality if for all x, y ∈ � and all comparison points x, y ∈ �,

d(x, y) ≤ dR (x, y).

A complete CAT() space is often called Hadamard space (see []).
Finally, we observe that if x, y, y are points of a CAT() space and if y is the midpoint

of the segment [y, y], which we will denote by y⊕y
 , then the CAT() inequality implies

d
(
x,
y ⊕ y



)

≤ 

d(x, y) +



d(x, y) –



d(y, y). (.)

The equality holds for the Euclidean metric. In fact (see [, p.]), a geodesic metric
space is a CAT() space if and only if it satisfies inequality (.) (which is known as the
CN inequality of Bruhat and Tits []).
Let x, y ∈ X, by [, Lemma .(iv)] for each t ∈ [, ], then there exists a unique point

z ∈ [x, y] such that

d(x, z) = td(x, y), d(y, z) = ( – t)d(x, y). (.)

Fromnowon, wewill use the notation (– t)x⊕ ty for the unique point z satisfying (.). By
using this notation, Dhompongsa and Panyanak [] obtained the following lemma which
will be used frequently in the proof of our main results.
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Lemma  Let X be a CAT() space. Then

d
(
( – t)x⊕ ty, z

) ≤ ( – t)d(x, z) + td(y, z)

for all t ∈ [, ] and x, y, z ∈ X.

The following lemma can be found in [].

Lemma  Let {an} and {un} be two sequences of positive real numbers satisfying

an+ ≤ ( + un)an

for all n ∈N. If
∑∞

n= un < ∞, then limn→∞ an exists.

3 Main results
In this section we prove the strong convergence theorems of the modified S-iteration pro-
cess in a CAT() space.

Theorem  Let K be a nonempty closed convex subset of a complete CAT() space X,
T : K → K be asymptotically quasi-nonexpansive mapping with F(T) �= ∅ and {un} be a
nonnegative real sequence with

∑∞
n= un < ∞. Suppose that {xn} is defined by the iteration

process (.). If

lim inf
n→∞ d

(
xn,F(T)

)
=  or lim sup

n→∞
d
(
xn,F(T)

)
= ,

where d(x,F(T)) = infz∈F(T) d(x, z), then the sequence {xn} converges strongly to a fixed point
of T .

Proof Let p ∈ F(T). SinceT is an asymptotically quasi-nonexpansivemapping, there exists
a sequence {un} ∈ [,∞) with the property limn→∞ un =  and such that

d
(
Tnx,p

) ≤ ( + un)d(x,p)

for all x ∈ K and p ∈ F(T). By combining this inequality and Lemma , we get

d(yn,p) = d
(
( – bn)xn ⊕ bnTnxn,p

)
≤ ( – bn)d(xn,p) + bnd

(
Tnxn,p

)
≤ ( – bn)d(xn,p) + bn( + un)d(xn,p)

= ( + bnun)d(xn,p). (.)

Also,

d(xn+,p) = d
(
( – an)Tnxn ⊕ anTnyn,p

)
≤ ( – an)d

(
Tnxn,p

)
+ and

(
Tnyn,p

)
≤ ( – an)( + un)d(xn,p) + an( + un)d(yn,p)

http://www.fixedpointtheoryandapplications.com/content/2013/1/12
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≤ ( – an)( + un)d(xn,p) + an( + un)( + bnun)d(xn,p)

≤ ( – an)( + un)d(xn,p) + an( + un)d(xn,p)

= ( + un)( – an + an + anun)d(xn,p)

≤ ( + un)( + un)d(xn,p)

= ( + un)d(xn,p). (.)

When x≥  and  + x ≤ ex, we have ( + x) ≤ ex. Thus,

d(xn+m,p) ≤ ( + un+m–)d(xn+m–,p)

≤ eun+m–d(xn+m–,p)

≤ · · ·
≤ e

∑n+m–
k=n ukd(xn,p).

Let e
∑n+m–

k=n uk =M. Thus, there exits a constantM >  such that

d(xn+m,p) ≤ Md(xn,p)

for all n,m ∈ N and p ∈ F(T). By (.),

d(xn+,p) ≤ ( + un)d(xn,p).

This gives

d
(
xn+,F(T)

) ≤ ( + un)d
(
xn,F(T)

)
=

(
 + un + un

)
d
(
xn,F(T)

)
.

Since
∑∞

n= un < ∞, we have
∑∞

n=(un +un) <∞. Lemma  and lim infn→∞ d(xn,F(T)) = 
or lim supn→∞ d(xn,F(T)) =  gives that

lim
n→∞d

(
xn,F(T)

)
= . (.)

Now, we show that {xn} is a Cauchy sequence in K . Since limn→∞ d(xn,F(T)) = , for each
ε > , there exists n ∈ N such that

d
(
xn,F(T)

)
<

ε

M + 

for all n > n. Thus, there exists p ∈ F(T) such that

d(xn,p) <
ε

M + 
for all n > n

and we obtain that

d(xn+m,xn) ≤ d(xn+m,p) + d(p,xn)

≤ Md(xn,p) + d(xn,p)
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Şahin and Başarır Fixed Point Theory and Applications 2013, 2013:12 Page 7 of 10
http://www.fixedpointtheoryandapplications.com/content/2013/1/12

= (M + )d(xn,p)

< (M + )
ε

M + 
= ε

for all m,n > n. Therefore, {xn} is a Cauchy sequence in K . Since the set K is complete,
the sequence {xn} must be convergence to a point in K . Let limn→∞ xn = p ∈ K . Here after,
we show that p is a fixed point. By limn→∞ xn = p, for all ε > , there exists n ∈ N such
that

d(xn,p) <
ε

( + u)
(.)

for all n > n. From (.), for each ε > , there exists n ∈ N such that

d
(
xn,F(T)

)
<

ε

( + u)

for all n > n. In particular, inf{d(xn ,p) : p ∈ F(T)} < ε
(+u)

. Thus, there must exist p� ∈
F(T) such that

d
(
xn ,p

�
)
<

ε

( + u)
for all n > n. (.)

From (.) and (.),

d(Tp,p) ≤ d
(
Tp,p�

)
+ d

(
p�,Txn

)
+ d

(
Txn ,p

�
)
+ d

(
p�,xn

)
+ d(xn ,p)

≤ d
(
Tp,p�

)
+ d

(
Txn ,p

�
)
+ d

(
xn ,p

�
)
+ d(xn ,p)

≤ ( + u)d
(
p,p�

)
+ ( + u)d

(
xn ,p

�
)
+ d

(
xn ,p

�
)
+ d(xn ,p)

≤ ( + u)d(p,xn ) + ( + u)d
(
xn ,p

�
)
+ ( + u)d

(
xn ,p

�
)

+ d
(
xn ,p

�
)
+ d(xn ,p)

= ( + u)d(xn ,p) + ( + u)d
(
xn ,p

�
)

< ( + u)
ε

( + u)
+ ( + u)

ε

( + u)
= ε.

Since ε is arbitrary, so d(Tp,p) = , i.e., Tp = p. Therefore, p ∈ F(T). This completes the
proof. �

Remark  Let the hypothesis of Theorem  be satisfied and T : K → K be an asymp-
totically nonexpansive or quasi-nonexpansive mapping. From Remark , the class of
asymptotically quasi-nonexpansivemappings includes quasi-nonexpansivemappings and
asymptotically nonexpansive mappings. Then the sequence {xn} converges strongly to a
fixed point of T .

Now, we give the following corollaries which have been proved by Theorem .

Corollary  Under the hypothesis of Theorem , T satisfies the following conditions:
() limn→∞ d(xn,Txn) = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/12
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() If the sequence {zn} in K satisfies limn→∞ d(zn,Tzn) = , then

lim inf
n→∞ d

(
zn,F(T)

)
=  or lim sup

n→∞
d
(
zn,F(T)

)
= .

Then the sequence {xn} converges strongly to a fixed point of T .

Proof It follows from the hypothesis that limn→∞ d(xn,Txn) = . From (),

lim inf
n→∞ d

(
xn,F(T)

)
=  or lim sup

n→∞
d
(
xn,F(T)

)
= .

Therefore, the sequence {xn} must converge to a fixed point of T by Theorem . �

Corollary  Under the hypothesis of Theorem , T satisfies the following conditions:
() limn→∞ d(xn,Txn) = .
() There exists a function f : [,∞) → [,∞) which is right-continuous at , f () = 

and f (r) >  for all r >  such that

d(x,Tx)≥ f
(
d
(
x,F(T)

))
for all x ∈ K ,

where d(x,F(T)) = infz∈F(T) d(x, z).
Then the sequence {xn} converges strongly to a fixed point of T .

Proof It follows from the hypothesis that

lim
n→∞ f (d

(
xn,F(T)

) ≤ lim
n→∞d(xn,Txn) = .

That is,

lim
n→∞ f (d

(
xn,F(T)

)
= .

Since f : [,∞)→ [,∞) is right-continuous at  and f () = , therefore we have

lim
n→∞d

(
xn,F(T)

)
= .

Thus, lim infn→∞ d(xn,F(T)) = lim supn→∞ d(xn,F(T)) = . By Theorem , the sequence
{xn} converges strongly to q, a fixed point of T . This completes the proof. �

Finally, we give the following theoremwhich has a different hypothesis fromTheorem .

Theorem  Let K be a nonempty closed convex subset of a complete CAT() space X,
T : K → K be an asymptotically quasi-nonexpansive mapping with F(T) �= ∅ and {un} be
a nonnegative real sequence with

∑∞
n= un < ∞. Suppose that {xn} is defined by the itera-

tion process (.). If T is semi-compact and limn→∞ d(xn,Txn) = , then the sequence {xn}
converges strongly to a fixed point of T .
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Proof From the hypothesis, we have limn→∞ d(xn,Txn) = . Also, sinceT is semi-compact,
there exists a subsequence {xnk } of {xn} such that xnk → p ∈ K . Hence,

d(p,Tp) = lim
n→∞d(xnk ,Txnk ) = .

Thus, p ∈ F(T). By (.),

d(xn+,p) ≤ ( + un)d(xn,p)

=
(
 + un + un

)
d(xn,p).

Since
∑∞

n= un < ∞, we have
∑∞

n=(un + un) < ∞. By Lemma , limn→∞ d(xn,p) exists and
xnk → p ∈ F(T) gives that xn → p ∈ F(T). This completes the proof. �

4 Conclusions
The class of quasi-nonexpansivemappings and asymptotically nonexpansivemappings in-
cludes nonexpansive mappings, where as the class of asymptotically quasi-nonexpansive
mappings is larger than that of quasi-nonexpansive mappings and asymptotically nonex-
pansive mappings. Then these results presented in this paper extend and generalize some
works for a CAT() space in the literature.
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