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1 Introduction
In this paper, we assume that H is a real Hilbert space with the inner product (-,-) and
the induced norm || - || and C is a nonempty closed convex subset of H. Pc denotes the
metric projection of H onto C and F(T') denotes the fixed points set of a mapping 7. The
sequence {x,} converges weakly to x which is denoted by x,, — x.

Let ¢ : C — R be a real-valued function and let A : C — H be a nonlinear mapping.
Suppose that F: C x C — R is a bifunction.

The generalized mixed equilibrium problem is to find x € C (see, e.g., [1-6]) such that

Fx,y) + o) — ) + (Ax,y —x) >0, VyeC. (11)

The set of solutions of (1.1) is denoted by GMEP(F, ¢, A).
If ¢ = 0, then problem (1.1) reduces to the generalized equilibrium problem, which is to
find x € C (see, e.g., [7-9]) such that

F(x,y) + (Ax,y—x) >0, VyeC. 1.2)

The set of solutions of (1.2) is denoted by GEP(F, A).
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If A =0, then problem (1.1) reduces to the mixed equilibrium problem, which is to find
x € C (see, e.g,, [10-13]) such that

Fx,y) +¢()-—¢x) =0, VyeC. 1.3)

The set of solutions of (1.3) is denoted by MEP(F, ¢).
If F =0, then problem (1.1) reduces to the mixed variational inequality of Browder type,
which is to find x € C (see, e.g., [3, 14]) such that

o) — o) + (Ax,y —x) >0, VyeC. (1.4)

The set of solutions of (1.4) is denoted by MVI(C, ¢, A).
If p =0, A =0, then problem (1.1) reduces to the equilibrium problem, which is to find
x € C (see, e.g., [15-17]) such that

F(x,y) >0, VyeC. (1.5)

The set of solutions of (1.5) is denoted by EP(F).
If F=0, ¢ =0, then problem (1.1) reduces to the variational inequality, which is to find
x € C (see, e.g., [18-29]) such that

(Ax,y—x) >0, VyeC. (1.6)

The set of solutions of (1.6) is denoted by VI(C, A).
If F=0,A =0, then problem (1.1) reduces to the minimized problem, which is to find
x € C (see, e.g., [18-28]) such that

(¥ -9x) >0, VyeC. 1.7)

The set of solutions of (1.7) is denoted by Argmin(g).
Let A,B: C — H be two mappings. Ceng et al. [2] considered the following problem of
finding (x*,5*) € C x C such that

(MAy* +x* —y*,x—x*) >0, VxeC, (1.8)
(WBx* +y* —x*,x-y*) >0, VxeC, |

which is called a general system of variational inequalities where A > 0 and p > 0 are two
constants. In particular, if A = B, x* = y*, then problem (1.8) reduces to the classical varia-
tional inequality problem (1.6).

In order to find the common element of the solutions of problem (1.8) and the set of fixed
points of one nonexpansive mapping S, Ceng et al. [2] studied the following algorithm: fix
ueC,xy € C,and

2y = T (%, = hnFy),
Y =TT 2 (20 — t2Bazn) — it BI T2 (20 — 112B22,)], (1.9)

M1

Xpil = Ol + ,ann + Vu¥n t 5;15)/;'11 n= 0.

Under appropriate conditions, they obtained one strong convergence theorem.
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Let C be a nonempty closed convex subset of a real Hilbert space H. Let {A;}Y, : C —
H be a family of mappings. Cai and Bu [1] considered the following problem of finding

(x5, 45,...,x%) € C x C x - -+ x C such that

(ANANXN +X] —X3,x—x() >0, VxeC,

(AN AN_1XN_ + XYy — XX —xy) =0, VxeC,

(1.10)
(AoAoxy + x5 —x5,x—x3) >0, VxeC,
(MAX] + x5 —x],x—x3) >0, VxeC.
And (1.10) can be rewritten as
(x7 — (I = ANAN)XY, 2 —x]) >0, VYxeC,
(3 — (I = Ano1An-D)Xy_px —%n) =0, VxeC,
(1.11)

(x5 — (I = XpAg)x5,x—x3) >0, VxeC,
(x5 — (I = MmADx}, x—x5) >0, VxeC,

which is called a more general system of variational inequalities in Hilbert spaces, where
A;>0forallie(1,2,...,N}. The set of solutions to (1.10) is denoted by 2. In particular,
ifN=2,A1=B, A=A, 1 = i, ky = A, 5 =%, x5 = y*, then problem (1.10) reduces to
problem (1.8).

In order to find a common element of the solutions of problem (1.10) and the common
fixed points of a family of strictly pseudocontractive mappings, Cai and Bu [1] studied the
following algorithm: pick any xq € H, set C; = C, x; = P¢; %0, and

Fur, Fpr-1,9M-
Uy = T,(M]ﬁ WM)([— rM,nBM)Tr(MA:ILi oy

X (I = rp-inBa1) -+ T (1 - 1,1B1)%4,

1,n

Yn =Pc(I — ANAN)Pc(I — Ano1An-t) - - Pe = AA2)Pc(I — MA1)uy, (1.12)
Zy =0pYy + (1 - an)Snym

Cin={z€ Cy:llzn — 2| = llxn - zl},

Xnil = Pcmlx(), Vn>1.

Under suitable conditions, they also obtained one strong convergence theorem.

In this paper, motivated and inspired by the above facts, we study a new iterative algo-
rithm by the relaxed extragradient-like method for finding a common element of the set of
solutions of generalized mixed equilibrium problems, the set of solutions of a more gen-
eral system of variational inequalities for finite inverse strongly monotone mappings and
the set of solutions of a fixed point problem of a strictly pseudocontractive mapping in a
Hilbert space. Then we prove strong convergence of the scheme to a common element of

the three above described sets.
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2 Preliminaries
For solving the equilibrium problem, let us assume that the bifunction F satisfies the fol-
lowing conditions:

(A1) F(x,x)=0forallx e C;

(A2) F is monotone, i.e., F(x,y) + F(y,x) <0 for any x,y € C;

(A3) F is weakly upper semicontinuous, i.e., for each x,7,z € C,

lim sup F(x +tz— x),y) < F(x,y);

t—0

(A4) F(x,-) is convex and lower semicontinuous for each x € C;
(B1) Foreachx e H and r > 0, there exists a bounded subset D, C C and y, € C such
that for any z € C\D,,

1
F(z,yx) + 9(yx) — 0(2) + ;(yx -z,z-%)<0;

(B2) Cisabounded set.
Let H be a real Hilbert space. It is well known that

llac+ y1% = Il + [Iy11* + 2(x, ) (21)
and

ll1® = Iy l1> <l =yl (el + l1y1l) (2.2)
forallx,y e H.

Definition 2.1 Let C be a nonempty closed convex subset of a real Hilbert space H.

(1) A mapping T : C — C is said to be nonexpansive if
ITx =Tyl < llx=yll, VxyeC

(2) A mapping T': C — H is said to be L-Lipschitzian if there exists L > 0 such that
ITx - Tyl < Lllx-yll, Vx,yeC

(3) A mapping T': C — C is said to be k-strictly pseudocontractive if there exists a
constant k € [0,1) such that

ITx— Ty|* < |lx -yl + k| (I - T)x = (I - T)y|*, V¥xyeC. (2.3)

It is obvious that k = 0, then the mapping 7' is nonexpansive;

(4) A mapping T : C — H is said to be monotone if

(Ix—Ty,x—y) >0, Vx,yeC;
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(5) A mapping T : C — H is said to be a-inverse-strongly monotone if there exists a
positive real number « such that

(Tx — Ty, x—y) > || Tx - Ty||>, Vx,yeC.

It is obvious that any «-inverse-strongly monotone mapping 7' is monotone and i—
Lipschitz continuous.

Definition 2.2 Pc: H — C is called a metric projection if for every point x € H, there
exists a unique nearest point in C, denoted by Pcx, such that

¥ —Pexll < llx—yll, VyeC.
In order to prove our main results in the next section, we recall some lemmas.
Lemma 2.1 [30] Let C be a nonempty closed convex subset of H and let T : C — C be a

k-strictly pseudocontractive mapping, then the following results hold:
(1) equation (2.3) is equivalent to

1-k 2
(Tx — Ty,x—y) < |lx—y|I> - T“ I-T)x-I-T)y|", VYxyeC; (2.4)
(2) T is Lipschitz continuous with a constant %, ie.,
1+k

(3) (Demi-closed principle) I — T is demi-closed on C, that is,
ifx,—~x"€C and (I-T)x,— 0, thenx*=Tx".

Lemma 2.2 [1] Let C be a nonempty closed convex subset of H and let T : C — H be an
a-inverse-strongly monotone mapping, then for all x,y € C and X > 0, we have

[ =2T)x = U= 2Ty | = |G =3) = (T2 - )
= llx = 1> = 22(Tx - Ty,x - y) + A*[| Tx - TylI>

< |l =yl + A(x = 20)[| Tx - Ty|I*.
So,if 0 <\ <2q, then I — AT is a nonexpansive mapping from C to H.

Lemma 2.3 Let C be a nonempty closed convex subset of H and let Pc : H — C be a metric
projection, then

(1) [1Pcx —Pcyll* < (x -y, Pcx — Pcy), Vx,y € H;

(2) moreover, Pc is a nonexpansive mapping, i.e., |Pcx — Pcy| < ||lx -y, Y&,y € H;

(3) (x—Pcx,y—Pcx) <0,YVxe€H,yeC;

(@) llx-yI? = llx - Pex|® + lly - Pex|)?, Ve € H, y € C.
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Lemma 2.4 [4] Let C be a nonempty closed convex subset of H. Assume that F : C x C —
R satisfies (A1)-(A4) and let ¢ : C — R be a lower semicontinuous and convex function.
Assume that either (B1) or (B2) holds. For r > 0 and x € H, define a mapping Tr(F"ﬂ) :H—C

as follows:
1
T (x) = {ze C:F(zy) +9() - @) + -y -2z,2-%) = 0,Vy € C}
r

forall x € H. Then the following hold:
(1) for each x € H, T (x) # @ and T is single-valued;
(2) T s firmly nonexpansive, that is, for any x,y € H,

|79 - TER )| < (T - T ), 5)

(3) F(T;"*) = MEP(F, p);
(4) MEP(F, @) is closed and convex.

Lemma 2.5 [3] Let C be a nonempty closed convex subset of H. Assume that F : C x C — R
satisfies (Al1)-(A4), B: C — H is a continuous monotone mapping and let ¢ : C — R be a
lower semicontinuous and convex function. Assume that either (B1) or (B2) holds. Forr > 0
and x € H, define a mapping K5 H—C as follows:

K9 (x) = {z €C:F(zy) +9(y) —9(2) + (Bx,y —z) + %<y—z,z—x> =0,Vye C}

for all x € H. Then the following hold:
(1) foreach x € H, K9 (x) # @ and K& is single-valued;
2) K5 is firmly nonexpansive, that is, for any x,y € H,

|KED @) - KED ()| < (KF9 (x) = KED (), — y);

(3) F(K") = GMEP(F, ¢, B);
(4) GMEP(F, ¢, B) is closed and convex.

Lemma 2.6 Let C be a nonempty closed convex subset of H. Let {Fi}3" | be a family of bi-
Sunctions from C x C into R satisfying (A1)-(A4), let {i}{", be a family of lower semicontin-
uous functions from C into R, and let {Bi}yL, be a family of Bi-inverse-strongly monotone
mappings from C into H. For Fy and ¢k, k =1,2,..., M, assume that either (B1) or (B2)
holds. Let T : C — H be a mapping defined by

T(x) = T (] = rpgByg) TMAMA(] — g 1 Bygq) - - T (I = rBy)x,  Vax € C.
Putting ©° = I, where I is an identity mapping,
OF = TIFA(I =y B) Tt (I — 1y 4 Biy) - T (I = nBy),  k=1,2,..., M.

Ifx € (ol, GMEP(Fy, gk, Bi) and 0 < r < 2By, k =1,2,..., M, then

1) Ofx=xk=1,2,...,.M;
(2) T is nonexpansive.


http://www.fixedpointtheoryandapplications.com/content/2013/1/126

Ke and Ma Fixed Point Theory and Applications 2013, 2013:126 Page 7 of 21
http://www.fixedpointtheoryandapplications.com/content/2013/1/126

Proof (1) Since {Bi}}L, is a family of Bi-inverse-strongly monotone mappings from C
into H, so they are continuous monotone mappings. Observe that

Tr(]fk"”k)(l — 1 Br)x

= {z € C: Fi(z,y) + () — or(2) + %(y—z,z— (I—rkBk)x> >0,Vye C}

1
= {ze C:Fi(zy) + ox(y) — o(2) + (Brx,y — 2) y-z2z-x)>0,Vye C}

+_
Tk

= K\Fo) (),

By Lemma 2.5, we know that if x € ﬂﬁl GMEP(F;, ¢x, By) then x is the fixed point of the
mapping I(r(f"’wk), k=1,2,...,M, so we have

x = Ko (x) = TSI — 1 Be)x, (2.6)
which implies that x is a fixed point of the mapping Tr(fk"pk )(1 — 1¢Bi). Therefore we get
Ofx=x k=12,. M.

(2) Since T,(F’W) is firmly nonexpansive, then it is obvious that T,(F"ﬂ) is nonexpansive. And
from Lemma 2.2, we have

|76 -T)] = [0%x- "]
= | T (I — By OM o — TEMOM (] — 1y By OM Ty |
< | = ruBa)® % = (I = ryBa) Oy |
= |0 s -0y < < |0°x - 0%]
= ||x - y”:
which implies T is nonexpansive. O
Lemma 2.7 [1] Let C be a nonempty closed convex subset of H. Let A; be o;-inverse-strongly

monotone from C into H, respectively, where i € {1,2,...,N}. Let G : C — C be a mapping
defined by

G(x) = Pc(I — ANAN)Pc — An-1AN-1) -+ - P = MpA2)Pc(I — MADx, YxeC.
If0<A; <2w;,i=1,2,...,N, then G is nonexpansive.

Proof Put Q' = Pc(I—MA)Pc(I-Ais1Ai1) - - -Pc(I-MA1),i=1,2,...,N,and Q° = I, where
I is an identity mapping. Since P¢ is nonexpansive and from Lemma 2.2, we have

|6 - GO = [@"x-a|

= [Pl = inAn)QY = Pell - AN |
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< |0~ AN QT x — U - anAn) Q¥ |
< “ QN-1, _ QN—ly” <...< HQOx _ Qoy”

which implies G is nonexpansive. d

Lemma 2.8 Let C be a nonempty closed convex subset of H. Let A; : C — H be a nonlinear
mapping, where i =1,2,...,N. For given x{ € C, i =1,2,...,N, (x{,%5,...,%%) is a solution
of problem (1.10) if and only if

xi‘ :PC(I—)\NAN)x;‘\,,x;" =Pc(1—)ui_1Ai_1)x?_1, i=2, 3,...,N, (27)
that is,

*) = Pc(I = ANAN)Pc( — An1An-r) - - - PoI = M A)Pc(l — A A1 )AT.

Proof (<) From Lemma 2.3(3), it is obvious that (2.7) is the solution of problem (1.10).
(=) Since

(AnAnxy +2F - 23, x—a5) =0, VaeC
= (6 - (- AnAn)xg,x—%]) >0, VxeC

((1 - )\.NAN)x}k\[ —xf, (1 - ANAN)x;‘\, - xf - (1 - )\.NAN)JC;[ + x) < 0, VxeC

[ = AnAN)xy —xf| < || - AnAn)xy -

=

= (- nAnxy - |P < (U - AnAN)xy -5, (- AnAn)xy — %), VxeC
= , VxeC

=

&) = Pc(l — ANAN)XY.
Similarly, we get
& =Pc(l - hiaAig)xt,, i=2,3,...,N.
Therefore we have
x) = Pc(I — ANAN)Pc(I — An1An-r) - - - Po = M Ag)Pc(l — A A1 )AT,
which completes the proof. 0

From Lemma 2.8, we know that x] = G(x{), that is, x{ is a fixed point of the mapping G,
where G is defined by Lemma 2.7. Moreover, if we find the fixed point x7, it is easy to solve
the other points by (2.7).

Lemma 2.9 [31] Let {x,} and {y,} be bounded sequences in a Banach space X and let {8}
be a sequence in [0,1] with 0 < liminf,_, B, < limsup,,_, ., B, < 1. Suppose that x,., =
Buxn + (1= Bu)yn for all integers n > 0 and limsup,,_, . (1¥ns1 = Yull = |%ns1 — %41) < 0. Then
limy,, o6 [|yn — %4l = 0.
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Lemma 2.10 [30] Let T : C — C be a nonexpansive mapping with F(T) # @. If x, — x*
and (I - T)x, — y*, then (I - T)x* = y*.

Lemma 2.11 [30] Assume that {«,} is a sequence of nonnegative real numbers such that
Oyl < (1 - Vn)an +0y, Vn=>1,

where {y,} is a sequence in (0,1) and {8,} is a sequence such that
(1) Zil Vn = O0;
(2) limsup,,_, ., j—z <00rY % 18,] < 00.

Then lim,_, oo ¢, = 0.

3 Main results
In this section, we state and verify our main results. We have the following theorem.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
{Fk}i\’i1 be a family of bifunctions from C x C into R satisfying (Al)-(A4), let {wk}ﬁl :C—>R
be a family of lower semicontinuous and convex functions and let {Bi}}., be a family of Br-
inverse-strongly monotone mappings from C into H. Let A; be a;-inverse-strongly mono-
tone from C into H, respectively, where i € {1,2,...,N}. Let S be a §-strict pseudocontrac-
tive mapping from C into itself such that F = [ﬂﬁl GMEP(Fy, or, Bo)| N F(G) N F(S) # &,
where G is defined by Lemma 2.7. For Fi and ¢, k =1,2,..., M, assume that either (B1) or
(B2) holds. Pick any xo € C, let {x,} C C be a sequence generated by

Fup, Erf1.0M—
Zy = TIEM[: (pM)(I - rM,nBM)TSM/ﬂ}, om-1)
F1,
x (I = rycinBai-r) - - - Tr(l_,lq (1 - r1,uB1)% s

(3.1)
Yn=Pc( = ANAN)Pc( — An1An-1) - - Po(I — AaA2)Pc(I — MA1)z,,

X4l = AnXo + byXy + CxYu + 4uSyn, Y1 >0,

where 1; € (0,2w;),i=1,2,...,N, 8 € (0,1). {a,}, {bu}, {cu}, {du} C [0,1] satisfy the following
conditions:
(i) an+by+cy+d,=1and (c, +d,)§ <c, foralln>0;
(i) lim, oo @y =0 andy .. a, = 00;
(iii) 0 <liminf,_ b, <limsup,_, ., b, <1 and liminf,_, . d, > 0;
() T oo (5521 = 1) = 0
(v) 0 <liminf,_ oo i <limsup,,_, oo 7en <28k, k=1,2,..., M.

Then {x,} C C converges strongly to Prx.
Proof Putting

Oy = Tk = 1B T = r1,uBia) - - T (1= r1,B0),

Vke{l,...,.M},neN,
and

Q' = Pc(I = MA)Pc = AiAi) - Po(I = ApA2)Pc(I — MAy), Vie{L,2,...,N},
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0% = QO = 1, where I is the identity mapping on H. Then we have that z, = ©"x, and
Y = QNz,. From Lemma 2.6 and Lemma 2.7, it can be seen easily that @’; and Q' are
nonexpansive, where k € {1,2,...,M}, i € {1,2,...,N}. We divide the proof into six steps.
Step 1. Firstly, we show that {x,} is bounded.
Indeed, take p € F arbitrarily. Since p = @ﬁp = Sp, Yk € {1,2,...,M}, Vn € N. By
Lemma 2.6, we have

Iz, = pll = | €%, = ©}'p| < llx. - plI. (3.2)
It follows from Lemma 2.7 and (3.2) that

Iy = pll = |22, — QVp| < ll2n - pIl < % - plI. (3.3)
Furthermore, from (3.1), we have

”xn+l —P|| = ”anxO + bnxn +CyYn + dnsyn —19||
= || @n(x0 = p) + bu(xn = p) + cau — P) + du(Syn — P) |

< anllxo = pll + bullxn — pll + ”Cn(yn ~p) +du(Sy, —p) H (3.4)

Since (¢, + d,)8 < c,, (2.3) and (2.4), we have

2
”Cn(yn —P) + dn(Syn —P) ”
= Cllyn =PI + d2lISyn — pI* + 2¢4d (Syn — P Y — P)
<cllyn—plI* + d2[llyn = pI* + 811y — Syull®]

1-5
+ 2cndn[||yn -pl* - — - Synllz]

= (Cn + dn)ZHyn —P||2 + [df,(s - (1 - S)Cndn] ”yn - Syn”2
=(cn + dn)znyn —P||2 + dn[(cn +dy,)8 - Cn] Y = 5)’n||2

< (Cn + dn)2||yn _p”21
which implies that
”Cn(yn —P) + dn(Syn —P) || = (Cn + dn)”yn —P” (35)

From (3.2)-(3.5) it follows that

%41 =PIl < anllxo = pll + bullx, — pll + ”Cn(yn -p)+ dn(Syn -p) ”
< aullxo = pll + bullx, = pll + (cu + du)llyn = pl
< aullxo = pll + bullxn = pll + (cn + dy)llxn = pll

= anllxo — pll + (1 = an)llx. —pl.


http://www.fixedpointtheoryandapplications.com/content/2013/1/126

Ke and Ma Fixed Point Theory and Applications 2013, 2013:126 Page 11 of 21
http://www.fixedpointtheoryandapplications.com/content/2013/1/126

So, we have
%1 = pll < max{llxo - pll, %, - pll}, Vn>0.
By induction, we obtain that
I%: —pll < llxo —pll, Vn=0.
Hence, {x,} is bounded. Consequently, we deduce immediately that {z,}, {y,}, {Sy.} are
bounded.

Step 2. Next, we prove that lim,, o ||%,+1 — %, ]| = 0.
Indeed, define x,,,1 = b,x, + (1 - b,)w, for all n > 0. It follows that

Xn+2 — bn+1xn+1 Xn+l — bnxn

Wyl — Wy = 1— by 1-b,
_ An+1X0 + Cn+1yn+1 + dn+15yn+1 apXo + Cnyn + dnSyn
- 1- bn+1 1- bn
_ Ay +1%0 _ apXo Cn+1(yn+1 _yn) + dn+1 (Syn+1 - Syn)
1- bn+1 1- bn 1- bn+1
Cu+l Cy dn+1 dn
—_— = " - Syn. 3.6
+<1_bn+1 l_bn>y +<1_bn+1 1_bn> ) ( )
Observe that

||Cn+1(yn+l _yn) + dn+1(5yn+l - Syn)“z

2
[

= C;2q+1||yn+l _yn||2 + d3+1||5yn+1 - Syn + 2Cn+1dn+1 (Syn+1 - Sym_ym—l __yn>

=< Cﬁﬂ”_yml _yn”Z + d31+1[||yn+1 _yn||2 + 8“ (yn+1 - Syn+1) - (Yn - S}/n) ”2]
1-6
+ 20n+1dn+1 |:||yn+1 _yn”2 - T ”(ynﬂ - Syn+1) - ()/n - Syn)||2]

= (Cn+l + dn+l)2||yn+l _yn”2 + [de.lS - (]- - S)Cn+1dn+1] || (yn+l - Syn+1) - (yn - Syn)Hz
= (Cn+l + dn+l)2 ||yn+1 _yn ”2 + dn+1 [(Cn+1 + dn+1)8 - Cn+1]

X ”(ynﬂ = SYne1) = (Y — Syn)||2

< (Cnar + dnst)* 91 = yull®,
which implies that
lent @it = ) + dnar (Symer = Sy | < (Cnst + Bus) Y1 = Yull. (3.7)
Since
211 = Zull = || ©5 %01 = ONox || < 112001 =, (3.8)
then we have

N N
”yn+1 _yn” = “Q Zn+l — Q Zy || =< ||Zn+1 _Zn” f ”xn+1 _xn”' (39)
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Hence it follows from (3.6), (3.7), (3.9) and C"l*_‘;i";l = 1‘“{‘:2;’1"” <1 that

n n i1 (Va1 — V) + A1 (SYne1 — Sy
[Wis1 — Wil S( e ﬂ—)”x()” + lle +1(y +1— Y )+ +1( Y+l Y )”

—— +
1- bn+1 1- bn 1- bn+1
Cnil Cn dni dy
. + - S
‘1_% |1l ‘1_% |l
Ap+l an Cpi1 t+ dn+1
< + Xoll + ——— [|Xn+1 — X
_(l_bm 1_[bn)n oll + T s =
Cn+l _ Cn ” ” n Api1 + Cpil _ ap +Cy ”S ”
1- bn+1 1- bn In 1- bn+1 1- bn In
Apl an
=1 o (lxoll + 1Sy, 1l) + 1=b, (ol + 15y ll) + 11 = %l
Cnil Cn
- + 1S . 3.10
‘1_bn+1 5|l + 5y ) (3.10)

Consequently, it follows from (3.10), conditions (ii), (iv) and {y,}, {Sy.} are bounded that

1imSUP(||Wn+1 = Wall = %41 _xn”)
n— 00
. Ayl a
<lim sup{ (ol + 1Syull) + ——(llxoll + 1Sy 1)
n—0o0 1- b}’l+l 1- bn

Cnsl  Cn
1- bn+1 1- bn

(lyull + ||Syn||)} - 0.

Hence, by Lemma 2.9, we get lim,,_,  [|w), — %, || = 0. Thus, from condition (iii), we have
lim %41 — %, = lim (1- bn)”Wn = x| = 0. (3.11)
n—00 n—0oo

Step 3. We show that lim,,_, , | Bx®*1x,—Bipll = 0,k = 1,2,..., M and lim,,_, «, |4;Q2" x
Zp— A2 p = 0,i=1,2,...,N.
It follows from Lemma 2.6 that

< [0k, - &l

lzs - plI* = |©Mx, - ©Mp|?

= Tr(f,’,‘,’(pk)(f — 75 nBr)OF L, — T,(f’fl"‘)k)(l - rk,an)®ﬁ‘1p||2
< | = r,,BYO %, — (I = 12, BYO |
<[085 w0 = p[|* + rionlrion — 280 | Be® x5, ~ Bip |

- 2
< % =PI + rin(riess = 280 | Be®; "%, = Bep [ (312)
By Lemma 2.3 and Lemma 2.2, we have

lyn = pI% = | Pell = AnAN) RV 2, = Pe(l - AnAn) N p|?
< || - anAN)QN 2, - (1 - XNAN)QN_IPHZ

< |98z, - Q¥ p||* + An G — 200) [ AN QY 2, — AN QN p |

Page 12 of 21
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By induction, we get

N
Iy = 2I% < llzw = pI + Y 2l — 200) | 4,272, — A2 p . (313)

i=1

From condition (i) and (3.5), we get

%01 = pII?
= (an(x0 = ) + bu(xn = p) + cu(Vn — P) + du(Syn — P), X1 — P)
= A (%0 = PrXns1 — P) + bu(%n — Pr%ns1 = P) + (€aOn — P) + An(Syn — P)s %ni1 — D)
< an(X0 = Pr%ns1 = P) + bullxn — pllIxea = pli
+ | nn = P) + du(Syn — P)|| 1501 = Pl
< @y (%0 — Py Xns1 = P) + bullxn — pllI1%ns1 = pll + (cn + du) |y = Pl 1%01 = Pl

n

= an<x0 — P> Xns1 —P) + (”xi’l —P||2 + ”xm—l —P”Z)

2
¢, +d
—— (lyu =PI + 5w = pI),
that is,
b c,+d,
41 = PII* < = (%0 = Ps X1 = P) + —— 1% = pII* + —— Iy = pII*. (3.14)
1+a, 1+a, 1+a,

So, in terms of (3.12) and (3.13), we have

n

2
%, — pli

2a,
%0 — pllll%4a =PIl +
l+a, 1+a,

2
”xn+l —P” f

N
+ Cl”::” { lzn = pI* + Y ik — 200)| 4272, —A,»Q“p||2}

i=1

An

< %0 = pll a1 =PIl + —— lln — I
1+a, 1+a,
Cn + dy 2 k-1 2
+ 1% =PI + rin(rin = 2B:) | Be® % — Bip |
1+a,
N
+ Z)\.l()\.l - 20[,')||Ain 1ZVI —Al'Ql lp” }
i=1
2a l1-a
=7 ~— |l%0 = pllll%n — pll + “lxn - plI?
+ay, 1+a,
¢, +d _ 2
+ {Vk,n(rk,n ~2B4)||Bk®% %, — Bp |
l1+a,

N
+ Z )"i()\i - 20li) HA,'Qi_IZV, —AiSZi_lp||2 } .

i=1
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Therefore,

N
Pin(2Bic = i) | BeOS 0 — Bip | + > w20 - )| A2 2, - A2 p |

i=1

2a, 1-a, 9 9
< llxo = pllI%ua — pll + (lI%n = p1I* = llns1 = pII%)
¢, +d, ¢, +d,
ay, 1-a,
< 10 = Pll1%ne1 = Pl + ——— 11 = il (11 = Pl + 1% = 1)
¢, +d, ¢, +d,

Since limy,_,oca, = 0, 0 < liminf, o 1, < limsup,_, 7kn < 2Bk, k =1,2,...,M, X; €
(0,2e4),i=1,2,...,N, 8 € (0,1), liminf,_, (¢, + d,) > 0 and {x,,} is bounded, we have

lim |B® %, - Byp| =0, k=1,2,...,M, (3.15)
and
lim [A:Q7'z, - A;Q'p|| =0, i=12,...,N. (3.16)

Step 4. We prove that lim,—, o [|Sy, — ¥4l = 0.

(Fiopxk
1y

Indeed, utilizing firmly nonexpansive of T, ) and Lemma 2.2, we have

[ &5 = Opl” = | TS ~ rinBO @ o = TR U~ riuBi)p |
<(u- 710 B) O L, — (I = 1y, Br)p, O, -p)
= (10~ raBOO 5, U B + | ©h
— |t = 71Bi) O 5, — (I = 11, Bi)p — (%, — p) ||2)
< (|08 w0 —p | + [Okw, ]
~ |4 s — Okt — 1 (BLOS 5 — Bip) ),
which implies
[0}, oI = 1645, pI - [0}, - O, - (B0 5, - B |
- 105, =~ [0, ~ O P =, | BO 3~ Bep
+ 274 (OF ik, — OFix,y, B Ok ik, — Brp)
< &5 w0 = p|” - | €} O

+ Zrkvn((@fl_lx,, - @ﬁxn,BkG)';_lxn - ka). (3.17)

From (3.14), (3.3), Lemma 2.6 and (3.17), we have

An

Cntd
%1 = pII* < (0 = Pr%ns1 =) + % = pII* + ——l|zx — p|I*
1+a, 1+a, 1+a,
2a, b, 2 Cn + dy k k
< X0 — Py Xns1 —P) + Xy — + —|©O,x, - O
S Tra o= pnn =P+ ool I+ T | O - Ol
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2a, b,

< (%0 — Ps Xns1 — P) + % — pII>
1+a, l+a,
Cn + dn k-1 2 k-1 k. |2
+ 2L 0k, P - [0, - Ol
+ 2rk,,,(®ﬁ_1x,, - @ﬁxn,Bk(@’;’lxn - ka)]
2a b
=< i (X0 — PsXps1 —p) + ‘ [E —P||2
l+a, l+a,
Ccy + dn 2 k- k 2
+ m [”xn -pll” - ” 0, 0 — O),%, “
+ 2rk,n(®ﬁ’1x,, - (H)f,x,,,Bk@ﬁ’lx,, - ka)]
an n 2
< %0 — plll%nn - pll + llx. —pll
1+a, 1+a,
¢, +d, ke ko2
o =1 = |0~ O

+ 27k, || ©57 %, — OF || | BeO® T, — Bup| ]

It follows that
Cotdyy g o2
Tea a, H@n X — O,%, ||
2a 1-a
< —" %o = pll |%ns1 — pll + e e ey
l1+a, l+a,

2l )y 6k, | 316, - Bur

1+a,
a
=7 " ||x0 — plll|xn1 = 2l + 1%, = pII* = %001 = pII?
+ay
21 (e, +d,
2nlCo D)o, - | |6~ Bir
1l+a,

< 2a, %0 = plll1%ns1 = Pl + %1 = 2ull (1% = Pl + %1 = plI)

Zinlon £ d0) i1y, _ ok, || B6Y s, - Bepl.
1l+a,

cntdy

Since liminf,_, o, ol > 0,a,— 0, ||x41 — x|l = 0 and ||Bk®’,‘,‘1xn — Bip|| — 0, we con-

clude that
nli)rgg”@ﬁx,, - 0Ky, |=0, k=1,2,....M.

Therefore we get

1% = zall = || @5 — O, |

< ”@296,, G || + H O,x, — ©2x, H +oot || M1y, — @My, H —-0

as 1 — OQ.

(3.18)

(3.19)

Page 15 of 21
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From Lemma 2.3(1), we obtain

|QV2, - QVp|? = |Pcll - ANV 2, — Pell = AnAN)QN p)?

< (U - ANAN)QY 2, — (I - AnAN) QY ' p, @Yz, - QD)
1
= (10 - AAN@Y 2, - (= AR | + [ 22, - 25|

|t - ANz, — (I - AN — (22, - V) [)%)

IA

1
L R Lk
- ” QN’lzn - QNZ,, + QNp - QN‘lp

2),

—in(AnQN Tz, - AN QN p) |
which implies that
|22 - 2"
< [z, - 2|
— @Yz, - Nz, + QVp — @V p - An (ANQV 'z, — AN QN D) |

= |22 - ¥

— @Yz, - Nz, + Q¥p - @V p||P - 2% AN 2, — AN QN ) |

+2An(QN 2, - QVz, + QNp - QY p, AN QN T2, - ANV )
< |@¥ "z, - @V p | - @V, - QVz, + QVp - QY p |

+ 24y [ @Yz, - QN2 + QY - QN p | | AN QY 2, - ANQY || (3.20)

By induction, we have

N
|92 - 25" < Iz - pIP = [ @12, - @z, + @p - 2|

i=1

N

+2) ]| @z, - @iz, + Qp - Q7| 427 2, - AR p|

i=1

N
< I —pl? = || @2, — 'z, + Qp - Q¥ p|?

i=1

N
+2 Z)‘iH Qi lz, — Qiz, + Qip - Qi’lpH ||A,'Qi’lz,, —A,»QHp

i=1

’

that is,

N
Iy =12 <l —pI? = > Q22 — Qs + Qp - 27 p|?
i=1

N
+2 Z)»,'H Qlz, - Qiz, + Qp - Qi_lp” ”Aiﬂi_lzn —AiQi_lp||. (3.21)

i=1
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From (3.14) and (3.21),

(1241 —P|| 1+ ‘ ( X0 — P Xns1 —P) + 1 +n | —P||2
ay
¢, +d N
+ 1”+ . [nxn ~plI? =Y |9z, - Q7+ Qp - 27 p
i=1
N
+2 Z vy ”Qi_lz,, - Qiz, + Qip- Qi_lp}} ||AiQi_1z,, —AiQi_1p||i|
i=1
2 b
= o =l = pll+ Tl = I
+a, l1+a,
Cn +d i-1 i i-1
1| Il -ZHQ 2 - Qz, + Qp - Q7p|?
i=1
N
+2) ni| @z, - @iz, + Qp - Q7| | A2 2, —AiQi"1p||:|.
i=1
It follows that
d,
T Z”gl g, Qz, + Qp - 2 Ip|*
=7 “|lxo = plll%ns1 — pll + Lo an % = pII* = [1%ns1 = pII?
+ay l+a,
2(c, +d,) P
ﬁTZAHQ’ L —an+§2p Q- 1p||||A Qi lz, — A lp”
=7 = lxo = pllllnir = pll + 0 = pII* = %01 = pII>
+a,
2(c, +d,) .
%Z}» HQ’ 12, - Q'z, + Qlp - QF 1p” ||A Qi lz, — A 1p||
= “lwo = plllIxnsr = Pl + ne1 = %l (%1 =PIl + 15 = pII)
+a,
2(c,, +d,)

T+a, ZA HQ’ L2, — Qiz, + Qp - QF 1]g” ||A Q7 - AQF lp”

< 2a,l|x0 = pllllxn1 =PIl + 1%ns1 = %all (%001 =PIl + 1% = p1)

2cp + dy) ; ; ; ; ; ;
+ Ta” ;A,«H Q2 - Q'z, + Qp - Q7p| |4z, - AQ |

Since liminf,_ « Cl”::” >0, a, = 0, [|%1 — %] = 0 and ||A;Q7 1z, — A;Q7p|| — 0, we

conclude that

lim Z” Qlz, - Qiz, + Qp - Q- lpH (3.22)

n—00
i=1
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Therefore, we get

Iz = yull = ” Qozn - QNzn H
N
< H Qlz, - Qiz, + Qip - Qi‘lp“ —0 asun— oo. (3.23)
i=1

Thus from (3.19) and (3.23), we have
lim ||, -y, = 0. (3.24)
n—0oQ

Observe that

Anl|SYn — %nll = 1dnSyn — dun |l
= ||xn+1 —apXo — bnxn —CuYn — dnxn”
= Hxn+l —Xp t+ (1 - bn - dn)xn — CnYn — AnXo H
= ”xn+1 — Xt “n(xn - xO) + Cn(xn _yn) ||
< %ns1 =%l + @nllxn —xoll + Cullxn — yull.
Since liminf, . d,, > 0, |[¥ys1 — %, || = 0, a, — 0 and ||x, — y,,|| = 0, we have
lim ||Sy, —x,]|| =0. (3.25)
n—0o0
From (3.24) and (3.25), we conclude that

lim [y, — y 1l = 0. (3.26)
n—00

Step 5. In this step, we prove that limsup,,_, . (xo — ¥, %, —¥) < 0, where X = Prx.

Indeed, take a subsequence {x,,} of {x,} such that

lim sup{xo — X, %, —X) = lim (xg — X, %,, — X).
s 00 n—>00
Since {x,} is bounded, there exists a subsequence of {x,} which converges weakly to x*.
Without loss of generality, we may assume that x,, — x*. From (3.18) and (3.24), we have
@’;ixm — &%, y; = %, where k € {1,2,...,M}. From (3.26) and Lemma 2.1, we have x* =
Sx* that is x* € F(S). Utilizing Lemma 2.7, we known that G is nonexpansive. And from
(3.23), we obtain

19n; = Gyni | = 11GZn; = Gyl < 2w, = Yl = O as i— oo.

According to Lemma 2.10, we obtain (I — G)x* = 0, that is, x* € F(G).
Next we prove that x* € ﬂ;ﬁl GMEP(Fy, ¢r, Bi). Since

Oy = TEA(I — 1y, B)OK x,, =1k (1,2,..., M)

Page 18 of 21
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For all y € C, we have

Fk(®£xn;y) + () - ¢k(®lf,x,4) + (Bk®l,<,_lxn,y - @/;xn)

1
+ —(y - @ﬁxn, @ﬁxn - @ﬁ_lxn> > 0.
Tk,n

By (A2), we have

or(y) — gok(®£xn) + (Bk®];_1x,,,y - @ﬁxn> + ri(y - @ﬁx,,, @ﬁxn - @ﬁ’lx,,)
k.n

> Fi(y, Oyx,).

Replacing # by #; in the above inequality, we have

1
‘pk(y) - (pk((aﬁ,vxni) + <Bk®l};i_1x”i’y - Gﬁixm) + r_(y - Gﬁixm’ @I;Iixm - Gﬁ;lxﬂi>

N
> Fi(y, O} ;).

Letz, =ty + (1 — t)x* for all £ € (0,1] and y € C. This implies that z; € C. Then we have

(2t — O} %, Bize)

> (2 — O %, Bize) + (O x,) — or(z2)

1
k k k-1 k
(2t — O} %0y, O %, = O3 1%, ) + Fi (21, ©),)

- (Bk®fli_1xni,zt - @ﬁixm) -
k,n;
= 0k (O %) — px(20) + (2 — O %, Beze — By O ;)
+ (zt - @ﬁixni,BkG)l;ixni - Bk®f1i’1xni)
OF %u; — OF 1y,

o > + Fi (zt, ®l;,»xni)’

k
- <z, - @n’,x,,i,

By (3.18) we have ||Bk®ﬁix,,i - Bk(H)',‘,i’lxniH — 0 as { — oo. Furthermore, by the mono-
tonicity of B, we obtain (z; — @ﬁix,,l.,Bkzt - Bk®ﬁixni) > 0. Then from (A4), the lower

semicontinuity of ¢ and

k k-1
O, %n; — O X,

— 0, ®f,ixni — x*,
Vin;

we obtain that
(2 — 2", Bezi) = ouc(x*) = oul20) + Fie(z, %"). (3:27)
Using (Al), (A4) and (3.27), we have

0 = Fi(zs, ze) + prlze) — pr(zr)
< tFi(z1,y) + (1 = O)F (20, %) + tor(y) + (1 = £)gor (x*) — teoue(z) — (1 - t)gou(z2)
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= t[Fi(zey) + 0k(y) — ox(2) ]| + (1= ) [ Fi (20, %) + @1 (%) — (22 ]
t{Fi(z:9) + o) — or(z) | + (1 - £)ze — 5%, Byzs)

= t[Fi(ze,) + 0x(y) — ouc(ze) | + (1 - )ty — &%, Beze)s

A

and hence

0 < Fi(ze,y) + o) — @uc(ze) + (1 = )y — 5%, Bezy).

Letting t — 0, we have, for each y € C,
0< Fk(x*,y) +or(y) — gok(x*) + (y - x*,ka*).

This implies that x* € GMEP(Fy, ¢k, Bx). Hence x* € ﬂﬁl GMEP(F}, ¢k, Bx). Therefore,
M
x* € F = | (| GMEP(Fy, ¢x, Br) | N F(G) N F(S).

k=1

This together with the property of metric projection implies that

limsup(xy — %, %, — %) = lim (xo — X, %,, - %) = (¥ — %2" —%) < 0. (3.28)
n—00 n—00

Step 6. Finally, we can easily show that x, — x as n — oo.
Indeed, from (3.14) and (3.3), we have

2a b c,+d
—n2 n — — n —n2 n n —n2
11 — %" < (X0 — %, Xpe1 — %) + lloc, — x|1° + lloc, — x|l
l+a, 1+a, 1+a,
2a,

_ _ 2a, 2
(x() — X, Xn+1 —x) +(1- ”xn _x” .
l+a

l+a, "

It is clear that ) -, 12:;”” = 00. Hence, applying (3.28) and Lemma 2.11, we obtain imme-

diately that x,, — x as n — oo. This completes the proof. 0
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