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Abstract
An inclusion problem and a fixed point problem are investigated based on a hybrid
projection method. The strong convergence of the hybrid projection method is
obtained in the framework of Hilbert spaces. Variational inequalities and fixed point
problems of quasi-nonexpansive mappings are also considered as applications of the
main results.
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1 Introduction and preliminaries
Splittingmethods have recently receivedmuch attention due to the fact that many nonlin-
ear problems arising in applied areas such as image recovery, signal processing, and ma-
chine learning are mathematically modeled as a nonlinear operator equation and this op-
erator is decomposed as the sum of two nonlinear operators. Splitting methods for linear
equations were introduced by Peaceman and Rachford [] and Douglas and Rachford [].
Extensions to nonlinear equations in Hilbert spaces were carried out by Kellogg [] and
Lions and Mercier []. The central problem is to iteratively find a zero of the sum of two
monotone operators A and B in a Hilbert space H . In this paper, we consider the prob-
lem of finding a solution to the following problem: find an x in the fixed point set of the
mapping S such that

x ∈ (A + B)–(),

whereA and B are twomonotone operators. The problemhas been addressed bymany au-
thors in view of the applications in image recovery and signal processing; see, for example,
[–] and the references therein.
Throughout this paper, we always assume that H is a real Hilbert space with the inner

product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C be a nonempty closed convex subset of
H and PC be the metric projection from H onto C. Let S : C → C be a mapping. In this
paper, we use F(S) to denote the fixed point set of S; that is, F(S) := {x ∈ C : x = Sx}.
Recall that S is said to be nonexpansive iff

‖Sx – Sy‖ ≤ ‖x – y‖, ∀x, y ∈ C.
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If C is a bounded, closed, and convex subset of H , then F(S) is not empty, closed, and
convex; see [].
S is said to be quasi-nonexpansive iff F(S) 	= ∅ and

‖Sx – y‖ ≤ ‖x – y‖, ∀x ∈ C, y ∈ F(S).

It is easy to see that nonexpansive mappings are Lipschitz continuous; however, the
quasi-nonexpansive mapping is discontinuous on its domain generally. Indeed, the quasi-
nonexpansive mapping is only continuous in its fixed point set.
Let A : C →H be a mapping. Recall that A is said to be monotone iff

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C.

A is said to be strongly monotone iff there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖x – y‖, ∀x, y ∈ C.

For such a case, A is also said to be α-strongly monotone. A is said to be inverse-strongly
monotone iff there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C.

For such a case, A is also said to be α-inverse-strongly monotone. Notice that

α‖Ax –Ay‖ ≤ 〈Ax –Ay,x – y〉 ≤ ‖Ax –Ay‖‖x – y‖

clearly shows that A is 
α
-Lipschitz continuous.

Recall that the classical variational inequality is to find an x ∈ C such that

〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

In this paper, we use VI(C,A) to denote the solution set of (.). It is known that x* ∈ C is a
solution to (.) iff x* is a fixed point of the mapping PC(I – λA), where λ >  is a constant,
I stands for the identity mapping, and PC stands for the metric projection fromH onto C.
A multivalued operator T : H → H with the domain D(T) = {x ∈ H : Tx 	= ∅} and the

range R(T) = {Tx : x ∈ D(T)} is said to be monotone if for x ∈ D(T), x ∈ D(T), y ∈ Tx,
and y ∈ Tx, we have 〈x – x, y – y〉 ≥ . A monotone operator T is said to be maximal
if its graph G(T) = {(x, y) : y ∈ Tx} is not properly contained in the graph of any other
monotone operator. Let I denote the identity operator onH and T :H → H be amaximal
monotone operator. Then we can define, for each λ > , a nonexpansive single-valued
mapping Jλ :H →H by Jλ = (I +λT)–. It is called the resolvent of T . We know that T– =
F(Jλ) for all λ >  and Jλ is firmly nonexpansive.
The Mann iterative algorithm is efficient to study fixed point problems of nonlinear

operators. Recently, many authors have studied the common solution problem, that is,
find a point in a solution set and a fixed point (zero) point set of some nonlinear problems;
see, for example, [–] and the references therein.
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In [], Kamimura and Takahashi investigated the problem of finding zero points of a
maximal monotone operator by considering the following iterative algorithm:

x ∈ H , xn+ = αnxn + ( – αn)Jλnxn, n = , , , . . . , (.)

where {αn} is a sequence in (, ), {λn} is a positive sequence, T : H → H is a maximal
monotone, and Jλn = (I + λnT)–. They showed that the sequence {xn} generated in (.)
converges weakly to some z ∈ T–() provided that the control sequence satisfies some
restrictions. Further, using this result, they also investigated the case that T = ∂f , where f :
H → (–∞,∞] is a proper lower semicontinuous convex function. Convergence theorems
are established in the framework of real Hilbert spaces.
In [], Takahashi an Toyoda investigated the problem of finding a common solution of

the variational inequality problem (.) and a fixed point problem involving nonexpansive
mappings by considering the following iterative algorithm:

x ∈ C, xn+ = αnxn + ( – αn)SPC(xn – λnAxn), ∀n≥ , (.)

where {αn} is a sequence in (, ), {λn} is a positive sequence, S : C → C is a nonexpansive
mapping, andA : C →H is an inverse-strongly monotonemapping. They showed that the
sequence {xn} generated in (.) converges weakly to some z ∈ VI(C,A) ∩ F(S) provided
that the control sequence satisfies some restrictions.
The above convergence theorems areweak. In this paper,motivated by the above results,

we consider the problem of finding a common solution to the zero point problems and
fixed point problems based on hybrid iterative methods with errors. Strong convergence
theorems are established in the framework of Hilbert spaces.
To obtain our main results in this paper, we need the following lemmas and definitions.
Let C be a nonempty, closed, and convex subset ofH . Let S : C → C be amapping. Then

the mapping I – S is demiclosed at zero, that is, if {xn} is a sequence in C such that xn ⇀ x̄
and xn – Sxn → , then x̄ ∈ F(S).

Lemma [] Let C be a nonempty, closed, and convex subset of H ,A : C →H be amapping,
and B :H ⇒H be a maximal monotone operator. Then F(Jr(I – λA)) = (A + B)–().

2 Main results
Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , A :
C → H be an α-inverse-strongly monotone mapping, S : C → C be a quasi-nonexpansive
mapping such that I – S is demiclosed at zero, and B be a maximal monotone operator on
H such that the domain of B is included in C. Assume that F = F(S)∩ (A+B)–() 	= ∅. Let
{λn} be a positive real number sequence. Let {αn} be a real number sequence in [, ]. Let
{xn} be a sequence in C generated in the following iterative process:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

C = C,

yn = αnxn + ( – αn)SJλn (xn – λnAxn),

Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖},
xn+ = PCn+x, n≥ ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/11
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where Jλn = (I + λnB)–. Suppose that the sequences {αn} and {λn} satisfy the following re-
strictions:
(a)  ≤ αn ≤ a < ;
(b)  < b ≤ λn ≤ c < α.

Then the sequence {xn} converges strongly to PFx.

Proof First, we show thatCn is closed and convex. Notice thatC = C is closed and convex.
Suppose thatCi is closed and convex for some i≥ .We show thatCi+ is closed and convex
for the same i. Indeed, for any v ∈ Ci, we see that

‖yi – z‖ ≤ ‖xi – z‖

is equivalent to

‖yi‖ – ‖xi‖ – 〈z, yi – xi〉 ≥ .

Thus Ci+ is closed and convex. This shows that Cn is closed and convex.
Next, we prove that I – λnA is a nonexpansive mapping. Indeed, we have

∥∥(I – λnA)x – (I – λnA)y
∥∥

=
∥∥(x – y) – λn(Ax –Ay)

∥∥

= ‖x – y‖ – λn〈x – y,Ax –Ay〉 + λn
‖Ax –Ay‖

≤ ‖x – y‖ – λn(α – λn)‖Ax –Ay‖.

In view of the restriction (b), we obtain that I – λnA is nonexpansive. Next, we show that
F ⊂ Cn for each n≥ . From the assumption, we see thatF ⊂ C = C. Assume thatF ⊂ Ci

for some i≥ . For any z ∈F ⊂ Ci, we find from Lemma that

z = Sz = Jλi (z – λiAz).

Put zn = Jλn (xn – λnAxn). Since Jλn and I – λnA are nonexpansive, we have

‖zn – p‖ ≤ ∥∥(xn – λnAxn) – (p – λnAp)
∥∥

≤ ‖xn – p‖. (.)

It follows from (.) that

‖yi – z‖ = ∥∥αixi + ( – αi)Szi – z
∥∥

≤ αi‖xi – z‖ + ( – αi)‖zi – z‖
≤ ‖xi – z‖.

This shows that z ∈ Ci+. This proves that F ⊂ Cn. Notice that xn = PCnx. For every z ∈
F ⊂ Cn, we have

‖x – xn‖ ≤ ‖x – z‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/11
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In particular, we have

‖x – xn‖ ≤ ‖x – PFx‖.

This implies that {xn} is bounded. Since xn = PCnx and xn+ = PCn+x ∈ Cn+ ⊂ Cn, we
arrive at

 ≤ 〈x – xn,xn – xn+〉
≤ –‖x – xn‖ + ‖x – xn‖‖x – xn+‖.

It follows that

‖xn – x‖ ≤ ‖xn+ – x‖.

This implies that limn→∞ ‖xn – x‖ exists. On the other hand, we have

‖xn – xn+‖

= ‖xn – x‖ + 〈xn – x,x – xn+〉 + ‖x – xn+‖

= ‖xn – x‖ – ‖xn – x‖ + 〈xn – x,xn – xn+〉 + ‖x – xn+‖

≤ ‖x – xn+‖ – ‖xn – x‖.

It follows that

lim
n→∞‖xn – xn+‖ = . (.)

Notice that xn+ = PCn+x ∈ Cn+. It follows that

‖yn – xn+‖ ≤ ‖xn – xn+‖.

This in turn implies that

‖yn – xn‖ ≤ ‖yn – xn+‖ + ‖xn – xn+‖ ≤ ‖xn – xn+‖.

In view of (.), we obtain that

lim
n→∞‖xn – yn‖ = . (.)

On the other hand, we have

‖xn – yn‖ = ( – αn)‖xn – Szn‖.

It follows from (.) that

lim
n→∞‖xn – Szn‖ = . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/11
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For any p ∈F , we see that

‖zn – p‖ = ∥∥Jλn (xn – λnAxn) – Jλn (p – λnAp)
∥∥

≤ ‖xn – p‖ – 〈xn – p,Axn –Ap〉 + λ
n‖Axn –Ap‖

≤ ‖xn – p‖ – λn(α – λn)‖Axn –Ap‖. (.)

Notice that

‖yn – p‖ ≤ αn‖xn – p‖ + ( – αn)‖Szn – p‖

≤ αn‖xn – p‖ + ( – αn)‖zn – p‖. (.)

Substituting (.) into (.), we see that

‖yn – p‖ ≤ ‖xn – p‖ – ( – αn)λn(α – λn)‖Axn –Ap‖.

It follows that

( – αn)λn(α – λn)‖Axn –Ap‖ ≤ ‖xn – p‖ – ‖yn – p‖

≤ (‖xn – p‖ + ‖yn – p‖)‖xn – yn‖.

This implies from (.) that

lim
n→∞‖Axn –Ap‖ = . (.)

On the other hand, we have

‖zn – p‖ =
∥∥Jλn (xn – λnAxn) – Jλn (p – λnAp)

∥∥

≤ 〈
(xn – λnAxn) – (p – λnAp), zn – p

〉

=


(∥∥(xn – λnAxn) – (p – λnAp)

∥∥ + ‖zn – p‖

–
∥∥(xn – λnAxn) – (p – λnAp) – (zn – p)

∥∥)

≤ 

(‖xn – p‖ + ‖zn – p‖ – ∥∥xn – zn – λn(Axn –Ap)

∥∥)

≤ 

(‖xn – p‖ + ‖zn – p‖ – ‖xn – zn‖ – λ

n‖Axn –Ap‖

+ λn‖xn – zn‖‖Axn –Ap‖)

≤ 

(‖xn – p‖ + ‖zn – p‖ – ‖xn – zn‖ + λn‖xn – zn‖‖Axn –Ap‖).

It follows that

‖zn – p‖ ≤ ‖xn – p‖ – ‖xn – zn‖ + λn‖xn – zn‖‖Axn –Ap‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/11
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Substituting (.) into (.), we see that

‖yn – p‖ ≤ ‖xn – p‖ – ( – αn)‖xn – zn‖ + ( – αn)λn‖xn – zn‖‖Axn –Ap‖.

It follows that

( – αn)‖xn – zn‖

≤ ‖xn – p‖ – ‖yn – p‖ + ( – αn)λn‖xn – zn‖‖Axn –Ap‖
≤ (‖xn – p‖ + ‖yn – p‖)‖xn – yn‖ + ( – αn)λn‖xn – zn‖‖Axn –Ap‖.

In view of the restriction (a), we obtain from (.) that

lim
n→∞‖xn – zn‖ = . (.)

Since {xn} is bounded, we may assume that there is a subsequence {xni} of {xn} converging
weakly to some point x*. It follows from (.) that zni converges weakly to x*. Notice that

‖Szn – zn‖ ≤ ‖Szn – xn‖ + ‖xn – zn‖.

It follows from (.) and (.) that

lim
n→∞‖Szn – zn‖ = .

In view of the assumption that S is demiclosed at zero, we see that x* ∈ F(S).
Next, we show that x* ∈ (A + B)–(). Notice that zn = Jλn (xn – λnAxn). This implies that

xn – λnAxn ∈ (I + λnB)zn.

That is,

xn – zn
λn

–Axn ∈ Bzn.

Since B is monotone, we get for any (u, v) ∈ B, that

〈
zn – u,

xn – zn
λn

–Axn – v
〉
≥ . (.)

Replacing n by ni and letting i→ ∞, we obtain from (.) that

〈ω – u, –Aω – v〉 ≤ .

This means –Aω ∈ Bω, that is,  ∈ (A + B)(ω). Hence, we get ω ∈ (A + B)–(). This com-
pletes the proof that x* ∈F .
Notice that PFx ⊂ Cn+ and xn+ = PCn+x, we have

‖x – xn+‖ ≤ ‖x – PFx‖.

http://www.fixedpointtheoryandapplications.com/content/2013/1/11


Hecai Fixed Point Theory and Applications 2013, 2013:11 Page 8 of 11
http://www.fixedpointtheoryandapplications.com/content/2013/1/11

On the other hand, we have

‖x – PFx‖ ≤ ∥∥x – x*
∥∥

≤ lim inf
i→∞ ‖x – xni‖

≤ lim sup
i→∞

‖x – xni‖

≤ ‖x – PFx‖.

We, therefore, obtain that

∥∥x – x*
∥∥ = lim

i→∞‖x – xni‖ = ‖x – PFx‖.

This implies xni → x* = PFx. Since {xni} is an arbitrary subsequence of {xn}, we obtain
that xn → PFx as n→ ∞. This completes the proof. �

From Theorem ., we have the following results immediately.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H ,A : C →
H be an α-inverse-strongly monotone mapping, and B be a maximal monotone operator
on H such that the domain of B is included in C. Assume that (A + B)–() 	= ∅. Let {λn} be
a positive real number sequence. Let {αn} be a real number sequence in [, ]. Let {xn} be a
sequence in C generated in the following iterative process:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

C = C,

yn = αnxn + ( – αn)Jλn (xn – λnAxn),

Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖},
xn+ = PCn+x, n≥ ,

where Jλn = (I + λnB)–. Suppose that the sequences {αn} and {λn} satisfy the following re-
strictions:
(a)  ≤ αn ≤ a < ;
(b)  < b ≤ λn ≤ c < α.

Then the sequence {xn} converges strongly to P(A+B)–()x.

Let f : H → (–∞,∞] be a proper lower semicontinuous convex function. Define the
subdifferential

∂f (x) =
{
z ∈ H : f (x) + 〈y – x, z〉 ≤ f (y),∀y ∈H

}

for all x ∈ H . Then ∂f is a maximal monotone operator of H into itself; see [] for more
details. Let C be a nonempty closed convex subset of H and iC be the indicator function
of C, that is,

iCx =

⎧⎨
⎩
, x ∈ C,

∞, x /∈ C.

http://www.fixedpointtheoryandapplications.com/content/2013/1/11
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Furthermore, we define the normal cone NC(v) of C at v as follows:

NCv =
{
z ∈ H : 〈z, y – v〉 ≤ ,∀y ∈H

}

for any v ∈ C. Then iC :H → (–∞,∞] is a proper lower semicontinuous convex function
on H and ∂iC is a maximal monotone operator. Let Jλx = (I + λ∂iC)–x for any λ >  and
x ∈H . From ∂iCx =NCx and x ∈ C, we get

v = Jλx ⇔ x ∈ v + λNCv

⇔ 〈x – v, y – v〉 ≤ , ∀y ∈ C,

⇔ v = PCx,

where PC is the metric projection from H into C. Similarly, we can get that x ∈ (A +
∂iC)–() ⇔ x ∈ VI(A,C). Putting B = ∂iC in Theorem ., we can see Jλn = PC . The fol-
lowing is not hard to derive.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H ,A : C →
H be an α-inverse-strongly monotone mapping, and S : C → C be a quasi-nonexpansive
mapping such that I – S is demiclosed at zero. Assume that F = F(S) ∩ VI(C,A) 	= ∅. Let
{λn} be a positive real number sequence. Let {αn} be a real number sequence in [, ]. Let
{xn} be a sequence in C generated in the following iterative process:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

C = C,

yn = αnxn + ( – αn)SPC(xn – λnAxn),

Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖},
xn+ = PCn+x, n≥ .

Suppose that the sequences {αn} and {λn} satisfy the following restrictions:
(a)  ≤ αn ≤ a < ;
(b)  < b ≤ λn ≤ c < α.

Then the sequence {xn} converges strongly to PFx.

In view of Corollary ., we have the following corollary on variational inequalities.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H and
A : C → H be an α-inverse-strongly monotone mapping. Assume that F = VI(C,A) 	= ∅.
Let {λn} be a positive real number sequence. Let {αn} be a real number sequence in [, ].
Let {xn} be a sequence in C generated in the following iterative process:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

C = C,

yn = αnxn + ( – αn)PC(xn – λnAxn),

Cn+ = {z ∈ Cn : ‖yn – z‖ ≤ ‖xn – z‖},
xn+ = PCn+x, n≥ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/11
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Suppose that the sequences {αn} and {λn} satisfy the following restrictions:
(a)  ≤ αn ≤ a < ;
(b)  < b ≤ λn ≤ c < α.

Then the sequence {xn} converges strongly to PVI(C,A)x.
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