
Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

RESEARCH Open Access

Fixed point theorems in generalized metric
spaces with applications to computer science
Maryam A Alghamdi1, Naseer Shahzad2* and Oscar Valero3

*Correspondence:
nshahzad@kau.edu.sa
2Department of Mathematics, King
Abdulaziz University, P.O. Box 80203,
Jeddah, 21859, Saudi Arabia
Full list of author information is
available at the end of the article

Abstract
In 1994, Matthews introduced the notion of a partial metric space in order to obtain a
suitable mathematical tool for program verification (Matthews in Ann. N.Y. Acad. Sci.
728:183-197, 1994). He gave an application of this new structure to formulate a
suitable test for lazy data flow deadlock in Kahn’s model of parallel computation by
means of a partial metric version of the celebrated Banach fixed point theorem
(Matthews in Theor. Comput. Sci. 151:195-205, 1995). In this paper, motivated by the
utility of partial metrics in computer science, we discuss whether they are a suitable
tool for asymptotic complexity analysis of algorithms. Concretely, we show that the
Matthews fixed point theorem does not constitute, in principle, an appropriate
implement for the aforementioned purpose. Inspired by the preceding fact, we prove
two fixed point theorems which provide the mathematical basis for a new technique
to carry out asymptotic complexity analysis of algorithms via partial metrics.
Furthermore, in order to illustrate and to validate the developed theory, we apply our
results to analyze the asymptotic complexity of two celebrated recursive algorithms.
MSC: 47H10; 54E50; 54F05; 68Q25; 68W40

Keywords: partial metric; fixed point; asymptotic complexity analysis; recurrence
equation; running time of computing

1 Introduction
When a computational programuses a recursion process to find the solution to a problem,
such a process is characterized by obtaining in each step of the computation an approxi-
mation to the aforementioned solution which is better than the approximations obtained
in the preceding steps and, in addition, by obtaining always the final approximation to the
problem solution as the ‘limit’ of the computing process. A mathematical model to this
sort of situations is the so-called Scott model which is based on ideas from order theory
and topology (see [, ] for a detailed account of the Scott model and its applications). In
particular, the order represents some notion of information in such a way that each step of
the computation is identified with an element of the mathematical model which is greater
than (or equal to) the other ones associated with the preceding steps, since each approxi-
mation gives more information about the final solution than those computed before. The
final output of the computational process is seen as the limit of the successive approxima-
tions. Thus the recursion processes are modeled as increasing sequences of elements of
the mathematical model, which is identified with an ordered set, that converge to its least
upper bound with respect to the given topology.

© 2013 Alghamdi et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.fixedpointtheoryandapplications.com/content/2013/1/118
mailto:nshahzad@kau.edu.sa
http://creativecommons.org/licenses/by/2.0

Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118 Page 2 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

In , Matthews introduced the notion of Scott-like topology as a mathematical
framework to model increasing information content sequences in computer science in
the spirit of Scott [].
Let us recall, with the aim of reminding the concept of Scott-like topology, that a pair

(X,≤) is said to be an ordered set provided that X is a nonempty set and ≤ is a reflexive,
antisymmetric and transitive binary relation on X []. Given a subset Y ⊆ X, an upper
bound for Y is an element x ∈ X such that y ≤ x for all y ∈ Y . A least element for Y is
an element z ∈ Y such that z ≤ y for all y ∈ Y . Moreover, a sequence (xn)n∈N in (X,≤) is
increasing if xn ≤ xn+ for all n ∈N.
According to Matthews, a weakly order consistent topology over an ordered set (X,≤)

is a topology T over X such that x≤ y ⇔ x ∈ cl(y) for all x, y ∈ X, where by cl(y) we denote
the closure of {y} with respect to T . Furthermore, a Scott-like topology over an ordered
set (X,≤) is a weakly consistent topology T over X satisfying the following properties:
() every increasing sequence (xn)n∈N in (X,≤) has least upper bound, where N denotes

the set of positive integer numbers;
() for every O ∈ T containing the least upper bound of an increasing sequence (xn)n∈N,

there exists n ∈N such that xn ∈O for all n > n.
In the aforesaid reference [],Matthews introduced also the notion of a partialmetric. In

order to recall this new concept, let us denote by R+ the set of nonnegative real numbers.
Following [], a partial metric on a nonempty set X is a function p : X × X → R+ such

that for all x, y, z ∈ X:
(i) p(x,x) = p(x, y) = p(y, y) ⇔ x = y;
(ii) p(x,x)≤ p(x, y);
(iii) p(x, y) = p(y,x);
(iv) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).
Of course a partial metric space is a pair (X,p) such that X is a nonempty set and p is a

partial metric on X.
The concept of a partial metric, since its introduction by Matthews, has been widely

accepted in computer science (see, for instance, [–]). This is due to the fact that partial
metric spaces can be used as a mathematical tool to model computational processes in
the spirit of Scott. Indeed, each partial metric p on X generates a T topology T (p) on X
which has as a base the family of open p-balls {Bp(x, ε) : x ∈ X, ε > }, where Bp(x, ε) = {y ∈
X : p(x, y) < p(x,x) + ε} for all x ∈ X and ε > . Moreover, every partial metric p induces an
order ≤p on X as follows: x≤p y⇔ p(x, y) = p(x,x).
The next result reveals the reason for which the partial metric spaces can be used as a

suitable mathematical tool to describe Scott processes (see [] for a deeper discussion).

Proposition  Let (X,p) be a complete partial metric space.Then the partial metric topol-
ogy T (p) is a Scott-like topology over (X,≤p), and thus every increasing sequence (xn)n∈N in
(X,≤p) has least upper bound and converges to it with respect to T (p).

Remark  Note that the fact that the sequence (xn)n∈N is ascending with least upper
bound x provides that xn ≤p x for all n ∈ N and, thus, that p(xn,x) –p(xn,xn) = . So, in the
preceding proposition, we actually have the convergence of (xn)n∈N to x is with respect to
T (ps).

http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118 Page 3 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Inspired by the applications to program verification, Matthews extended Banach’s fixed
point theorem to the framework of partial metric spaces in [], and he used it to formulate
a suitable test for lazy data flow deadlock in Kahn’s model of parallel computation in [].
The aforementioned extension of Banach’s fixed point theorem can be stated as follows.

Theorem  Let f be a mapping of a complete partial metric space (X,p) into itself such
that there is s ∈ [, [such that

p
(
f (x), f (y)

) ≤ sp(x, y)

for all x, y ∈ X. Then f has a unique fixed point. Moreover, if x∗ ∈ X is the fixed point of f ,
then p(x∗,x∗) = .

According to [], a sequence (xn)n∈N in a partial metric space (X,p) converges to a point
x ∈ X with respect to T (p) ⇔ p(x,x) = limn→∞ p(x,xn). Moreover, a sequence (xn)n∈N in
a partial metric space (X,p) is called a Cauchy sequence if limn,m→∞ p(xn,xm) exists and
is finite. Furthermore, a partial metric space (X,p) is said to be complete if every Cauchy
sequence (xn)n∈N in X converges, with respect to T (p), to a point x ∈ X such that p(x,x) =
limn,m→∞ p(xn,xm).
According to [], every partial metric induces in a natural way a metric. Indeed, given a

partial metric space (X,p), then the function ps : X ×X → R+ defined by

ps(x, y) = p(x, y) – p(x,x) – p(y, y)

for all x, y ∈ X is a metric on X. Moreover, a sequence (xn)n∈N in (X,p) converges to x ∈ X
with respect to T (ps) if and only if limn→∞ p(x,xn) = limn→∞ p(xn,xn) = p(x,x). Further-
more, a sequence in (X,p) is Cauchy if and only if it is Cauchy in the metric space (X,ps),
and (X,p) is complete if and only if (X,ps) is complete.
SinceMatthews published Theorem , an intense research activity on fixed point results

in partial metric spaces have been developed. A large number of fixed point results in the
metric framework have been extended to the partial metric context in [, –].
In the light of the facts that, on the one hand, partial metric spaces are a useful tool for

solving practical problems that arise in several fields of computer science and, on the other
hand, the scientific community has a growing interest in partial metric fixed point theory,
in this paper our goal is to show that partial metric spaces can be used satisfactorily for the
asymptotic complexity analysis of algorithms by means of fixed point techniques. To this
end, we discuss whether Theorem  can be used for such a purpose. However, we show
that, in principle, this question has a negative answer and, for this reason, we delve into
the study of fixed point techniques in asymptotic complexity analysis of algorithms. Thus,
we present a mathematical technique for discussing the complexity of algorithms whose
foundation lies in the use of two new fixed point results that we provide for partial metric
spaces. In order to show the potential applicability of the developed theory and to validate
our new fixed point technique, we apply it to analyze formally the asymptotic complexity
of two celebrated recursive algorithms, namely, Quicksort and Hanoi.
The remainder of the paper is organized as follows. In Section we prove the announced

fixed point theorems for self-mappings defined on complete partial metric spaces. More-

http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118 Page 4 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

over, in the same section, we provide examples that show that the hypothesis in the state-
ments of our results cannot be weakened. Section  is devoted to introducing the reader
to fixed point techniques for asymptotic complexity analysis of algorithms. Concretely,
general and fundamental aspects of asymptotic complexity analysis are recalled and, in
addition, the reference fixed point technique to carry out the complexity analysis of algo-
rithms, due to Schellekens and in which our study is based, is presented in detail in order
to motivate our subsequent work developed in Section . In the latter section, we discuss
the feasibility of using the Matthews fixed point theorem as a mathematical tool for the
asymptotic complexity analysis of algorithms and, in particular, we show that the aforesaid
result is not, in principle, appropriate for such a purpose. Accordingly, in the same sec-
tion, we introduce a new mathematical technique for the asymptotic complexity analysis
of algorithms whose basis is provided by the fixed point results proved in Section . We
end the section, and thus the paper, applying the developed fixed point method to analyze
the asymptotic complexity of the aforesaid recursive algorithms.

2 The fixed point theorems
In this section we present our main results which will play a central role in the application
to asymptotic complexity analysis developed in Section .. To this end, let us recall that
a mapping f from an ordered set (X,≤) into itself is monotone if f (x) ≤ f (y) whenever
x ≤ y. Moreover, according to [], a mapping from an ordered set (X,≤) into itself is said
to be ≤-continuous provided that the least upper bound of (f (xn))n∈N is f (x∗) for every
increasing sequence (xn)n∈N whose least upper bound exists and is x∗. Of course every
≤-continuous mapping is monotone.

Theorem  Let (X,p) be a complete partial metric space and let f : X → X be a ≤p-
continuous mapping. If there exists x ∈ X such that x ≤p f (x), then f has a fixed point
in ↑ x = {x ∈ X : x ≤p x}.

Proof Let x ∈ X such that x ≤p f (x). Since f is monotone, we have that

x ≤p f (x)≤p f (x)≤p · · · ≤p f n(x) ≤p f n+(x) ≤p · · · .

Observe that we can assume, without loss of generality, that x
= f (x) since otherwise we
have guaranteed the existence of the fixed point in ↑ x.
Since the sequence (f n(x))n∈N is increasing in (X,≤p), we have, by Proposition  and

Remark , that there exists x∗ ∈ X such that x∗ is the least upper bound of (f n(x))n∈N and,
in addition, that limn→∞ f n(x) = x∗ with respect to T (ps). Since f is ≤p-continuous, we
have that f (x∗) is the least upper bound of (f n(x))n∈N. Whence we immediately obtain
that f (x∗) = x∗ and that x∗ ∈↑ x. �

Remark  Observe that the proof of Theorem  follows applying similar arguments to
those given in the proof of Kleen’s theorem or Tarski-Kantorovitch’s theorem for map-
pings defined from ω-chain-complete ordered sets into itself (see [, ] for more de-
tails). However, we have included a detailed proof of the aforementioned result for the
sake of completeness and in order to help the reader.

The next example shows that the≤p-continuity of the mapping cannot be deleted in the
statement of Theorem .

http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118 Page 5 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Example  Let p be the partial metric space on (,∞] given by

p∞(x, y) =max

{

x
,

y

}

for all x, y ∈ (,∞], where we adopt the convention that 
∞ = . It is not hard to check

that the partial metric space ((,∞],p∞) is complete and that x ≤p∞ y ⇔ x ≤∞ y, where
≤∞ stands for the usual order on the extended real line. Consider the subset X = {, } of
(,∞]. Then the partial metric space (X,p∞) is also complete. Now, define the mapping
f : X → X by f () =  and f () = . Clearly,  ≤p∞= f () = . Observe that f is not ≤p-
continuous because f is not monotone. In fact,  ≤p∞  and  = f () �p∞ f () = . It is
clear that f has no fixed points.

Let us recall that, given a partial metric (X,p), a mapping f : X → X is continuous pro-
vided that f is continuous from (X,T (p)) into itself.

Remark  Note that every monotone and continuous mapping f from a complete par-
tial metric space into itself is ≤p-continuous. Indeed, assume that ((xn))n∈N is an increas-
ing sequence in (X,≤p). Since (X,p) is complete, we have guaranteed, by Proposition 
and Remark , that there exists x∗ ∈ X such that x∗ is the least upper bound of (xn)n∈N
and, in addition, that limn→∞ xn = x∗ with respect to T (ps). Since f is continuous, we
have that limn→∞ f (xn) = f (x∗) with respect to T (p). The monotonicity of f provides that
f (xn) ≤p f (x∗) and, thus, that p(f (x), f (xn)) – p(f (xn), f (xn)) = . Whence we deduce that
limn→∞ f (xn) = f (x∗) with respect to T (ps). Moreover, since the sequence (f (xn))n∈N is in-
creasing and the partial metric space (X,p) is complete, we have guaranteed the existence
of the least upper bound of (f (xn))n∈N, say y∗ ∈ X, in such a way that limn→∞ f (xn) = y∗

with respect to T (ps). Therefore f (x∗) = y∗, as claimed.

In the light of Theorem  and Remark , we immediately obtain the following result.

Corollary  Let (X,p) be a complete partial metric space and let f : X → X be amonotone
and continuous mapping. If there exists x ∈ X such that x ≤p f (x), then f has a fixed
point in ↑ x = {x ∈ X : x ≤p x}.

In the following, given a partial metric space (X,p), we will say that a mapping f : X → X
is ps-continuous provided that f is continuous from (X,T (ps)) into itself. In our subse-
quent result, the ps-continuity plays a central role.

Theorem  Let (X,p) be a complete partial metric space and let f : X → X be a monotone
and ps-continuous mapping. If there exists x ∈ X such that f (x) ≤p x, then f has a fixed
point in ↓ x = {x ∈ X : x ≤p x}.

Proof Let x ∈ X such that f (x) ≤p x. We assume, without loss of generality, that x
=
f (x) since otherwise we have guaranteed the existence of the fixed point in ↓ x.
Since f is monotone, we have that

x ≥p f (x)≥p f (x)≥p · · · ≥p f n(x) ≥p f n+(x) ≥p · · · .

http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118 Page 6 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

It follows that

p
(
f n(x), f n(x)

) ≤ p
(
f n(x), f n+(x)

)
= p

(
f n+(x), f n+(x)

)
for all n ∈ N. Thus the sequence (p(f n(x), f n(x)))n∈N is decreasing in R+. So, there exists
r ∈ R+ such that limn→∞ p(f n(x), f n(x)) = r. Then limm,n→∞ p(f m(x), f n(x)) = r, since
p(f m(x), f n(x)) = p(f n(x), f n(x)) for allm,n ∈Nwith n≥ m. It follows that the sequence
(f n(x))n∈N is Cauchy. The fact that (X,p) is complete yields the existence of x∗ ∈ X such
that limn→∞ p(f n(x), f n(x)) = limn→∞ p(f n(x),x∗) = p(x∗,x∗).
Next we show that x∗ ∈↓ x. It is clear that

p
(
x∗,x

)
– p

(
x∗,x∗)

≤ p
(
x∗, f n(x)

)
+ p

(
f n(x),x

)
– p

(
f n(x), f n(x)

)
– p

(
x∗,x∗)

= p
(
x∗, f n(x)

)
– p

(
x∗,x∗)

since p(f n(x),x) = p(f n(x), f n(x)) for all n ∈ N. By the fact that limn→∞ p(f n(x),x∗) =
p(x∗,x∗), we conclude that p(x∗,x) = p(x∗,x∗) and, thus, that x∗ ≤p x.
Now we prove that x∗ is a fixed point of f . On the one hand, we have that

p
(
x∗, f

(
x∗)) – p

(
f
(
x∗), f (x∗))

≤ p
(
x∗, f n(x)

)
+ p

(
f n(x), f

(
x∗)) – p

(
f n(x), f n(x)

)
– p

(
f
(
x∗), f (x∗))

for all n ∈ N. On the other hand, we have that limn→∞ p(f n(x), f n(x)) = p(f n(x),x∗) and,
by the ps-continuity of f , that limn→∞ p(f n(x), f (x∗)) = p(f (x∗), f (x∗)). Thus, we deduce
that p(x∗, f (x∗)) = p(f (x∗), f (x∗)). So, we obtain that f (x∗) ≤p x∗.
Moreover, we have that

p
(
x∗, f

(
x∗)) – p

(
x∗,x∗)

≤ p
(
x∗, f n(x)

)
+ p

(
f n(x), f

(
x∗)) – p

(
f n(x), f n(x)

)
– p

(
x∗,x∗)

for all n ∈N. Again, we have that limn→∞ p(f n(x),x∗) = p(x∗,x∗) and, by the ps-continuity
of f , that limn→∞ p(f n(x), f n(x)) = p(f n(x), f (x∗)). Thus we deduce that p(x∗, f (x∗)) =
p(x∗,x∗). Whence we obtain that x∗ ≤p f (x∗).
We conclude from f (x∗) ≤p x∗ ≤p f (x∗) that f (x∗) = x∗. �

The next examples show that the ps-continuity andmonotonicity of themapping cannot
be deleted in the statement of Theorem .

Example  Consider the partial metric p :R+ ×R+ →R+ given by p(x, y) =max{x, y}. It
is clear that the partial metric space (R+,p) is complete and ps(x, y) = |y–x| for all x, y ∈R+.
Moreover, we have that x ≤p y⇔ y ≤ x, where ≤ stands for the usual order on R+. Define
the mapping f :R+ →R+ by

f (x) =

⎧⎨
⎩x +  if x > ,

x +  if x≤ 

http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118 Page 7 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

for all x ∈ R+. Then we have that f is monotone and that  = f () ≤p . It is easy to check
that f is not ps-continuous. Moreover, it is clear that f has no fixed points.

Example  Let X = {, }. Consider the restriction of the partial metric p defined in Ex-
ample  to the setX. Denote the aforesaid restriction by p again.Of course the partialmet-
ric space (X,p) is complete. Now, define the mapping f : X → X by f () =  and f () = . It
follows easily that f is ps-continuous. Clearly,  = f () ≤p . Moreover, f is not monotone
since ≤p  and  = f ()�p f () = . Furthermore, f has no fixed points.

3 Asymptotic complexity analysis of algorithms
3.1 Preliminaries
In computer science, the complexity analysis of an algorithm is based on determining
mathematically the quantity of resources needed by the algorithm to solve the problem
for which it has been designed. A typical resource, playing a central role in complexity
analysis, is the execution time or running time of computing. Since there are often many
algorithms to solve the same problem, one objective of the complexity analysis is to assess
which of them is faster when large inputs are considered. To this end, it is necessary to
compare their running time of computing. This is usually done bymeans of the asymptotic
analysis in which the running time of an algorithm is denoted by a functionT :N→ (,∞]
in such a way that T(n) represents the time taken by the algorithm to solve the problem
under consideration when the input of the algorithm is of size n. Let us denote byRT the
set formed by all functions fromN into (,∞]. Of course the running time of an algorithm
does not only depend on the input size n, but it depends also on the particular input of the
size n (and the distribution of the data). Thus the running time of an algorithm is different
when the algorithm processes certain instances of input data of the same size n. As a con-
sequence, for the purpose of size-based comparisons, it is necessary to distinguish three
possible behaviors in the complexity analysis of algorithms. These are the so-called best
case, the worst case and the average case. The best case and the worst case for an input of
size n are defined by the minimum and the maximum running time of computing over all
inputs of the size n, respectively. The average case for an input of size n is defined by the
expected value or average over all inputs of size n.
In general, to determine exactly the function which describes the running time of com-

puting of an algorithm is an arduous task. However, in most situations it is useful to know
the running time of computing of an algorithm in an ‘approximate’ way rather than in an
exact one. For this reason, the asymptotic complexity analysis of algorithms is focused on
obtaining the ‘approximate’ running time of computing of an algorithm, and this is done
by means of the �-notation. Let us recall how the �-notation allows to achieve such a
goal.
Let f ∈ RT denote the running time of computing of an algorithm, then the statement

f ∈O(g), where g ∈RT , means that there exist n ∈N and c ∈R+ such that f (n) ≤∞ cg(n)
for all n ∈ N such that n ≤ n (≤∞ stands for the usual order on the extended real line).
So, the function g gives an asymptotic upper bound of the running time f and, thus, an
‘approximate’ information of the running time of the algorithm. Following the standard
notation, when g is an asymptotic upper bound of f , we write f ∈O(g).
Sometimes in the analysis of the complexity of an algorithm, it is useful to assess an

asymptotic lower bound of the running time of computing. In this case, the �-notation

http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118 Page 8 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

plays a central role. Thus the statement f ∈ �(g) means that there exist n ∈ N and
c >  such that cg(n) ≤∞ f (n) for all n ∈ N with n ≤ n. Of course, and similarly to the
O-notation case, when the time taken by the algorithm to solve the problem f is unknown,
the function g yields an ‘approximate’ information of the running time of the algorithm in
the sense that the algorithm takes a time to solve the problem bounded below by g .
It is clear that the best situation, when the complexity of an algorithm is discussed,

matches up with the case in which we can find a function g ∈ RT in such a way that
the running time f satisfies the condition f ∈ O(g) ∩ �(g), denoted by f ∈ �(g), because,
in this case, we obtain a ‘tight’ asymptotic bound of f and, thus, a total asymptotic infor-
mation about the time taken by the algorithm to solve the problem under consideration.
From now on, we will say that f belongs to the asymptotic complexity class of g whenever
f ∈ �(g).
In the light of the preceding discussion, to determine, from an asymptotic complexity

analysis viewpoint, the running time of an algorithm consists of obtaining its asymptotic
complexity class.
For a fuller treatment of asymptotic complexity analysis of algorithms, we refer the

reader to [, ].

3.2 The complexity space approach
In , Schellekens introduced a topological foundation for the asymptotic complexity
analysis of algorithms []. The aforementioned foundation is based on the notions of
quasi-metric and complexity space.
Let us recall that, following [], a quasi-metric on a nonempty set X is a function d :

X ×X →R+ such that for all x, y, z ∈ X:
(i) d(x, y) = d(y,x) =  ⇔ x = y;
(ii) d(x, y) ≤ d(x, z) + d(z, y).
Aquasi-metric space is a pair (X,d) such thatX is a nonempty set and d is a quasi-metric

on X.
Each quasi-metric d on X generates a T-topology T (d) on X which has as a base the

family of open d-balls {Bd(x, ε) : x ∈ X, ε > }, where Bd(x, ε) = {y ∈ X : d(x, y) < ε} for all
x ∈ X and ε > .
Given a quasi-metric d on X, the function ds : X × X → R+ defined by ds(x, y) =

max{d(x, y),d(y,x)} is a metric.
A quasi-metric space (X,d) is called bicomplete if the metric space (X,ds) is complete.
Let us recall that the complexity space is the pair (C,dC), where

C =

{
f ∈RT :

∞∑
n=

–n


f (n)
< ∞

}

and dC is the bicomplete quasi-metric on C defined by

dC(f , g) =
∞∑
n=

–nmax

{


g(n)
–


f (n)

, 
}
.

Obviously, we adopt the convention that 
∞ = .

According to [], from a complexity analysis point of view, it is possible to associate
a function of C with each algorithm in such a way that such a function represents, as a

http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118 Page 9 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

function of the size of the input data, the running time of computing of the algorithm.
Because of this, the elements of C are called complexity functions. Moreover, given two
functions f , g ∈ C , the numerical value dC(f , g) (the complexity distance from f to g) can
be interpreted as the relative progress made in lowering the complexity by replacing any
program P with a complexity function f by any program Q with a complexity function g .
Therefore, if f
= g , the condition dC(f , g) =  can be read as f is ‘at least as efficient’ as g
on all inputs. In fact, we have that dC(f , g) =  ⇔ f (n) ≤∞ g(n) for all n ∈ N and, thus, the
fact that dC(f , g) =  (dC(g, f) = ) implies that f ∈O(g) (f ∈ �(g)).
The applicability of the complexity space to the asymptotic complexity analysis of algo-

rithms was illustrated by Schellekens in [].
In particular, he introduced a method, based on a fixed point theorem for functionals

defined on the complexity space into itself, to provide the asymptotic upper bound of those
algorithmswhose running time of computing satisfies a recurrence equation of Divide and
Conquer type. Let us recall the aforenamed method.
A Divide and Conquer algorithm solves a problem of size n (n ∈ N) splitting it into a

subproblems of size n
b , for some constants a, b with a,b ∈N and a,b > , and solving them

separately by the same algorithm. After obtaining the solution of the subproblems, the al-
gorithm combines all subproblem solutions to give a global solution to the original prob-
lem. The recursive structure of a Divide and Conquer algorithm leads to a recurrence
equation for the running time of computing. In many cases the running time of a Divide
and Conquer algorithm is the solution to the Divide and Conquer recurrence equation of
the form

T(n) =

⎧⎨
⎩c if n = ,

aT(nb) + h(n) if n ∈Nb,
()

where Nb = {bk : k ∈ N}, c >  denotes the complexity on the base case (i.e., the problem
size is small enough and the solution takes constant time), and h(n) represents the time
taken by the algorithm in order to divide the original problem into a subproblems and to
combine all subproblems solutions into a unique one (h ∈ C and h(n) <∞ ∞ for all n ∈N).
Notice that for Divide and Conquer algorithms with running time satisfying the recur-

rence equation (), it is typically sufficient to obtain the complexity on inputs of size n,
where n ranges over the set Nb [, ].
Typical examples of algorithms whose running time of computing can be obtained by

means of the recurrence () are Quicksort (best case behavior) and Mergesort (all behav-
iors) (see [] for a detailed discussion about the both aforesaid algorithms).
The method introduced by Schellekens allows to show that the Divide and Conquer re-

currence equation () has a unique solution and, in addition, to provide an upper asymp-
totic complexity bound of such a solution. To this end, denote by Cb,c the subset of C given
by

Cb,c =
{
f ∈ C : f () = c and f (n) = ∞ for all n ∈N\Nb with n > 

}
,

and by dC |Cb,c the restriction of dC to Cb,c.
We have that the quasi-metric space (Cb,c,dC |Cb,c) is bicomplete since the quasi-metric

space (C,dC) is bicomplete [] and the set Cb,c is closed in (C,ds
C).

http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118 Page 10 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Next we associate a functional �T : Cb,c → Cb,c with the recurrence equation () defined
as follows:

�T (f)(n) =

⎧⎪⎪⎨
⎪⎪⎩
c if n = ,

∞ if n /∈Nb and n > ,

af (nb) + h(n) otherwise.

()

Of course a complexity function in Cb,c is a solution to the recurrence equation () if and
only if it is a fixed point of the functional �T . It was proved in [] that

dC |Cb,c
(
�T (f),�T (g)

) ≤ 
a
dC |Cb,c (f , g) ()

for all f , g ∈ Cb,c. So, by Banach’s fixed point theorem for metric spaces, we deduce that the
functional �T : Cb,c → Cb,c has a unique fixed point and, thus, the recurrence equation ()
has a unique solution.
In order to obtain the asymptotic upper bound of the solution to the recurrence equation

(), Schellekens introduced a special class of functionals known as improvers.
Let C ⊆ C , a functional � : C → C is called an improver with respect to a function f ∈ C

provided that � is monotone and that �(f)(n) ≤∞ f (n) for all n ∈N.
Taking into account the exposed facts, the following result was stated in [].

Theorem  The Divide and Conquer recurrence equation () has a unique solution fT
in Cb,c. Moreover, if the monotone functional �T associated to (), and given by (), is an
improver with respect to some function g ∈ Cb,c, then the solution to the recurrence equation
satisfies that fT ∈O(g).

In [] Schellekens discussed the complexity class ofMergesort in order to illustrate the
utility of Theorem . The Mergesort running time of computing (average case behavior)
satisfies the following particular case of the recurrence equation ():

T(n) =

⎧⎨
⎩c if n = ,

T(n) +
n
 if n ∈N.

()

Of course Theorem  provides that the recurrence equation () has a unique solution
f MT ∈ C,c. In addition, it is not hard to check that the functional �T given by () and in-
duced by the recurrence equation () is an improver with respect to the complexity func-
tion gk ∈ C,c, with k > , if and only if k ≥ 

 , where

gk(n) =

⎧⎨
⎩c if n = ,

kn log(n) if n ∈N.

Therefore, by Theorem , we conclude that f MT ∈O(g 

). Hence the complexity function

g 

, or equivalently O(n log(n)), gives an asymptotic upper bound of the running time of

computing of the aforenamed algorithm.
Furthermore, it must be stressed that Schellekens provided the asymptotic lower bound,

and thus the asymptotic complexity class, of the running time of Mergesort (average

http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118 Page 11 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

case behavior) in []. Concretely, it was obtained that such a running time of comput-
ing belongs to �(n log(n)). Nevertheless, the asymptotic lower bound was obtained ap-
plying standard arguments that are not based on the use of fixed point techniques. So,
Schellekens proved that Mergesort running time (average case behavior) belongs to the
asymptotic complexity class �(n log(n)), but the fixed point technique was used only to
provide the asymptotic upper bound.

4 Asymptotic complexity analysis of algorithms and partial metric spaces
Motivated by the usefulness of partial metric spaces in program verification, we wonder
if this kind of generalized metric spaces are also useful in asymptotic complexity analysis
in the spirit of Schellekens. Of course it seems natural to attempt to apply Theorem  (in
Section ) in order to obtain a fixed point technique for asymptotic complexity analysis
of algorithms based on the use of partial metric spaces. However, the following reasoning
shows that the aforementioned result cannot be applied for this purpose. To this end, let
us recall some additional and useful concepts about partial metrics and complexity spaces.
Following [] the set C can be endowed with a partial metric pC defined for all f , g ∈ C

by

pC(f , g) =
∞∑
n=

–nmax

{


f (n)
,


g(n)

}
.

Obviously, we make again the assumption that 
∞ = .

Notice that although, in principle, several partial metrics could be defined on C with the
aim of developing a mathematical foundation of asymptotic complexity analysis by means
of partial metric spaces, it seems reasonable to consider pC as a (partial metric) complexity
distance because of the following reasons.
On the one hand, it allows to retrieve the Schellekens (quasi-metric) complexity dis-

tance dC . Indeed, the following correspondences between quasi-metric and partial metric
spaces was stated in [].

Proposition  If (X,p) is a partial metric space, then the function dp : X × X → R+ de-
fined by dp(x, y) = p(x, y) – p(x,x) is a quasi-metric such that T (p) = T (dp).

In the light of Proposition , we have that the partialmetric pC induces the quasi-metric
dpC on C given by

dpC (f , g) = pC(f , g) – pC(f , f)

for all f , g ∈ C . Moreover, it is not hard to see that

pC(f , g) – pC(f , f) = dC(f , g),

f , g ∈ C and, thus, that dpC (f , g) = dC(f , g) for all f , g ∈ C .
On the other hand, the order induced by the partial metric pC , ≤pC , is exactly the point-

wise order relation defined on C . Indeed, given f , g ∈ C , we have that

f ≤pC g ⇔ pC(f , g) = pC(f , f) ⇔ f (n) ≤∞ g(n)

http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118 Page 12 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

for all n ∈ N. Whence we obtain that f ≤pC g implies that f ∈ O(g). Observe that the
last implication recovers the information yielded by the condition dC(f , g) =  in the
Schellekens approach.
Furthermore, the completeness of the partial metric space (C,pC) is guaranteed by the

bicompleteness of the complexity space (C,dC) and the following result which was proved
in [].

Proposition  If (X,p) is a partialmetric space, then the below assertions are equivalent:
() (X,p) is complete.
() (X,dp) is bicomplete.

Since the partial metric space (C,pC) is complete, so is the partial metric (Cb,c,pC |Cb,c).
Now, for the purpose of applying Theorem  to discuss the complexity of Divide and

Conquer algorithms whose running time of computing satisfy the Divide and Conquer
recurrence equation (), suppose that there exists s ∈ [, [such that

pC |Cb,c
(
�T (f),�T (g)

) ≤ spC |Cb,c (f , g)

for all f , g ∈ Cb,c, where �T is the functional given by ().
Of course, we only consider the case of s ∈], [because it is evident that the case s = 

gives a contradiction.
Take f , g ∈ Cb,c such that f (n) = c and g(n) = (c + ) for all n ∈Nb. It is clear that

pC |Cb,c
(
�T (f),�T (g)

)
=


c

+
∞∑
n=

–b
n
max

{


ac + h(bn)
,


a(c + ) + h(bn)

}
.

Moreover,

pC |Cb,c (f , g) =

c

+
∞∑
n=

–b
n
max

{


f (bn)
,


g(bn)

}
≤

∞∑
n=

–nmax

{

c

,


(c + )

}

=

c

.

Applying our hypothesis, we obtain that


c

= pC |Cb,c
(
�T (f),�T (g)

) ≤ spC |Cb,c (f , g) = s

c

.

As a result we deduce that  ≤ s < , which is a contradiction.
Consequently, when we consider the partial metric pC as a complexity distance instead

the original quasi-metric dC , Theorem  cannot be applied to the asymptotic complexity
analysis of those algorithms whose running time of computing leads to the Divide and
Conquer recurrence equation ().
We want to point out that the above reasoning was first introduced in [] in order to

show the impossibility of using Theorem  to analyze the Divide and Conquer recurrence
equations. As a consequence, in the aforesaid reference a fixed point technique, which
differs from the technique that we will introduce in the remainder of this section, was
introduced to discuss the complexity of algorithms via the use of partial quasi-metrics,
and not partial metrics, and a few aspects of language theory.

http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118 Page 13 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

4.1 The fixed point technique for asymptotic complexity analysis based on
partial metric spaces

Inspired by the impossibility of developing a fixed point technique for the asymptotic com-
plexity analysis of algorithms based on the use of Theorem , we present a new fixed point
technique that respects the spirit of the original Schellekens technique and whose foun-
dation lies in the use of Theorems  and  in Section .
In the complexity analysis of algorithms, Divide and Conquer algorithms belong to the

wider class of recursive algorithms. In many cases the running time of imputing of the
latter is the solution to the following recurrence equation:

T(n) =

⎧⎨
⎩c if n = ,

aT(n – ) + h(n) if n ≥ ,
()

where c > , a ≥  and h ∈ C with h(n) <∞ ∞ for all n ∈N.
Observe that the discussion of the asymptotic complexity of the Divide and Conquer

algorithms introduced in Section . can be carried out from the recurrence equation
(). In fact, as discussed in Section ., the running time of computing of the aforesaid
algorithms is the solution to the recurrence equation

T(n) =

⎧⎨
⎩c if n = ,

aT(nb) + h(n) if n ∈Nb.

Clearly, the preceding Divide and Conquer recurrence equation can be retrieved as a par-
ticular case of the recurrence equation (). Indeed, the Divide and Conquer recurrence
equation can be transformed into the following one:

S(m) =

⎧⎨
⎩c ifm = ,

aS(m – ) + r(m) ifm > ,
()

where S(m) = T(bm–) and r(m) = h(bm–) for allm ∈N.
The remainder of this section is devoted to introducing, by means of the partial met-

ric space (C,pC), a new fixed point technique in the spirit of Schellekens for yielding the
asymptotic complexity class of those recursive algorithms whose running time is the so-
lution to the recurrence equation ().

.. The existence and uniqueness of solution
Consider the subset Cc of C given by

Cc =
{
f ∈ C : f () = c

}
.

Define the functional �T : Cc → Cc by

�T (f)(n) =

⎧⎨
⎩c if n = ,

af (n – ) + h(n) if n≥ 
()

http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118 Page 14 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

for all f ∈ Cc. It is clear that a complexity function in Cc is a solution to the recurrence
equation () if and only if it is a fixed point of the functional �T .
In order prove the announced existence and uniqueness of solution to the recurrence

equation (), we will need the following auxiliary result.

Lemma  Let �T : Cc → Cc be the functional given by () and let fc,∞ ∈ Cc be the com-
plexity function given by

fc,∞(n) =

⎧⎨
⎩c if n = ,

∞ if n≥ .

Then the following statements hold:
() �T is monotone.
() �T is continuous and ps-continuous.
() �T (fc,∞) ≤pCc fc,∞.

Proof () Consider f , g ∈ Cc such that f ≤pCc g . Then f (n) ≤∞ g(n) for all n ∈ N. Thus we
have that �T (f)() = �T (g)() = c and

�T (f)(n) = af (n – ) + h(n) ≤∞ ag(n – ) + h(n) = �T (g)(n)

for all n ∈N with n≥ . It follows that �T (f) ≤pCc �T (g).
() First of all we prove that �T is continuous from (X,T (p)) into itself. Indeed, for the

purpose of contradiction, assume that there exists a sequence (fk)k∈N in Cc which con-
verges to f ∈ Cc with respect to T (pCc) and, in addition, the sequence (�T (fk))k∈N does not
converge to �T(f) with respect to T (pCc). Then we have that there exists ε >  such that
for each n ∈ N there ism ≥ n with

ε ≤ pCc
(
�T (fm),�T (f)

)
– pCc

(
�T (f),�T (f)

)
and

pCc (f , fm) – pCc (f , f) < ε.

Then we have that

ε ≤
∞∑
n=

–nmax

{


afm(n – ) + h(n)
,


af (n – ) + h(n)

}
–

∞∑
n=

–n


af (n – ) + h(n)

≤ 
a

(∞∑
n=

–nmax

{


fm(n)
,


f (n)

}
–


f (n)

)

=

a

(
pCc (f , fm) – pCc (f , f)

)
< ε,

which is a contradiction. It follows that �T is continuous from (Cc,T (pCc)) into itself.
Next we prove that�T is continuous from (Cc,T (psCc)) into itself. To this end, we assume

that there exists a sequence (fk)k∈N in Cc which converges to f ∈ Cc with respect to T (psCc)

http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118 Page 15 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

and, in addition, the sequence (�T (fk))k∈N does not converge to �T (f) with respect to
T (psCc). By the continuity of �T , we deduce that necessarily there exists ε >  such that for
each n ∈N there ism≥ n with

ε ≤ pCc
(
�T (fm),�T (f)

)
– pCc

(
�T (fm),�T (fm)

)
and

psCc (f , fm) < ε.

If follows that

ε ≤
∞∑
n=

–nmax

{


afm(n – ) + h(n)
,


af (n – ) + h(n)

}
–

∞∑
n=

–n


afm(n – ) + h(n)

≤ 
a

(∞∑
n=

–nmax

{


fm(n)
,


f (n)

}
–


fm(n)

)

=

a

(
pCc (f , fm) – pCc (fm, fm)

)
≤ 

a
psCc (f , fm) < ε,

which is a contradiction. Whence we conclude that �T is continuous from (Cc,T (psCc))
into itself, i.e., �T is ps-continuous.
() It is clear that �T (fc,∞)() = c = fc,∞(). Moreover,

�T (fc,∞)() = afc,∞() + h() = ac + h()≤∞ fc,∞() = ∞.

Finally,

�T (fc,∞)(n) = ∞ = fc,∞(n)

for all n ∈ N with n > . Consequently, we obtain that �T (fc,∞)(n)≤∞ fc,∞(n) for all n ∈N.
Therefore �T (fc,∞)≤pCc fc,∞. �

Remark  It should be stressed that, given a partial metric space (X,p), the continu-
ous and ps-continuous mappings f : X → X are called properly continuous in []. So, the
functional �T , by assertion () in the statement of Lemma , is properly continuous.

According to [], the quasi-metric space (Cc,dC |Cc) is bicomplete. Hence, by Proposi-
tion , we have that the partial metric space (Cc,pCc) is complete.

Theorem  The recurrence equation () has a unique solution fT in Cc.

Proof The completeness of (Cc,pCc) and Lemma  provide the conditions in the statement
of Theorem . So, we have that �T has a fixed point in ↓ fc,∞. Since ↓ fc,∞ ∩ Cc = Cc, we
obtain the existence of a fixed point of f in Cc.

http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118 Page 16 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

It remains to prove the uniqueness of the fixed point. To this end, assume that fT , gT ∈ Cc
are solutions to the recurrence equation (). Next we will prove by induction over n that
fT = gT . Since fT , gT are solutions to the recurrence equation (), we have that they are
fixed points of the functional �T , i.e., �T (fT) = �T (gT). Hence we have that

fT () = �T (fT)() = c = �T (gT)() = gT ().

Now assume that �(fT)(n) = �(gT)(n) with n > . Then

fT (n + ) = �T (fT)(n + ) = afT (n) + h(n + )

= agT (n) + h(n + ) = �T (gT)(n + ) = gT (n + ).

Consequently, fT = gT and, thus, �T has a unique fixed point in Cc. Therefore the recur-
rence equation () has a unique solution in Cc. �

.. The asymptotic complexity class of the solution
In the next result, we obtain the announced method to provide the complexity class of an
algorithm whose running time of computing satisfies the recurrence equation (). To this
end, let us recall that, givenC ⊆ C , a monotone functional� : C → C is called an improver
with respect to a function f ∈ C provided that �(f) ≤pCc f (see Section .). Furthermore,
on account of [], a monotone functional � : C → C is said to be a worsener with respect
to a function f ∈ C provided that f ≤pCc �(f).
Observe that the computational meaning of the improvers, as discussed in [], can be

interpreted as that this type of functionals correspond to a transformation on programs
in such a way that the iterative applications of the transformation yield, from a complexity
point of view, an improved program at each step of the iteration. Similarly, the worseners
can be interpreted as those functionalswhich correspond to a transformation onprograms
in such a way that the iterative applications of the transformation yield a worsened, from
a complexity point of view, program at each step of the iteration.

Theorem  Let fT ∈ Cc be the unique solution to the recurrence equation (). Then the
following assertions hold:
() If the functional �T associated to (), and given by (), is a worsener with respect to

some complexity function g ∈ Cc, then fT ∈ �(g).
() If the functional �T associated to (), and given by (), is an improver with respect to

some complexity function g ∈ Cc, then fT ∈O(g).

Proof () Suppose that there exists g ∈ Cc such that�T (g) ≤pCc g . Then, by Corollary , we
deduce the existence of a fixed point gT of �T such that gT ∈↑ g , i.e., gT ≤pCc g and, thus,
gT (n) ≤∞ g(n) for all n ∈ N. So, gT ∈ �(g). Since fT is the unique fixed point of �T in Cc,
we deduce that fT = gT and, hence, that fT ∈ �(g).
() Assume that there exists g ∈ Cc such that g ≤pCc �T (g). Then Theorem  gives the

existence of a fixed point gT of �T such that gT ∈↓ g , i.e., g ≤pCc gT and hence g(n) ≤∞
gT (n) for all n ∈N. So, gT ∈O(g). The uniqueness of a fixed point of �T in Cc allows us to
deduce that fT = gT and, thus, that fT ∈O(g). �

http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118 Page 17 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Remark  Notice that, indeed, Theorem  yields the complexity class of algorithms
whose running time of computing satisfies the recurrence equation () becausewhen there
exist l ∈ Cc, r, t >  and n ∈N such that g(n) = rl(n) and h = tl(n) for all n > n and, besides,
�T is an improver and a worsener with respect to g and h, respectively, then fT ∈ �(l).

4.2 Analyzing the running time computing of two examples
The aim of this section is twofold. On the one hand, we show that the developed method
in Section . is useful to analyze the asymptotic complexity of recursive algorithms. On
the other hand, in order to validate the new results, we will retrieve, by means of their
application, the complexity class of two well-known algorithms in the literature.
Typical examples of algorithms whose running time of computing is the solution to the

recurrence equation () are Quicksort (worst case behavior) and Hanoi.
In particular, the running time of computing of Quicksort is the solution to the recur-

rence equation given exactly as follows:

T(n) =

⎧⎨
⎩c if n = ,

T(n – ) + jn if n ≥ ,
()

with j >  and where c is the time taken by the algorithm in the base case.
RegardingHanoi, under the uniform cost criterion assumption, its running time of com-

puting is the solution to the recurrence equation given as follows:

T(n) =

⎧⎨
⎩c if n = ,

T(n – ) + d if n≥ ,
()

with c,d >  and where, again, c represents the time taken by the algorithm to solve the
base case. Note that it does not make sense to distinguish three possible running time
behaviors for Hanoi since the distribution of the input data is always the same for each
size n.
For a deeper discussion about Quicksort and Hanoi, we refer the reader to [, ] and

[, ], respectively.
Next we discuss the running time of computing of the aforesaid algorithms through our

results.

Corollary  The running time of computing of Quicksort (worst case behavior) is in the
complexity class �(n).

Proof The running time of computing of Quicksort (worst case behavior) is provided by
the solution to the recurrence equation (). Theorem  guarantees the existence and
uniqueness of such a solution. Denote it by f QT .
Consider the functional�Q

T given in () and induced by the recurrence equation (), i.e.,

�
Q
T (f)(n) =

⎧⎨
⎩c if n = ,

f (n – ) + jn if n≥ 
()

for all f ∈ Cc.

http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118 Page 18 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Next we provide the asymptotic upper bound of f QT .With this aim, define the complexity
function hr as follows:

hr(n) =

⎧⎨
⎩c if n = ,

rn if n≥ ,

where r > . Then it is not hard to see that �T is an improver with respect to hr ∈ Cc (i.e.,
�

Q
T (hr) ≤pCc hr) if and only if r ≥ max{ j , c + j

 }. It follows, by statement () in Theorem ,
that f QT ∈O(h

max{ j , c + j
 }).

In order to provide the asymptotic complexity class, it remains to yield an asymptotic
lower bound of f QT . Now it is a routine to check that �

Q
T is a worsener with respect to the

complexity function hs (i.e., hs ≤pCc �
Q
T (hs)) if and only if s ≤ min{ j

 ,
c
 + j

 }, whence we
deduce, by statement () in Theorem , that f QT ∈ �(h

min{ j
 ,

c
 +

j
 }).

Therefore we obtain that f QT ∈ O(h
max{ j , c + j

 }) ∩ �(h
min{ j

 ,
c
 +

j
 }). Whence we deduce, by

Remark , that f QT ∈ �(n), which is in accordance with the Quicksort (worst case behav-
ior) asymptotic complexity class that can be found in the literature [, ]. �

Corollary  The running time of computing of Hanoi, under the uniform const criterion,
is in the complexity class �(n).

Proof The running time of computing of Hanoi, under the uniform const criterion, is pro-
vided by the solution to the recurrence equation (). Theorem  guarantees the existence
and uniqueness of such a solution. Denote it by f HT .
Consider the functional�H

T given in () and induced by the recurrence equation (), i.e.,

�H
T (f)(n) =

⎧⎨
⎩c if n = ,

f (n – ) + d if n≥ 
()

for all f ∈ Cc.
Next we provide the asymptotic upper bound of f HT .With this aim, define the complexity

function hr as follows:

hr(n) =

⎧⎨
⎩c if n = ,

r(n – ) if n≥ ,

where r > . It is not hard to check that �H
T is an improver with respect to hr (i.e.,

�H
T (hr) ≤pCc hr) if and only if r ≥ max{d, c+d }. It follows, by statement () in Theorem ,

that f HT ∈O(hmax{d, c+d }).
Next we provide an asymptotic lower bound of f HT . It is a routine to check that �H

T is a
worsener with respect to the complexity function hs (i.e., hs ≤pCc �H

T (hs)) if and only if s ≤
min{d, c+d }, whence we deduce, by statement () in Theorem , that f HT ∈ �(hmin{d, c+d }).
Therefore we obtain that f HT ∈ O(hmax{d, c+d }) ∩ �(hmin{d, c+d }). Thus, by Remark , we

obtain that f HT ∈ �(n), which is in accordancewith theHanoi asymptotic complexity class
that can be found in the literature [, ]. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118 Page 19 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Sciences Faculty for Girls, King Abdulaziz University, P.O. Box 4087, Jeddah, 21491, Saudi
Arabia. 2Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah, 21859, Saudi Arabia.
3Departamento de Ciencias Matemáticas e Informática, Universidad de las Islas Baleares, Ctra. de Valldemossa km. 7.5,
Palma de Mallorca, 07122, Spain.

Acknowledgements
This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant
No. 363-001-D1433. The authors, therefore, acknowledge with thanks DSR technical and financial support.

Received: 3 January 2013 Accepted: 17 April 2013 Published: 3 May 2013

References
1. Gierz, G, Hofmann, KH, Keimel, K, Lawson, JD, Mislove, M, Scott, DS: Continuous Lattices and Domains. Cambridge

University Press, Cambridge (2003)
2. Davey, BA, Priestley, HA: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)
3. Matthews, SG: Partial metric topology. Ann. N.Y. Acad. Sci. 728, 183-197 (1994)
4. Matthews, SG: An extensional treatment of lazy data flow deadlock. Theor. Comput. Sci. 151, 195-205 (1995)
5. O’Neill, SJ: Two topologies are better than one. Technical report 283, Department of Computer Science, University of

Warwick (1995)
6. O’Neill, SJ: Partial metrics, valuations, and domain theory. Ann. N.Y. Acad. Sci. 806, 304-315 (1996)
7. Bukatin, MA, Scott, JS: Towards computing distances between programs via Scott domains. In: Logical Foundations

of Computer Science. LNCS, vol. 1234, pp. 33-43 (1997)
8. Heckmann, R: Approximation of metric spaces by partial metric spaces. Appl. Categ. Struct. 7, 71-83 (1999)
9. Schellekens, MP: A characterization of partial metrizability: domains are quantifiable. Electron. Notes Theor. Comput.

Sci. 305, 409-432 (2003)
10. Schellekens, MP: The correspondence between partial metrics and semivaluations. Theor. Comput. Sci. 315, 135-149

(2004)
11. Romaguera, S, Valero, O: A quantitative computational model for complete partial metric spaces via formal balls.

Math. Struct. Comput. Sci. 19, 541-563 (2009)
12. Romaguera, S, Valero, O: Domain theoretic characterizations of quasi-metric completeness in terms of formal balls.

Math. Struct. Comput. Sci. 20, 453-472 (2010)
13. Seda, AK, Hitzler, P: Generalized distance functions in the theory of computation. Comput. J. 53, 443-464 (2010)
14. Romaguera, S, Schellekens, MP, Valero, O: Complexity spaces as quantitative domains of computation. Topol. Appl.

158, 853-860 (2011)
15. Romaguera, S, Tirado, P, Valero, O: Complete partial metric spaces have partially metrizable computational models.

Int. J. Comput. Math. 89, 284-290 (2012)
16. Abbas, M, Nazir, T, Romaguera, S: Fixed point results for generalized cyclic contraction mappings in partial metric

spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 106, 287-297 (2012)
17. Abdeljawad, T, Alzabut, JO, Mukheimer, A, Zaidan, Y: Banach contraction principle for cyclical mappings on partial

metric spaces. arXiv:1112.5891v1 [math.GN] (2011)
18. Abdeljawad, T, Karapinar, E, Tas, K: Existence and uniqueness of a common fixed point on partial metric spaces. Appl.

Math. Lett. 24, 1900-1904 (2011)
19. Alghamdi, MA, Shahzad, N, Valero, O: On fixed point theory in partial metric spaces. Fixed Point Theory Appl. 2012,

175 (2012). doi:10.1186/1687-1812-2012-175
20. Altun, I, Erduran, A: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl.

2011, Article ID 508730 (2011)
21. Altun, I, Simsek, H: Some fixed points theorems on dualistic partial metric spaces. J. Adv. Math. Stud. 1, 1-8 (2008)
22. Altun, I, Sadarangani, K: Corrigendum to ‘Generalized contractions on partial metric spaces’ [Topology Appl. 157

(2010) 2778-2785]. Topol. Appl. 158, 1738-1740 (2011)
23. Altun, I, Sola, F, Simsek, H: Generalized contractions on partial metric spaces. Topol. Appl. 157, 2778-2785 (2010)
24. Agarwal, RP, Alghamdi, MA, Shahzad, N: Fixed point theory for cyclic generalized contractions in partial metric spaces.

Fixed Point Theory Appl. 2012, 40 (2012). doi:10.1186/1687-1812-2012-40
25. Aydi, H, Abbas, M, Vetro, C: Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces. Topol.

Appl. 159, 3234-3242 (2012)
26. Aydi, H, Vetro, C, Sintunavarat, W, Kumam, P: Coincidence and fixed points for contractions and cyclical contractions

in partial metric spaces. Fixed Point Theory Appl. 2012, 124 (2012). doi:10.1186/1687-1812-2012-124
27. Ćirić, L, Samet, B, Aydi, H, Vetro, C: Common fixed points of generalized contractions on partial metric spaces and an

application. Appl. Math. Comput. 218, 2398-2406 (2011)
28. Di Bari, C, Vetro, P: Common fixed points for ψ -contractions on partial metric spaces. Hacet. J. Math. Stat. (to appear)
29. Di Bari, C, Vetro, P: Fixed points for weak ϕ-contractions on partial metric spaces. Int. J. Eng. Contemp. Math. Sci. 1,

5-13 (2011)
30. Ilić, D, Pavlović, V, Rakočević, V: Some new extensions of Banach’s contraction principle to partial metric space. Appl.

Math. Lett. 24, 1326-1330 (2011)
31. Ilić, D, Pavlović, V, Rakočević, V: Extensions of Zamfirescu theorem to partial metric spaces. Math. Comput. Model. 55,

801-809 (2012)

http://www.fixedpointtheoryandapplications.com/content/2013/1/118
http://arxiv.org/abs/arXiv:1112.5891v1
http://dx.doi.org/10.1186/1687-1812-2012-175
http://dx.doi.org/10.1186/1687-1812-2012-40
http://dx.doi.org/10.1186/1687-1812-2012-124

Alghamdi et al. Fixed Point Theory and Applications 2013, 2013:118 Page 20 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/118

32. Karapinar, E, Erhan, IM: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 24, 1894-1899
(2011)

33. Karapinar, E: Fixed point theory for cyclic weak φ-contraction. Appl. Math. Lett. 24, 822-825 (2011)
34. Karapinar, E: Weak φ-contraction on partial metric spaces and existence of fixed points in partially ordered sets.

Math. Aeterna 1, 237-244 (2011)
35. Oltra, S, Valero, O: Banach’s fixed point theorem for partial metric spaces. Rend. Ist. Mat. Univ. Trieste 36, 17-26 (2004)
36. Romaguera, S: Matkowski’s type theorems for generalized contractions on (ordered) partial metric spaces. Appl. Gen.

Topol. 12, 213-220 (2011)
37. Romaguera, S: Fixed point theorems for generalized contractions on partial metric spaces. Topol. Appl. 159, 194-199

(2012)
38. Rus, IA: Fixed point theory in partial metric spaces. An. Univ. Vest. Timiş., Ser. Mat.-Inform. XLVI, 149-160 (2008)
39. Valero, O: On Banach fixed point theorems for partial metric spaces. Appl. Gen. Topol. 6, 229-240 (2005)
40. Vetro, F, Radenović, S: Nonlinear ψ -quasi-contractions of Ćirić-type in partial metric spaces. Appl. Math. Comput. 219,

1594-1600 (2012)
41. Paesano, D, Vetro, P: Suzuki’s type characterizations of completeness for partial metric spaces and fixed points for

partially ordered metric spaces. Topol. Appl. 159, 911-920 (2012)
42. Baranga, A: The contraction principle as a particular case of Kleen’s fixed point theorem. Discrete Math. 98, 75-79

(1991)
43. Dugundji, J, Granas, A: Fixed Point Theory. Polish Sci., Warsaw (1982)
44. Aho, AV, Hopcroft, JE, Ullman, JD: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)
45. Brassard, G, Bratley, P: Algorithms: Theory and Practice. Prentice Hall, New York (1988)
46. Schellekens, MP: The Smyth completion: a common foundation for denotational semantics and complexity analysis.

Electron. Notes Theor. Comput. Sci. 1, 211-232 (1995)
47. Künzi, HPA: Nonsymmetric distances and their associated topologies: about the origins of basic ideas in the area of

asymmetric topology. In: Aull, CE, Lowen, R (eds.) Handbook of the History of General Topology, vol. 3, pp. 853-968.
Kluwer Academic, Dordrecht (2001)

48. Romaguera, S, Schellekens, MP: Quasi-metric properties of complexity spaces. Topol. Appl. 98, 311-322 (1999)
49. Oltra, S, Romaguera, S, Sánchez-Pérez, EA: Bicompleting weightable quasi-metric spaces and partial metric spaces.

Rend. Circ. Mat. Palermo 51, 151-162 (2002)
50. Cerdà-Uguet, MA, Schellekens, MP, Valero, O: The Baire partial quasimetric space: a mathematical tool for the

asymptotic complexity analysis in computer science. Theory Comput. Syst. 50, 387-399 (2012)
51. Romaguera, S, Tirado, P, Valero, O: New results on mathematical foundations of asymptotic complexity analysis of

algorithms via complexity spaces. Int. J. Comput. Math. 89, 1728-1741 (2012)
52. Cull, P, Flahive, M, Robson, R: Difference Equations: From Rabbits to Chaos. Springer, New York (2005)

doi:10.1186/1687-1812-2013-118
Cite this article as: Alghamdi et al.: Fixed point theorems in generalized metric spaces with applications to computer
science. Fixed Point Theory and Applications 2013 2013:118.

http://www.fixedpointtheoryandapplications.com/content/2013/1/118

	Fixed point theorems in generalized metric spaces with applications to computer science
	Abstract
	MSC
	Keywords

	Introduction
	The ﬁxed point theorems
	Asymptotic complexity analysis of algorithms
	Preliminaries
	The complexity space approach

	Asymptotic complexity analysis of algorithms and partial metric spaces
	The ﬁxed point technique for asymptotic complexity analysis based on partial metric spaces
	The existence and uniqueness of solution
	The asymptotic complexity class of the solution

	Analyzing the running time computing of two examples

	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References

