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Abstract
The projection methods for solving the minimization problems have been extensively
considered in many practical problems, for example, the least-square problem.
However, the computational difficulty of the projection might seriously affect the
efficiency of the method. The purpose of this paper is to construct two algorithms by
releasing projection for solving the minimization problem with the feasibility sets
such as the set of fixed points of nonexpansive mappings and the solution set of the
equilibrium problem.
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1 Introduction
In the present paper, our main purpose is to solve the following minimization problem of
finding x∗ such that

∥∥x∗∥∥ = min
x∈Fix(S)∩EPA

‖x‖, (.)

where Fix(S) is the set of fixed points of nonexpansive mapping S and EPA is the solution
set of the following equilibrium problem:

Find z ∈ C such that F(z, y) + 〈Az, y – z〉 ≥ , ∀y ∈ C, (.)

where C is a nonempty closed convex subset of a real Hilbert space H , F : C ×C → R is a
bifunction and A : C → H is an α-inverse-strongly monotone mapping. The reasons why
we focus on the above minimization problem (.) are mainly in two respects.

Reason  This problem is motivated by the following least-square problem:

⎧⎨
⎩
Bx = b,

x ∈ �,
(.)

where � is a nonempty closed convex subset of a real Hilbert space H , B is a bounded
linear operator from H to another real Hilbert space H, B∗ is the adjoint of B and b is a
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given point in H. The least-squares solution to (.) is the least-norm minimizer of the
minimization problem

min
x∈�

‖Bx – b‖. (.)

For some related works, please see Reich and Xu [], Sabharwal and Potter [], Xu [] and
Yao et al. [].

Reason  The problem (.) is very general in the sense that it includes optimization
problems, variational inequalities, minimax problems and the Nash equilibrium problem
in noncooperative games as special cases. At the same time, fixed point algorithms for
non-expansive mappings have received vast investigations due to their extensive applica-
tions in a variety of applied areas of the inverse problem, partial differential equations,
image recovery and signal processing.

Based on the above facts, it is an interesting topic to construct algorithms for solving
the above problems. Now we next briefly review some historic approaches which relate to
the problems (.) and (.).
For solving the equilibrium problem, Combettes and Hirstoaga [] introduced an iter-

ative algorithm of finding the best approximation to the initial data and proved a strong
convergence theorem. Moudafi [] introduced an iterative algorithm and proved a weak
convergence theorem. In , Takahashi andTakahashi [] introduced the following new
scheme for finding a common element of the set of solutions of the equilibrium problem
and the set of fixed point points of a nonexpansive mapping:

⎧⎨
⎩
F(un, y) + 〈Axn, y – un〉 + 

λn
〈y – un,un – xn〉 ≥ , ∀y ∈ C,

xn+ = βnxn + ( – βn)S[αnu + ( – αn)un], ∀n ∈N .

Subsequently, algorithms constructed for solving the equilibrium problems and fixed
point problems have been further developed by some authors. For some works related
to the equilibrium problem, fixed point problems and the variational inequality problem,
please see Blum and Oettli [], Chang et al. [], Chantarangsi et al. [], Cianciaruso et al.
[], Colao et al. [, ], Fang et al. [], Jung [], Mainge [], Mainge andMoudafi [],
Moudafi and Théra [], Nadezhkina and Takahashi [], Noor et al. [], Peng et al. [],
Peng and Yao [], Plubtieng and Punpaeng [], Takahashi and Takahashi [], Yao et al.
[], Yao and Liou [] and the references therein.
We observe that the solution set of (.) has a unique element with a minimum norm

and finding the least-squares solution of the constrained linear inverse problem is equiv-
alent to finding the minimum-norm fixed point of the nonexpansive mapping x �→ PC(x–
λB∗(Bx – b)). Hence, a natural idea is that we can use projection to construct algorithms
for finding theminimum-norm solution. By using this idea, Yao and Liou [] constructed
two algorithms for solving the minimization problem (.):

xt = μPC
[
( – t)Sxt

]
+ ( –μ)Tr(xt – rAxt), ∀t ∈ (, ), (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/114
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and

xn+ = μnPC
[
αnf (xn) + ( – αn)Sxn

]
+ ( –μn)Tr(xn – rAxn), n≥ . (.)

Remark . It is well known that projection methods are used extensively in a variety
of methods in optimization theory. Apart from theoretical interest, the main advantage
of projection methods, which makes them successful in real-word applications, is com-
putational. The field of projection methods is vast; see, e.g., Bauschke and Borwein [],
Combettes [], Combettes and Pesquet []. However, it is clear that if the set C is simple
enough, so that the projection onto it is easily executed, then this method is particularly
useful; but if C is a general closed and convex set, then a minimal distance problem has to
be solved in order to obtain the next iterative. This might seriously affect the efficiency of
the method. Hence, it is a very interesting work of solving (.) without involving projec-
tion.

Motivated and inspired by the results in the literature, in this paper we suggest two
algorithms:

⎧⎨
⎩
F(ut , y) + 

r 〈y – ut ,ut – (tf + ( – t)I – rA)xt〉 ≥ , ∀y ∈ C,

xt = μSxt + ( –μ)ut , ∀t ∈ (,  – r
α ),

and
⎧⎨
⎩
F(un, y) + 

r 〈y – un,un – (αnf + ( – αn)I – rA)xn〉 ≥ , ∀y ∈ C,

xn+ = μSxn + ( –μ)un, n≥ .

It is shown that under somemild conditions, the net {xt} and the sequences {xn} converge
strongly to x̃ which is the unique solution of the VI:

x̃ ∈ Fix(S)∩ EFA,
〈
(I – f )x̃,x – x̃

〉 ≥ , ∀x ∈ Fix(S)∩ EFA.

In particular, if we take f = , then the net {xt} and the sequences {xn} converge in norm to
a solution of the minimization problem (.). It should be pointed out that our suggested
algorithms solve the above minimization problem (.) without involving the metric pro-
jection.

2 Preliminaries
Let C be a nonempty closed convex subset of a real Hilbert spaceH . Recall that a mapping
A : C → H is called α-inverse-strongly monotone if there exists a positive real number α

such that 〈Ax – Ay,x – y〉 ≥ α‖Ax – Ay‖, ∀x, y ∈ C. It is clear that any α-inverse-strongly
monotone mapping is monotone and 

α
-Lipschitz continuous. A mapping S : C → C is

said to be nonexpansive if ‖Sx – Sy‖ ≤ ‖x – y‖, ∀x, y ∈ C. Denote the set of fixed points of
S by Fix(S).
Let F : C ×C → R be a bifunction. Throughout this paper, we assume that a bifunction

F : C ×C → R satisfies the following conditions:

http://www.fixedpointtheoryandapplications.com/content/2013/1/114
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(H) F(x,x) =  for all x ∈ C;
(H) F is monotone, i.e., F(x, y) + F(y,x)≤  for all x, y ∈ C;
(H) for each x, y, z ∈ C, limt↓ F(tz + ( – t)x, y)≤ F(x, y);
(H) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.
The metric (or nearest point) projection from H onto C is the mapping PC : H → C

which assigns to each point x ∈ C the unique point PCx ∈ C satisfying the property

‖x – PCx‖ = inf
y∈C ‖x – y‖ =: d(x,C).

It is well known that PC is a nonexpansive mapping and satisfies

〈x – y,PCx – PCy〉 ≥ ‖PCx – PCy‖, ∀x, y ∈H .

We need the following lemmas for proving our main results.

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F : C × C → R be a bifunction which satisfies conditions (H)-(H). Let r >  and x ∈ C.
Then there exists z ∈ C such that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Further, if Tr(x) = {z ∈ C : F(z, y) + 
r 〈y – z, z – x〉 ≥ ,∀y ∈ C}, then the following hold:

(i) Tr is single-valued and Tr is firmly nonexpansive, i.e., for any x, y ∈H ,
‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

(ii) EP is closed and convex and EP = Fix(Tr).

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
the mapping A : C → H be α-inverse strongly monotone and r >  be a constant. Then we
have

∥∥(I – rA)x – (I – rA)y
∥∥ ≤ ‖x – y‖ + r(r – α)‖Ax –Ay‖, ∀x, y ∈ C.

In particular, if  ≤ r ≤ α, then I – rA is nonexpansive.

Lemma . ([]) Let C be a closed convex subset of a real Hilbert space H , and S : C → C
be a nonexpansive mapping. Then the mapping I – S is demiclosed. That is, if {xn} is a
sequence in C such that xn → x∗ weakly and (I – S)xn → y strongly, then (I – S)x∗ = y.

Lemma . ([]) Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δnγn,

where {γn} is a sequence in (, ) and {δn} is a sequence such that
()

∑∞
n= γn = ∞;

() lim supn→∞ δn ≤  or
∑∞

n= |δnγn| <∞.
Then limn→∞ an = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/114
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3 Main results
In this section, we convert algorithms (.) and (.) by releasing projection PC and con-
struct two algorithms for finding the minimum norm element x∗ of � := EPA∩ Fix(S).
Let S : C → C be a nonexpansive mapping and A : C → H be an α-inverse strongly

monotone mapping. Let F : C × C → R be a bifunction which satisfies conditions (H)-
(H). Let r and μ be two constants such that r ∈ (, α) and μ ∈ (, ). In order to find a
solution of the minimization problem (.), we construct the following implicit algorithm

⎧⎨
⎩
F(ut , y) + 

r 〈y – ut ,ut – (( – t)I – rA)xt〉 ≥ , ∀y ∈ C,

xt = μSxt + ( –μ)ut , ∀t ∈ (,  – r
α ).

(.)

We will show that the net {xt} defined by (.) converges to a solution of the minimization
problem (.). As matter of fact, in this paper, we study the following general algorithm:
Taking a ρ-contraction f : C →H , for each t ∈ (,  – r

α ), let {xt} be the net defined by

⎧⎨
⎩
F(ut , y) + 

r 〈y – ut ,ut – (tf + ( – t)I – rA)xt〉 ≥ , ∀y ∈ C,

xt = μSxt + ( –μ)ut , ∀t ∈ (,  – r
α ).

(.)

It is clear that if f = , then (.) reduces to (.). Next, we show that (.) is well defined.
From Lemma ., we know that ut = Tr[tf (xt) + ( – t)xt – rAxt]. We define a mapping
Wt := μS + ( – μ)Tr[tf + ( – t)I – rA]. From Lemma ., for  < t <  – r

α , the mapping
I – r

–t A is nonexpansive. Also, note that the mappings S and Tr are nonexpansive, then
we have

‖Wtx –Wty‖
=

∥∥μ(Sx – Sy) + ( –μ)
(
Tr

[
tf (x) + ( – t)x – rAx

]
– Tr

[
tf (y) + ( – t)y – rAy

])∥∥
≤ μ‖Sx – Sy‖ + ( –μ)

∥∥∥∥Tr

[
tf (x) + ( – t)

(
x –

r
 – t

Ax
)]

– Tr

[
tf (y) + ( – t)

(
y –

r
 – t

Ay
)]∥∥∥∥

≤ μ‖x – y‖ + ( –μ)t
∥∥f (x) – f (y)

∥∥
+ ( –μ)( – t)

∥∥∥∥
(
x –

r
 – t

Ax
)
–

(
y –

r
 – t

Ay
)∥∥∥∥

≤ μ‖x – y‖ + ( –μ)tρ‖x – y‖ + ( –μ)( – t)‖x – y‖
=

[
 – ( –μ)( – ρ)t

]‖x – y‖.

This indicates thatWt is a contraction.Using theBanach contraction principle, there exists
a unique fixed point xt ofWt in C. Hence, (.) is well defined.
In the sequel, we assume:
() C is a nonempty closed convex subset of a real Hilbert space H ;
() S : C → C is a nonexpansive mapping, A : C →H is an α-inverse strongly

monotone mapping and f : C →H is a ρ-contraction;
() F : C ×C → R is a bifunction which satisfies conditions (H)-(H);
() � �= ∅.

http://www.fixedpointtheoryandapplications.com/content/2013/1/114
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In order to prove our first main result, we need the following propositions.

Proposition . The net {xt} generated by the implicit method (.) is bounded.

Proof Take z ∈ �. It is clear that Sz = z = Tr(z – rAz) = Tr[tz + ( – t)(z – r
–t Az)] for all

t ∈ (,  – r
α ). Since Tr and I – r

–t A are nonexpansive, we have

‖ut – z‖ =
∥∥∥∥Tr

[
tf (xt) + ( – t)

(
xt –

r
 – t

Axt
)]

– Tr

[
tz + ( – t)

(
z –

r
 – t

Az
)]∥∥∥∥

=
∥∥∥∥t(f (xt) – z

)
+

[
( – t)

(
xt –

r
 – t

Axt
)
–

(
z –

r
 – t

Az
)]∥∥∥∥

≤ t
∥∥f (xt) – z

∥∥ + ( – t)
∥∥∥∥
(
xt –

r
 – t

Axt
)
–

(
z –

r
 – t

Az
)∥∥∥∥

≤ t
∥∥f (xt) – f (z)

∥∥ + t
∥∥f (z) – z

∥∥ + ( – t)‖xt – z‖
≤ tρ‖xt – z‖ + ( – t)‖xt – z‖ + t

∥∥f (z) – z
∥∥

=
[
 – ( – ρ)t

]‖xt – z‖ + t
∥∥f (z) – z

∥∥. (.)

It follows from (.) that

‖xt – z‖ = ∥∥μ(Sxt – z) + ( –μ)(ut – z)
∥∥ ≤ μ‖Sxt – z‖ + ( –μ)‖ut – z‖

≤ μ‖xt – z‖ + ( –μ)‖ut – z‖.

Hence,

‖xt – z‖ ≤ ‖ut – z‖ ≤ [
 – ( – ρ)t

]‖xt – z‖ + t
∥∥f (z) – z

∥∥, (.)

that is,

‖xt – z‖ ≤ ‖f (z) – z‖
 – ρ

.

So, {xt} is bounded. Hence {ut}, {Sxt}, {Axt} and {f (xt)} are also bounded. This completes
the proof. �

Proposition . The net {xt} generated by the implicit method (.) is relatively norm
compact as t → .

Proof From (.) and Lemma ., we have

‖ut – z‖ ≤ t
∥∥f (xt) – z

∥∥ + ( – t)
∥∥∥∥
(
xt –

r
 – t

Axt
)
–

(
z –

r
 – t

Az
)∥∥∥∥



≤ t
∥∥f (xt) – z

∥∥ + ( – t)
[
‖xt – z‖ + r

 – t

(
r

 – t
– α

)
‖Axt –Az‖

]

≤ ( – t)‖xt – z‖ + r
(

r
 – t

– α
)

‖Axt –Az‖ + t
∥∥f (xt) – z

∥∥. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/114
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From (.) and (.), we have

‖xt – z‖ ≤ ‖ut – z‖

≤ ( – t)‖xt – z‖ + r
(

r
 – t

– α
)

‖Axt –Az‖ + t
∥∥f (xt) – z

∥∥.

Thus,

r
(
α –

r
 – t

)
‖Axt –Az‖ ≤ t

(∥∥f (xt) – z
∥∥ – ‖xt – z‖) → .

Since lim inft→+ r(α – r
–t ) > , we derive

lim
t→+

‖Axt –Az‖ = . (.)

From Lemma . and Lemma ., we obtain

‖ut – z‖ = ∥∥Tr
(
tf (xt) + ( – t)xt – rAxt

)
– Tr(z – rAz)

∥∥

≤ 〈
tf (xt) + ( – t)xt – rAxt – (z – rAz),ut – z

〉

=


(∥∥tf (xt) + ( – t)xt – rAxt – (z – rAz)

∥∥ + ‖ut – z‖

–
∥∥tf (xt) + ( – t)xt – r(Axt –Az) – ut

∥∥). (.)

It follows that

‖ut – z‖ ≤ ∥∥tf (xt) + ( – t)xt – rAxt – (z – rAz)
∥∥

–
∥∥tf (xt) + ( – t)xt – r(Axt –Az) – ut

∥∥.

By the nonexpansivity of I – r
–t A, we have

∥∥tf (xt) + ( – t)xt – rAxt – (z – rAz)
∥∥

=
∥∥∥∥( – t)

((
xt –

r
 – t

Axt
)
–

(
z –

r
 – t

Az
))

+ t
(
f (xt) – z

)∥∥∥∥


≤ ( – t)
∥∥∥∥
(
xt –

r
 – t

Axt
)
–

(
z –

r
 – t

Az
)∥∥∥∥



+ t
∥∥f (xt) – z

∥∥

≤ ( – t)‖xt – z‖ + t
∥∥f (xt) – z

∥∥.

Thus

‖xt – z‖ ≤ ‖ut – z‖ ≤ ( – t)‖xt – z‖ + t
∥∥f (xt) – z

∥∥

–
∥∥tf (xt) + ( – t)xt – r(Axt –Az) – ut

∥∥.

Hence

∥∥t(f (xt) – xt
)
– r(Axt –Az) – (ut – xt)

∥∥ ≤ t
(∥∥f (xt) – z

∥∥ – ‖xt – z‖) → .

http://www.fixedpointtheoryandapplications.com/content/2013/1/114
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Since ‖Axt –Az‖ →  (by (.)), we deduce

lim
t→+

‖xt – ut‖ = .

So

lim
t→+

‖xt – Sxt‖ = lim
t→+

( –μ)‖xt – ut‖ = . (.)

Nextwe show that {xt} is relatively norm compact as t → +. Let {tn} ⊂ (, ) be a sequence
such that tn →  as n→ ∞. Put xn := xtn and un := utn . From (.), we get

‖xn – Sxn‖ → . (.)

By (.), we deduce

‖ut – z‖ ≤ t
〈
f (xt) – f (z),ut – z

〉
+ t

〈
f (z) – z,ut – z

〉

+ ( – t)
〈
xt –

r
 – t

Axt –
(
z –

r
 – t

Az
)
,ut – z

〉

≤ [
 – ( – ρ)t

]‖xt – z‖‖ut – z‖ + t
〈
f (z) – z,ut – z

〉

≤  – ( – ρ)t


‖xt – z‖ + 

‖ut – z‖ + t

〈
f (z) – z,ut – z

〉
,

that is,

‖ut – z‖ ≤ [
 – ( – ρ)t

]‖xt – z‖ + t
〈
f (z) – z,ut – z

〉
.

Hence,

‖xt – z‖ ≤ ‖ut – z‖ ≤ [
 – ( – ρ)t

]‖xt – z‖ + t
〈
f (z) – z,ut – z

〉
.

It follows that

‖xt – z‖ ≤ 
 – ρ

〈
f (z) – z,ut – z

〉
.

In particular,

‖xn – z‖ ≤ 
 – ρ

〈
f (z) – z,un – z

〉
. (.)

Since {xn} is bounded, without loss of generality, we may assume that {xn} converges
weakly to a point x∗ ∈ C. Also Sxn ⇀ x∗ and un ⇀ x∗. Noticing (.) we can use Lemma .
to get x∗ ∈ Fix(S).
Now we show x∗ ∈ EPA. Since un = Tλ(tnf (xn) + ( – tn)xn – rAxn) for any y ∈ C, we have

F(un, y) + 〈Axn, y – un〉 + 
r
〈
y – un,un –

(
tnf (xn) + ( – tn)xn

)〉 ≥ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/114
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From (H), we have

〈Axn, y – un〉 + 
r
〈
y – un,un –

(
tnf (xn) + ( – tn)xn

)〉 ≥ F(y,un). (.)

Put zt = ty + ( – t)x∗ for all t ∈ (,  – λ
α ) and y ∈ C. Then we have zt ∈ C. So, from (.),

we have

〈zt – un,Azt〉 ≥ 〈zt – un,Azt〉 – 〈zt – un,Axn〉

–

r
〈
zt – un,un –

(
tnf (xn) + ( – tn)xn

)〉
+ F(zt ,un)

= 〈zt – un,Azt –Aun〉 + 〈zt – un,Aun –Axn〉

–

r
〈
zt – un,un – xn – tn

(
f (xn) – xn

)〉
+ F(zt ,un).

Since A is Lipschitz continuous and ‖un – xn‖ → , we have ‖Aun – Axn‖ → . Further,
from the monotonicity of A, we have 〈zt – un,Azt –Aun〉 ≥ . So, from (H), we have

〈
zt – x∗,Azt

〉 ≥ F
(
zt ,x∗) as n→ ∞. (.)

From (H), (H) and (.), we also have

 = F(zt , zt)

≤ tF(zt , y) + ( – t)F
(
zt ,x∗)

≤ tF(zt , y) + ( – t)
〈
zt – x∗,Azt

〉
= tF(zt , y) + ( – t)t

〈
y – x∗,Azt

〉

and hence

 ≤ F(zt , y) + ( – t)
〈
y – x∗,Azt

〉
.

Letting t → , we have, for each y ∈ C,

 ≤ F
(
x∗, y

)
+

〈
y – x∗,Ax∗〉.

This implies x∗ ∈ EPA. Therefore we can substitute x∗ for z in (.) to get

∥∥xn – x∗∥∥ ≤ 
 – ρ

〈
f
(
x∗) – x∗,un – x∗〉, z ∈ Fix(S)∩ EPA.

Consequently, the weak convergence of {xn} (and {un}) to x∗ actually implies that xn → x∗.
This has proved the relative norm-compactness of the net {xt} as t → +. This completes
the proof. �

Now we show our first main result.

http://www.fixedpointtheoryandapplications.com/content/2013/1/114


Yao et al. Fixed Point Theory and Applications 2013, 2013:114 Page 10 of 17
http://www.fixedpointtheoryandapplications.com/content/2013/1/114

Theorem . The net {xt} generated by the implicit method (.) converges in norm, as
t → +, to the unique solution x∗ of the following variational inequality:

x∗ ∈ �,
〈
(I – f )x∗,x – x∗〉 ≥ , x ∈ �. (.)

In particular, if we take f = , then the net {xt} converges in norm, as t → +, to a solution
of the minimization problem (.).

Proof Now we return to (.) and take the limit as n→ ∞ to get

∥∥x∗ – z
∥∥ ≤ 

 – ρ

〈
z – f (z), z – x∗〉, z ∈ �. (.)

In particular, x∗ solves the following variational inequality

x∗ ∈ �,
〈
(I – f )z, z – x∗〉 ≥ , z ∈ �

or the equivalent dual variational inequality

x∗ ∈ �,
〈
(I – f )x∗, z – x∗〉 ≥ , z ∈ �.

Therefore, x∗ = (P�f )x∗. That is, x∗ is the unique fixed point in � of the contraction P�f .
Clearly, this is sufficient to conclude that the entire net {xt} converges in norm to x∗ as
t → .
Finally, if we take f = , then (.) is reduced to

∥∥x∗ – z
∥∥ ≤ 〈

z, z – x∗〉, z ∈ �.

Equivalently,

∥∥x∗∥∥ ≤ 〈
x∗, z

〉
, z ∈ �.

This clearly implies that

∥∥x∗∥∥ ≤ ‖z‖, z ∈ �.

Therefore, x∗ is a solution of the minimization problem (.). This completes the proof.�

Next, we introduce an explicit algorithm for finding a solution of theminimization prob-
lem (.).

Algorithm . For given x ∈ C arbitrarily, let the sequence {xn} be generated iteratively
by

⎧⎨
⎩
F(un, y) + 

r 〈y – un,un – (αnf + ( – αn)I – rA)xn〉 ≥ , ∀y ∈ C,

xn+ = μSxn + ( –μ)un, n≥ ,
(.)

where {αn} is a real number sequence in [, ].
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Next, we give our second main result.

Theorem . Assume that the sequence {αn} satisfies the conditions: limn→∞ αn = ,∑∞
n= αn = ∞ and limn→∞ αn+

αn
= . Then the sequence {xn} generated by (.) converges

strongly to x̃ which is the unique solution of the variational inequality (.). In particular,
if f = , then the sequence {xn} converges strongly to a solution of the minimization problem
(.).

Proof Pick z ∈ �. From Lemma ., we know that un = Tr[αnf (xn) + ( –αn)xn – rAxn]. Set
zn = αnf (xn) + ( – αn)xn – rAxn for all n. From (.), we get

‖un – z‖
=

∥∥Trzn – Tr(z – rAz)
∥∥

≤ ∥∥zn – (z – rAz)
∥∥

=
∥∥∥∥
(

αnf (xn) + ( – αn)
(
xn –

rAxn
 – αn

))
–

(
αnz + ( – αn)

(
z –

rAz
 – αn

))∥∥∥∥
=

∥∥∥∥( – αn)
((

xn –
rAxn
 – αn

)
–

(
z –

rAz
 – αn

))
+ αn

(
f (xn) – z

)∥∥∥∥
≤ ( – αn)‖xn – z‖ + αn

∥∥f (xn) – f (z)
∥∥ + αn

∥∥f (z) – z
∥∥

≤ [
 – ( – ρ)αn

]‖xn – z‖ + αn
∥∥f (z) – z

∥∥. (.)

Hence,

‖xn+ – z‖ ≤ μ‖Sxn – z‖ + ( –μ)‖un – z‖
≤ μ‖xn – z‖ + ( –μ)

[
 – ( – ρ)αn

]‖xn – z‖ + ( –μ)αn
∥∥f (z) – z

∥∥
=

[
 – ( –μ)( – ρ)αn

]‖xn – z‖ + ( –μ)αn
∥∥f (z) – z

∥∥.
By induction, we have

‖xn+ – z‖ ≤ max

{
‖x – z‖, ‖f (z) – z‖

 – ρ

}
.

Therefore, {xn} is bounded. Hence, {Axn}, {un}, {Sxn} are also bounded.
From (.), we obtain

‖un – z‖ ≤ ( – αn)
∥∥∥∥
(
xn –

rAxn
 – αn

)
–

(
z –

rAz
 – αn

)∥∥∥∥


+ αn
∥∥f (xn) – z

∥∥.

Since A is α-inverse strongly monotone, we know from Lemma . that

∥∥∥∥
(
xn –

rAxn
 – αn

)
–

(
z –

rAz
 – αn

)∥∥∥∥


≤ ‖xn – z‖ + r(r – ( – αn)α)
( – αn)

‖Axn –Az‖.

It follows that

‖un – z‖ ≤ ( – αn)‖xn – z‖ + r(r – ( – αn)α)
( – αn)

‖Axn –Az‖ + αn
∥∥f (z) – z

∥∥. (.)
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Note that

‖un+ – un‖ ≤ ‖Trzn+ – Trzn‖ ≤ ‖zn+ – zn‖. (.)

From Lemma ., we know that I – λA is nonexpansive for all λ ∈ (, α). Thus, we have
I – λn+

–αn+
A is nonexpansive for all n due to the fact that r

–αn+
∈ (, α). Then we get

‖zn+ – zn‖
=

∥∥αn+f (xn+) + ( – αn+)xn+ – rAxn+ –
(
αnf (xn) + ( – αn)xn – rAxn

)∥∥
≤

∥∥∥∥( – αn+)
(
xn+ –

r
 – αn+

Axn+
)
– ( – αn)

(
xn –

r
 – αn

Axn
)∥∥∥∥

+ αn+
∥∥f (xn+) – f (xn)

∥∥ + |αn+ – αn|
∥∥f (xn)∥∥

≤ ( – αn+)
∥∥∥∥
(
I –

r
 – αn+

A
)
xn+ –

(
I –

r
 – αn+

A
)
xn

∥∥∥∥
+

∥∥∥∥( – αn+)
(
xn –

r
 – αn+

Axn
)
– ( – αn)

(
xn –

r
 – αn

Axn
)∥∥∥∥

+ αn+ρ‖xn+ – xn‖ + |αn+ – αn|
∥∥f (xn)∥∥

≤ [
 – ( – ρ)αn+

]‖xn+ – xn‖ + |αn+ – αn|
(∥∥f (xn)∥∥ + ‖xn‖

)
. (.)

From (.), (.) and (.), we obtain

‖xn+ – xn+‖ ≤ μ‖Sxn+ – Sxn‖ + ( –μ)‖un+ – un‖
≤ μ‖xn+ – xn‖ + ( –μ)‖un+ – un‖
≤ μ‖xn+ – xn‖ + ( –μ)

[
 – ( – ρ)αn+

]‖xn+ – xn‖
+ ( –μ)|αn+ – αn|

(∥∥f (xn)∥∥ + ‖xn‖
)

=
[
 – ( –μ)( – ρ)αn+

]‖xn+ – xn‖

+ ( –μ)( – ρ)αn+
|αn+ – αn|
( – ρ)αn+

(∥∥f (xn)∥∥ + ‖xn‖
)
.

By Lemma ., we get

lim
n→∞‖xn+ – xn‖ = .

From (.) and (.), we have

‖xn+ – z‖ ≤ μ‖Sxn – z‖ + ( –μ)‖un – z‖

≤ μ‖xn – z‖ + ( –μ)( – αn)‖xn – z‖ + ( –μ)αn
∥∥f (z) – z

∥∥

+ ( –μ)
r(r – ( – αn)α)

( – αn)
‖Axn –Az‖.
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Then we obtain

( –μ)
r(( – αn)α – r)

( – αn)
‖Axn –Az‖

≤ ‖xn – z‖ – ‖xn+ – z‖ + ( –μ)αn
∥∥f (z) – z

∥∥

≤ (‖xn – z‖ – ‖xn+ – z‖)‖xn+ – xn‖ + ( –μ)αn
∥∥f (z) – z

∥∥.

Since limn→∞ αn = , limn→∞ ‖xn+ –xn‖ =  and lim infn→∞(–μ) r((–αn)α–r)
(–αn) > , we have

lim
n→∞‖Axn –Az‖ = . (.)

Next, we show ‖xn – un‖ → . By using the firm nonexpansivity of Tλn , we have

‖un – z‖ = ∥∥Trzn – Tr(z – rAz)
∥∥

≤ 〈
zn – (z – rAz),un – z

〉

=


(∥∥zn – (z – rAz)

∥∥ + ‖un – z‖

–
∥∥zn – (z – rAz) – (un – z)

∥∥)

=


(∥∥zn – (z – rAz)

∥∥ + ‖un – z‖

–
∥∥αn

(
f (xn) – xn

)
+ (xn – un) – r(Axn –Az)

∥∥).

From (.) and (.), we have

∥∥zn – (z – rAz)
∥∥ ≤ ( – αn)‖xn – z‖ + αn

∥∥f (xn) – z
∥∥.

Thus,

‖un – z‖ ≤ 

(
( – αn)‖xn – z‖ + αn

∥∥f (xn) – z
∥∥ + ‖un – z‖

–
∥∥αn

(
f (xn) – xn

)
+ (xn – un) – r(Axn –Az)

∥∥).

That is,

‖un – z‖ ≤ ( – αn)‖xn – z‖ + αn
∥∥f (xn) – z

∥∥

–
∥∥αn

(
f (xn) – xn

)
+ (xn – un) – r(Axn –Az)

∥∥

= ( – αn)‖xn – z‖ + αn
∥∥f (xn) – z

∥∥ – ‖xn – un‖

+ r〈xn – un,Axn –Az〉 – αn
〈
f (xn) – xn,xn – un

〉
–

∥∥αn
(
f (xn) – xn

)
– r(Axn –Az)

∥∥

≤ ( – αn)‖xn – z‖ + αn
∥∥f (xn) – z

∥∥ – ‖xn – un‖

+ r‖xn – un‖‖Axn –Az‖ + αn
∥∥f (xn) – xn

∥∥‖xn – un‖.
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It follows that

‖xn+ – z‖ ≤ μ‖xn – z‖ + ( –μ)( – αn)‖xn – z‖ + ( –μ)αn
∥∥f (xn) – z

∥∥

– ( –μ)‖xn – un‖ + r‖xn – un‖‖Axn –Az‖
+ αn

∥∥f (xn) – xn
∥∥‖xn – un‖

=
[
 – ( –μ)αn

]‖xn – z‖ + ( –μ)αn
∥∥f (xn) – z

∥∥ – ( –μ)‖xn – un‖

+ r‖xn – un‖‖Axn –Az‖ + αn
∥∥f (xn) – xn

∥∥‖xn – un‖.

Hence,

( –μ)‖xn – un‖ ≤ ‖xn – z‖ – ‖xn+ – z‖ + ( –μ)αn
∥∥f (xn) – z

∥∥

+ r‖xn – un‖‖Axn –Az‖ + αn
∥∥f (xn) – xn

∥∥‖xn – un‖
≤ (‖xn – z‖ + ‖xn+ – z‖)‖xn+ – xn‖ + ( –μ)αn

∥∥f (xn) – z
∥∥

+ r‖xn – un‖‖Axn –Az‖ + αn
∥∥f (xn) – xn

∥∥‖xn – un‖.

Since ‖xn+ – xn‖ → , αn →  and ‖Axn –Az‖ → , we deduce

lim
n→∞‖xn – un‖ = . (.)

This together with ‖xn+ – xn‖ →  implies that

lim
n→∞‖Sxn – xn‖ = . (.)

Put x̃ = limt→+ xt , where {xt} is the net defined by (.). We will finally show that xn → x̃.
Set vn = xn – λn

–αn
(Axn – Ax̃) for all n. Take z = x̃ in (.) to get ‖Axn – Ax̃‖ → . First,

we prove lim supn→∞〈x̃ – f (x̃),xn – x̃〉 ≥ . We take a subsequence {vni} of {vn} such that

lim sup
n→∞

〈
x̃ – f (x̃),xn – x̃

〉
= lim

i→∞
〈
x̃ – f (x̃),xni – x̃

〉
.

It is clear that {xni} is bounded due to the boundedness of {xn}. Then there exists a sub-
sequence {xnij } of {xni} which converges weakly to some point w ∈ C. Hence, {xnij } also
converges weakly to w. From (.), we have

lim
j→∞‖xnij – Sxnij ‖ = . (.)

By the demi-closedness principle of the nonexpansive mapping (see Lemma .) and
(.), we deduce w ∈ Fix(S). Furthermore, by a similar argument as that of Theorem .,
we can show that w is also in EPA. Hence, we have w ∈ Fix(S)∩ EPA. This implies that

lim sup
n→∞

〈
x̃ – f (x̃),xn – x̃

〉
= lim

j→∞
〈
x̃ – f (x̃),xnij – x̃

〉

=
〈
x̃ – f (x̃),w – x̃

〉 ≥ .
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From (.), we have

‖xn+ – x̃‖

≤ μ‖xn – x̃‖ + ( –μ)‖un – x̃‖

≤ μ‖xn – x̃‖ + ( –μ)
∥∥Trzn – Tr(x̃ – rAx̃)

∥∥

≤ μ‖xn – x̃‖ + ( –μ)
∥∥zn – (x̃ – rAx̃)

∥∥

= μ‖xn – x̃‖ + ( –μ)
∥∥αnf (xn) + ( – αn)xn – rAxn – (x̃ – rAx̃)

∥∥

= ( –μ)
∥∥∥∥αn

(
f (xn) – x̃

)
+ ( – αn)

((
xn –

r
 – αn

Axn
)
–

(
x̃ –

r
 – αn

Ax̃
))∥∥∥∥



+μ‖xn – x̃‖

= ( –μ)
(
( – αn)

∥∥∥∥
(
xn –

r
 – αn

Axn
)
–

(
x̃ –

r
 – αn

Ax̃
)∥∥∥∥



+ αn( – αn)
〈
f (xn) – x̃,

(
xn –

r
 – αn

Axn
)
–

(
x̃ –

r
 – αn

Ax̃
)〉

+ α
n
∥∥f (xn) – x̃

∥∥
)
+μ‖xn – x̃‖

≤ μ‖xn – x̃‖ + ( –μ)
(
( – αn)‖xn – x̃‖ + αn( – αn)

〈
f (xn) – f (x̃),xn – x̃

〉
+ αn( – αn)

〈
f (x̃) – x̃,xn – x̃

〉
– rαn

〈
f (xn) – x̃,Axn –Ax̃

〉
+ α

n
∥∥f (xn) – x̃

∥∥)
≤ μ‖xn – x̃‖ + ( –μ)

(
( – αn)‖xn – x̃‖ + αn( – αn)ρ‖xn – x̃‖

+ αn( – αn)
〈
f (x̃) – x̃,xn – x̃

〉
+ rαn

∥∥f (xn) – x̃
∥∥‖Axn –Ax̃‖ + α

n
∥∥f (xn) – x̃

∥∥)
≤ [

 – ( –μ)( – ρ)αn
]‖xn – x̃‖ + ( –μ)α

n
(‖xn – x̃‖ + ∥∥f (xn) – x̃

∥∥)
+ ( –μ)αn( – αn)

〈
f (x̃) – x̃,xn – x̃

〉
+ r( –μ)αn

∥∥f (xn) – x̃
∥∥‖Axn –Ax̃‖

=
[
 – ( –μ)( – ρ)αn

]‖xn – x̃‖

+ ( –μ)( – ρ)αn

{
αn

 – ρ

(‖xn – x̃‖ + ∥∥f (xn) – x̃
∥∥)

+
 – αn

 – ρ

〈
f (x̃) – x̃,xn – x̃

〉
+

r
 – ρ

∥∥f (xn) – x̃
∥∥‖Axn –Ax̃‖

}
.

It is clear that
∑

n ( –μ)( – ρ)αn = ∞ and

lim sup
n

{
αn

 – ρ

(‖xn – x̃‖ + ∥∥f (xn) – x̃
∥∥) +  – αn

 – ρ

〈
f (x̃) – x̃,xn – x̃

〉

+
r

 – ρ

∥∥f (xn) – x̃
∥∥‖Axn –Ax̃‖

}
≤ .

We can therefore apply Lemma . to conclude that xn → x̃.
Finally, if we take f = , by a similar argument as that in Theorem ., we deduce imme-

diately that x̃ is a minimum norm element in �. This completes the proof. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/114


Yao et al. Fixed Point Theory and Applications 2013, 2013:114 Page 16 of 17
http://www.fixedpointtheoryandapplications.com/content/2013/1/114

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Tianjin Polytechnic University, Tianjin, 300387, China. 2Department of Information
Management, Cheng Shiu University, Kaohsiung, 833, Taiwan. 3Department of Mathematics and the RINS, Gyeongsang
National University, Jinju, 660-701, Korea.

Acknowledgements
The first author was supported in part by NSFC 11071279 and NSFC 71161001-G0105. The second author was supported
in part by NSC 101-2628-E-230-001-MY3.

Received: 24 September 2012 Accepted: 15 April 2013 Published: 29 April 2013

References
1. Reich, S, Xu, HK: An iterative approach to a constrained least squares problem. Abstr. Appl. Anal. 8, 503-512 (2003)
2. Sabharwal, A, Potter, LC: Convexly constrained linear inverse problems: iterative least-squares and regularization. IEEE

Trans. Signal Process. 46, 2345-2352 (1998)
3. Xu, HK: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116, 659-678 (2003)
4. Yao, Y, Liou, YC, Yao, JC: Convergence theorem for equilibrium problems and fixed point problems of infinite family of

nonexpansive mappings. Fixed Point Theory Appl. 2007, Article ID 64363 (2007)
5. Combettes, PL, Hirstoaga, A: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117-136 (2005)
6. Moudafi, A: Weak convergence theorems for nonexpansive mappings and equilibrium problems. J. Nonlinear

Convex Anal. 9, 37-43 (2008)
7. Takahashi, S, Takahashi, W: Viscosity approximation methods for equilibrium problems and fixed point problems in

Hilbert spaces. J. Math. Anal. Appl. 331, 506-515 (2007)
8. Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123-145

(1994)
9. Chang, SS, Lee, HWJ, Chan, CK: A new method for solving equilibrium problem fixed point problem and variational

inequality problem with application to optimization. Nonlinear Anal. 70, 3307-3319 (2009)
10. Chantarangsi, W, Jaiboon, C, Kumam, P: A viscosity hybrid steepest descent method for generalized mixed

equilibrium problems and variational inequalities for relaxed cocoercive mapping in Hilbert spaces. Abstr. Appl. Anal.
2010, Article ID 390972 (2010)

11. Cianciaruso, F, Marino, G, Muglia, L, Yao, Y: A hybrid projection algorithm for finding solutions of mixed equilibrium
problem and variational inequality problem. Fixed Point Theory Appl. 2010, Article ID 383740 (2010)

12. Colao, V, Acedo, GL, Marino, G: An implicit method for finding common solutions of variational inequalities and
systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings. Nonlinear Anal. 71,
2708-2715 (2009)

13. Colao, V, Marino, G, Xu, HK: An iterative method for finding common solutions of equilibrium and fixed point
problems. J. Math. Anal. Appl. 344, 340-352 (2008)

14. Fang, YP, Huang, NJ, Yao, JC: Well-posedness by perturbations of mixed variational inequalities in Banach spaces. Eur.
J. Oper. Res. 201, 682-692 (2010)

15. Jung, JS: Strong convergence of composite iterative methods for equilibrium problems and fixed point problems.
Appl. Math. Comput. 213, 498-505 (2009)

16. Mainge, PE: Projected subgradient techniques and viscosity methods for optimization with variational inequality
constraints. Eur. J. Oper. Res. 205, 501-506 (2010)

17. Mainge, PE, Moudafi, A: Coupling viscosity methods with the extragradient algorithm for solving equilibrium
problems. J. Nonlinear Convex Anal. 9, 283-294 (2008)

18. Moudafi, A, Théra, M: Proximal and Dynamical Approaches to Equilibrium Problems. Lecture Notes in Economics and
Mathematical Systems, vol. 477, pp. 187-201. Springer, Berlin (1999)

19. Nadezhkina, N, Takahashi, W: Weak convergence theorem by an extragradient method for nonexpansive mappings
and monotone mappings. J. Optim. Theory Appl. 128, 191-201 (2006)

20. Noor, MA, Yao, Y, Chen, R, Liou, YC: An iterative method for fixed point problems and variational inequality problems.
Math. Commun. 12, 121-132 (2007)

21. Peng, JW, Wu, SY, Yao, JC: A new iterative method for finding common solutions of a system of equilibrium problems,
fixed-point problems, and variational inequalities. Abstr. Appl. Anal. 2010, Article ID 428293 (2010)

22. Peng, JW, Yao, JC: A new hybrid-extragradient method for generalized mixed equilibrium problems and fixed point
problems and variational inequality problems. Taiwan. J. Math. 12, 1401-1433 (2008)

23. Plubtieng, S, Punpaeng, R: A new iterative method for equilibrium problems and fixed point problems of
nonexpansive mappings and monotone mappings. Appl. Math. Comput. 197, 548-558 (2008)

24. Takahashi, S, Takahashi, W: Strong convergence theorem for a generalized equilibrium problem and a nonexpansive
mapping in a Hilbert space. Nonlinear Anal. 69, 1025-1033 (2008)

25. Yao, Y, Cho, YJ, Liou, YC: Algorithms of common solutions for variational inclusions, mixed equilibrium problems and
fixed point problems. Eur. J. Oper. Res. 212, 242-250 (2011)

26. Yao, Y, Liou, YC: Composite algorithms for minimization over the solutions of equilibrium problems and fixed point
problems. Abstr. Appl. Anal. 2010, Article ID 763506 (2010)

27. Bauschke, HH, Borwein, JM: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367-426
(1996)

28. Combettes, PL: Strong convergence of block-iterative outer approximation methods for convex optimization. SIAM
J. Control Optim. 38, 538-565 (2000)

http://www.fixedpointtheoryandapplications.com/content/2013/1/114


Yao et al. Fixed Point Theory and Applications 2013, 2013:114 Page 17 of 17
http://www.fixedpointtheoryandapplications.com/content/2013/1/114

29. Combettes, PL, Pesquet, JC: Proximal thresholding algorithm for minimization over orthonormal bases. SIAM
J. Optim. 18, 1351-1376 (2007)

30. Takahashi, W, Toyoda, M: Weak convergence theorems for nonexpansive mappings and monotone mappings.
J. Optim. Theory Appl. 118, 417-428 (2003)

31. Geobel, K, Kirk, WA: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28.
Cambridge University Press, Cambridge (1990)

32. Xu, HK: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240-256 (2002)

doi:10.1186/1687-1812-2013-114
Cite this article as: Yao et al.: Conversion of algorithms by releasing projection for minimization problems. Fixed Point
Theory and Applications 2013 2013:114.

http://www.fixedpointtheoryandapplications.com/content/2013/1/114

	Conversion of algorithms by releasing projection for minimization problems
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


