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Abstract
In this article, we prove some fixed-point theorems for (ψ ,ϕ ,ε ,λ)-contraction in
probabilistic metric spaces for single valued case. We will generalize the definition of
(ψ ,ϕ ,ε ,λ)-contraction and present fixed-point theorem in the generalized
(ψ ,ϕ ,ε ,λ)-contraction.
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1 Introduction
The probabilistic metric space was introduced by Menger []. Mihet presented the class
of (ψ ,ϕ, ε,λ)-contraction for a single valued case in fuzzy metric spaces [, ]. This class
is a generalization of the (ε,λ)-contraction which was introduced in []. We defined the
class of (ψ ,ϕ, ε,λ)-contraction for the multi-valued case in a probabilistic metric space
before []. Now, we obtain two fixed-point theorems of (ψ ,ϕ, ε,λ)-contraction for sin-
gle valued case. Also, we extend the concept of (ψ ,ϕ, ε,λ)-contraction to the generalized
(ψ ,ϕ, ε,λ)-contraction.
The structure of this paper is as follows: Section  is a review of some concepts in prob-

abilistic metric spaces and probabilistic contractions. In Section , we will show two the-
orems for (ψ ,ϕ, ε,λ)-contraction in the single-valued case and explain the generalized
(ψ ,ϕ, ε,λ)-contraction.

2 Preliminary notes
We recall some concepts from probabilistic metric space, convergence and contraction.
For more details, we refer the reader to [–].
Let D+ be the set of all distribution of functions F such that F() =  (F is a non-

decreasing, left continuous mapping from R into [, ] such that limx→∞ F(x) = ).
The ordered pair (S,F) is said to be a probabilistic metric space if S is a nonempty set

and F : S × S → D+ (F(p,q) written by Fpq for every (p,q) ∈ S × S) satisfies the following
conditions:
() Fuv(x) =  for every x >  ⇔ u = v (u, v ∈ S),
() Fuv = Fvu for every u, v ∈ S,
() Fuv(x) =  and Fvw(y) =  ⇒ Fu,w(x + y) =  for every u, v,w ∈ S, and every x, y ∈R

+.
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A Menger space is a triple (S,F ,T) where (S,F) is a probabilistic metric space, T is a tri-
angular norm (abbreviated t-norm) and the following inequality holds:

Fuv(x + y) ≥ T
(
Fuw(x),Fwv(y)

)
for every u, v,w ∈ S, and every x, y ∈R

+.

Recall the mapping T : [, ] × [, ] → [, ] is called a triangular norm (a t-norm) if the
following conditions are satisfied: T(a, ) = a for every a ∈ [, ]; T(a,b) = T(b,a) for every
a,b ∈ [, ]; a ≥ b, c ≥ d ⇒ T(a, c) ≥ T(b,d), a,b, c,d ∈ [, ]; T(T(a,b), c) = T(a,T(b, c)),
a,b, c ∈ [, ]. Basic examples of t-norms are TL (Lukasiewicz t-norm), TP and TM , defined
by TL(a,b) =max{a + b – , }, TP(a,b) = ab and TM(a,b) =min{a,b}. If T is a t-norm and
(x,x, . . . ,xn) ∈ [, ]n (n ∈ N

∗), one can define recurrently 	n
i=xi = T(	n–

i= xi,xn) for all
n≥ . One can also extend T to a countable infinitary operation by defining 	∞

i=xi for any
sequence (xi)i∈N∗ as limn→∞ 	n

i=xi.
If q ∈ (, ) is given, we say that the t-norm T is q-convergent if limn→∞ 	∞

i=n( – qi) = .
We remark that if T is q-convergent, then

∀λ ∈ (, ) ∃s = s(λ) ∈N 	n
i=

(
 – qs+i

)
>  – λ, ∀n ∈N.

Also, note that if the t-norm T is q-convergent, then sup≤t<T(t, t) = .

Proposition . Let (S,F ,T) be a Menger space. If sup≤t<T(t, t) = , then the family
{Uε}ε>, where

Uε =
{
(x, y) ∈ S × S | Fx,y(ε) >  – ε

}

is a base for a metrizable uniformity on S, called the F-uniformity [–]. The F-uniformity
naturally determines a metrizable topology on S, called the strong topology or F-topology
[], a subset O of S is F-open if for every p ∈O there exists t >  such thatNp = {q ∈ S|Fpq(t) >
 – t} ⊂O.

Definition . [] A sequence (xn)n∈N is called an F-convergent sequence to x ∈ S if for
every ε >  and λ ∈ (, ) there exists N =N(ε,λ) ∈N such that Fxnx(ε) >  – λ, ∀n≥ N .

Definition . [] Let ϕ : (, ) → (, ) be a mapping, we say that the t-norm T is ϕ-
convergent if

∀δ ∈ (, ),∀λ ∈ (, ) ∃s = s(δ,λ) ∈N 	n
i=

(
 – ϕs+i(δ)

)
>  – λ, ∀n≥ .

Definition . [] A sequence (xn)n∈N is called a convergent sequence to x ∈ S if for every
ε >  and λ ∈ (, ) there exists N =N(ε,λ) ∈ N such that Fxnx(ε) >  – λ, ∀n≥ N .

Definition . [] A sequence (xn)n∈N is called a Cauchy sequence if for every ε >  and
λ ∈ (, ) there exists N =N(ε,λ) ∈N such that Fxnxn+m (ε) >  – λ, ∀n≥ N , ∀m ∈N.
We also have

xn →F x ⇔ Fxnx(t) →  ∀t > .
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A probabilistic metric space (S,F ,T) is called sequentially complete if every Cauchy se-
quence is convergent.

The concept of (ψ ,ϕ, ε,λ)-contraction has been introduced by Mihet [].
We will consider comparison functions from the class φ of all mapping ϕ : (, )→ (, )

with the properties:
() ϕ is an increasing bijection;
() ϕ(λ) < λ ∀λ ∈ (, ).

Since every such a comparison mapping is continuous, if ϕ ∈ φ, then limn→∞ ϕn(λ) = 
∀λ ∈ (, ).

Definition . [] Let (S,F) be a probabilistic space, ϕ ∈ φ and ψ be a map from (,∞)
to (,∞). A mapping f : S → S is called a (ψ ,ϕ, ε,λ)-contraction on S if it satisfies in the
following condition:

x, y ∈ S, ε > ,λ ∈ (, ), Fx,y(ε) >  – λ ⇒ Ff (x),f (y)
(
ψ(ε)

)
>  – ϕ(λ).

In the rest of paper we suppose that ψ is increasing bijection.

Example . Let S = {, , , . . .} and (for x �= y)

Fx,y(t) =

⎧⎪⎪⎨
⎪⎪⎩
 if t ≤ –min(x,y),

 – –min(x,y) if –min(x,y) < t ≤ ,

 if t > .

Suppose that f : S → S, f (r) = r + .
Then (S,F ,TL) is a probabilistic metric space [].
Let x, y, ε, λ be such that Fx,y(ε) >  – λ.
(i) If –min(x,y)<ε≤, then  – –min(x,y) >  – λ.

This implies  – –min(x+,y+) >  – 
λ, that is,

Ffx,fy(ε) >  –


λ.

(ii) If ε >  then Ffx,fy(ε) = , hence again Ffx,fy(ε) >  – 
λ. Thus, the mapping f is a

(ψ ,ϕ, ε,λ)-contraction on S with ψ(ε) = ε and ϕ(λ) = 
λ.

3 Main results
In this section, we will show (ψ ,ϕ, ε,λ)-contraction is continuous. By using this assump-
tion, we will also prove two theorems.

Definition . Let F be a probabilistic distance on S. A mapping f : S → S is called con-
tinuous if for every ε >  there exists δ >  such that

Fu,v(δ) >  – δ ⇒ Ffu,fv(ε) >  – ε.

Before we start to present the theorems, we will explain the following lemma.

http://www.fixedpointtheoryandapplications.com/content/2013/1/109
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Lemma . Every (ψ ,ϕ, ε,λ)-contraction is continuous.

Proof Suppose that ε >  be given and δ ∈ (, ) be such that δ <min{ε,ψ–(ε)} and since
ψ is increasing bijection then ψ(δ) < ε. If Fx,y(δ) >  – δ then, by (ψ ,ϕ, ε,λ)-contraction
we have Ffx,fy(ψ(δ)) >  – ϕ(δ), from where we obtain that Ffx,fy(ε) > Ffx,fy(ψ(δ)) >  – ϕ(δ) >
 – δ >  – ε. So f is continuous. �

Theorem . Let (S,F ,T) be a complete Menger space and T a t-norm satisfies in
sup≤a<T(a,a) = . Also, f : S → S a (ψ ,ϕ, ε,λ)-contraction where limn→∞ ψn(δ) =  for
every δ ∈ (,∞). If limt→∞ Fx,f mx (t) =  for some x ∈ S and all m ∈ N , then there exists a
unique fixed point x of the mapping f and x = limn→∞ f n(x).

Proof Let xn = f nx, n ∈N . We shall prove that (xn)n∈N is a Cauchy sequence.
Let n,m ∈ N , ε > , λ ∈ (, ). Since limt→∞ Fx,f mx(t)(t) = , it follows that for every ξ ∈

(, ) there exists η >  such that Fx,f m(x)(η) >  – ξ and by induction Ff mx,f n+mx (ψn(η)) >
 – ϕn(ξ ) for all n ∈N. By choosing n such that ψn(η) < ε and ϕn(ξ ) < λ, we obtain

Fxn ,xn+m (ε) >  – λ.

Hence, (xn)n∈N is a Cauchy sequence and since S is complete, it follows the existence of
x ∈ S such that x = limn→∞ xn. By continuity of f and xn+ = fxn for every n ∈ N, when
n→ ∞, we obtain that x = fx. �

Example . Let (S,F ,T) be a complete Menger space where S = {x,x,x,x}, T(a,b) =
min{a,b} and Fxy(t) is defined as

Fx,x (t) = Fx,x (t) =

⎧⎪⎪⎨
⎪⎪⎩
 if t ≤ ,

. if  < t ≤ ,

 if t > 

and

Fx,x (t) = Fx,x (t) = Fx,x (t) = Fx,x (t) = Fx,x (t) = Fx,x (t) = Fx,x (t)

= Fx,x (t) = Fx,x (t) = Fx,x (t) =

⎧⎪⎪⎨
⎪⎪⎩
 if t ≤ ,

. if  < t < ,

 if ≤ t

f : S → S is given by f (x) = f (x) = x and f (x) = f (x) = x. If we take ϕ(λ) = λ
 ,

ψ(ε) = ε
 , then f is a (ψ ,ϕ, ε,λ)-contraction where limn→∞ ψn(δ) = limn→∞ δ

n =  for ev-
ery δ ∈ (,∞) and if we set x = x, then for all m ∈ N , we have f mx = f mx = x and
limt→∞ Fxx (t) = , so x is the unique fixed point for f .

Theorem . Let (S,F ,T) be a complete Menger space, T be a t-norm such that
sup≤a<T(a,a) =  and f : S → S a (ψ ,ϕ, ε,λ)-contraction where the series

∑
i ψ

i(δ) is
convergent for all δ >  and suppose that for some p ∈ S and j > 

sup
x>

xj
(
 – Fp,fp(x)

)
<∞.
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If t-norm T is ϕ-convergent, then there exist a unique fixed point z of mapping f and z =
liml→∞ f lp.

Proof Choose ε >  and λ ∈ (, ). Let zl = f lp, l ∈N .We shall prove that (zl)l∈N is a Cauchy
sequence. It means we prove that there exists n(ε,λ) ∈N such that

Ff lp,f l+mp(ε) >  – λ for every l ≥ n(ε,λ) and everym ∈N .

Suppose that μ ∈ (, ),M >  are such that

xj
(
 – Fp,fp (x)

) ≤ M ∀x > . ()

Let n be such that

 –M
(
μj)n ∈ [, ).

From (), it follows that

Fp,fp
(


μn

)
>  –M

(
μj)n ∀n ∈N specially for n = n.

Since f is (ψ ,ϕ, ε,λ)-contraction, we derived by induction Ff lp,f l+p(ψ l( 
μn )) >  – ϕl( –

M(μj)n ) ∀l > . Since the series
∑∞

i= ψ
i(δ) is convergent, there exists n = n(ε) ∈N such

that
∑∞

i=l ψ
i(δ) ≤ ε ∀l ≥ n. We know

∑∞
i=l ψ

i( 
μn ) ≤ ε for every l >max{n,n}.

Now

Ff lp,f l+mp(ε) ≥ Ff lp,f l+mp

( ∞∑
i=l

ψ i
(


μn

))
≥ Ff lp,f l+mp

(l+m–∑
i=l

ψ i
(


μn

))

≥ T
(
T

(
· · ·T

(
Ff lp,f l+p

(
ψ l

(


μn

))
,Ff l+p,f l+p

(
ψ l+

(


μn

)))
, . . . ,

Ff l+m–p,f l+mp

(
ψ l+m–

(


μn

))))

≥ T
(
T

(· · ·T((
 – ϕl( –M

(
μj)n), ( – ϕl+( –M

(
μj)n)), . . . ,(

 – ϕl+m–( –M
(
μj)n))))

≥ 	∞
i=l

(
 – ϕi( –M

(
μj)n)).

Since T is ϕ-convergent, we conclude that (f lp)l∈N is a Cauchy sequence. On the other
hand, S is complete, therefore, there is a z ∈ S such that z = liml→∞ f lp. By the continuity
of the mapping f and zl+ = fzl when l → +∞, it follows that fz = z. �

Example . Let (S,F ,T) and the mappings f , ψ and ϕ be the same as in Example ..
Since

∑
i ψ

i(δ) =
∑

i
δ

i = δ for all δ >  and if we set p = x ∈ S, j >  then tj( –Fxx (t)) = 
for every t >  or supt> tj( – Fxx (t)) <∞, so x is the unique fixed point for f .
Mihet in [] showed, if f : S → S is a (ψ ,ϕ, ε,λ)-contraction and (S,M,T) is a complete

fuzzy metric space, then f has an unique fixed point. Now we present a generalization of
the (ψ ,ϕ, ε,λ)-contraction. First, we define the class of functions ℵ as follows.

http://www.fixedpointtheoryandapplications.com/content/2013/1/109
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Let ℵ be the family of all the mappingsm : R→ R such that the following conditions are
satisfied:
() ∀t, s ≥  :m(t + s) ≥m(t) +m(s);
() m(t) =  ⇔ t = ;
() m is continuous.

Definition . Let (S,F) be a probabilistic metric space and f : S → S. The mapping f
is a generalized (ψ ,ϕ, ε,λ)-contraction if there exist a continuous, decreasing function
h : [, ] → [,∞] such that h() = , m,m ∈ ℵ, and λ ∈ (, ) such that the following
implication holds for every p,q ∈ S and for every ε > :

hoFp,q
(
m(ε)

)
<m(λ) ⇒ hoFf (p),f (q)

(
m

(
ψ(ε)

))
<m

(
ϕ(λ)

)
.

Ifm(a) =m(a) = a, and h(a) =  – a for every a ∈ [, ], we obtain the Mihet definition.

Theorem . Let (S,F ,T) be a complete Menger space with t-norm T such that
sup≤a<T(a,a) =  and f : S → S be a generalized (ψ ,ϕ, ε,λ)-contraction such that ψ is
continuous on (,∞) and limn→∞ ψn(δ) =  for every δ ∈ (,∞). Suppose that there exists
λ ∈ (, ) such that h() <m(λ) and ϕ, ψ satisfy ϕ() = ψ() = . Then x = limn→∞ f n(p)
is the unique fixed point of the mapping f for an arbitrary p ∈ S.

Proof First we shall prove that f is uniformly continuous. Let ζ >  and η ∈ (, ). We have
to prove that there exists N(ζ ,η) = {(p,q)|(p,q) ∈ S × S,Fp,q(ζ ) >  – η} such that

(p,q) ∈N(ζ ,η) ⇒ Ff (p),f (q)(ζ ) >  – η.

Let ε be such thatm(ψ(ε)) < ζ and λ ∈ (, ) such that

m
(
ϕ(λ)

)
< h( – η). ()

Since m and m are continuous at zero, and m() = m() =  such numbers ε and λ

exist. We prove that ζ =m(ε), η =  – h–(m(λ)). If (p,q) ∈N(ζ ,η), we have

Fp,q
(
m(ε)

)
>  –

(
 – h–

(
m(λ)

))
= h–

(
m(λ)

)
.

Since h is decreasing, it follows that hoFp,q(m(ε)) <m(λ). Hence,

hoFf (p),f (q)
(
m

(
ψ(ε)

))
<m

(
ϕ(λ)

)
.

Using (), we conclude that

hoFf (p),f (q)
(
m

(
ψ(ε)

))
< h( – η)

and since h is decreasing we have

Ff (p),f (q)(ζ )≥ Ff (p),f (q)
(
m

(
ψ(ε)

))
>  – η.

http://www.fixedpointtheoryandapplications.com/content/2013/1/109
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Therefore, (f (p), f (q)) ∈ N(ζ ,η) if (p,q) ∈ N(ζ ,η). We prove that for every ζ >  and η ∈
(, ) there exists n(ζ ,η) ∈ N such that for every p,q ∈ S

n > n(ζ ,η) ⇒ Ff n(p),f n(q)(ζ ) >  – η. ()

By assumption, there is a λ ∈ (, ) such that h() <m(λ). From Fp,q(m(ε))≥ , it follows
that

hoFp,q
(
m(ε)

) ≤ h() <m(λ)

which implies that hoFf (p),f (q)(m(ψ(ε))) <m(ϕ(λ)), and continuing in this way we obtain
that for every n ∈N

hoFf n(p),f n(q)
(
m

(
ψn(ε)

))
<m

(
ϕn(λ)

)
.

Let n(ζ ,η) be a natural number such that m(ψn(ε)) < ζ and m(ϕn(λ)) < h( – η), for
every n≥ n(ζ ,η). Then n > n(ζ ,η) implies that

Ff n(p),f n(q)(ζ )≥ Ff n(p),f n(q)
(
m

(
ψn(ε)

))
>  – η.

If q = f m(p), from () we obtain that

Ff n(p),f n+m(p)(ζ ) >  – η for every n > n(ζ ,η) and everym ∈N . ()

Relation () means that (f n(p))n∈N is a Cauchy sequence, and since S is complete there
exists x = limn→∞ f n(p), which is obviously a fixed point of f since f is continuous.
For every p ∈ S and q ∈ S such that f (p) = p and f (q) = q we have for every n ∈ N that

f n(p) = p, f n(q) = q and, therefore, from () we have Fp,q(ζ ) >  – η for every η ∈ (, ) and
ζ > . This implies that Fp,q(ζ ) =  for every ζ >  and, therefore, p = q. �

Example . Let (S,F ,T) and the mappings f , ψ and ϕ be the same as in Example .. Set
h(a) = e–a – e– for every a ∈ [, ] and m(a) =m(a) = a. The mapping f is generalized
(ψ ,ϕ, ε,λ)-contraction and limn→∞ ψn(δ) = limn→∞ δ

n =  for every δ ∈ (,∞). On the
other hand, there exists λ ∈ (, ) such that h() =  – 

e < λ and ψ() = ϕ() = . So x is
the unique fixed point for f .
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3. Mihet, D: A note on a paper of Hadžić and Pap. In: Cho, YJ, Kim, JK, Kang, SM (eds.) Fixed Point Theory and

Applications, vol. 7, pp. 127-133. Nova Science Publishers, New York (2007)
4. Mihet, D: A class of Sehgal’s contractions in probabilistic metric spaces. An. Univ. Timişoara Ser. Mat.-Inform. 37,
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