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Abstract
The aim of this work is to study a system of generalized mixed variational inequalities,
existence and approximation of its solution using the resolvent operator technique.
We further propose an algorithm which converges to its solution and common fixed
points of two Lipschitzian mappings. Parallel algorithms are used, which can be used
to simultaneous computation in multiprocessor computers. The results presented in
this work are more general and include many previously known results as special
cases.
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1 Introduction and preliminaries
Variational inequality theory was introduced by Stampacchia [] in the early s. The
birth of variational inequality problem coincides with Signorini problem, see [, p.].
The Signorini problem consists of finding the equilibrium of a spherically shaped elastic
body resting on the rigid frictionless plane. LetH be a realHilbert spacewhose inner prod-
uct and norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. A variational inequality involving
the nonlinear bifurcation, which characterized the Signorini problem with nonlocal fric-
tion is: find x ∈H such that

〈Tx, y – x〉 + ϕ(y,x) – ϕ(x,x)≥ , ∀y ∈H ,

where T :H → H is a nonlinear operator and ϕ(·, ·) :H ×H →R∪ {+∞} is a continuous
bifunction.
Inequality above is called mixed variational inequality problem. It is an useful and im-

portant generalization of variational inequalities. This type of variational inequality arise
in the study of elasticity with nonlocal friction laws, fluid flow through porus media and
structural analysis. Mixed variational inequalities have been generalized and extended in
many directions using novel and innovative techniques. One interesting problem is to find
common solution of a system of variational inequalities. The existence problem for solu-
tions of a system of variational inequalities has been studied by Husain and Tarafdar [].
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System of variational inequalities arises in double porosity models and diffusion through
a composite media, description of parallel membranes, etc.; see [] for details.
In this paper, we consider the following system of generalizedmixed variational inequal-

ities (SGMVI). Find x∗, y∗ ∈H such that

⎧⎨
⎩

〈ρT(y∗,x∗) + g(x∗) – g(y∗),x – g(x∗)〉 + ϕ(x) – ϕ(g(x∗)) ≥ ,

〈ρT(x∗, y∗) + g(y∗) – g(x∗),x – g(y∗)〉 + ϕ(x) – ϕ(g(y∗))≥ 
(.)

for all x ∈ H and ρ,ρ > , where T,T :H ×H → H are nonlinear mappings and g, g :
H →H are any mappings.
If T,T : H → H are univariate mappings then the problem (SGMVI) reduced to the

following. Find x∗, y∗ ∈H such that

⎧⎨
⎩

〈ρT(y∗) + g(x∗) – g(y∗),x – g(x∗)〉 + ϕ(x) – ϕ(g(x∗)) ≥ ,

〈ρT(x∗) + g(y∗) – g(x∗),x – g(y∗)〉 + ϕ(x) – ϕ(g(y∗))≥ 
(.)

for all x ∈H and ρ,ρ > .
IfT = T = T and g = g = I , then the problem (SGMVI) reduces to the following system

of mixed variational inequalities considered by [, ]. Find x∗, y∗ ∈ H such that

⎧⎨
⎩

〈ρT(y∗,x∗) + x∗ – y∗,x – x∗〉 + ϕ(x) – ϕ(x∗) ≥ ,

〈ρT(x∗, y∗) + y∗ – x∗,x – y∗〉 + ϕ(x) – ϕ(y∗) ≥ 
(.)

for all x ∈H and ρ,ρ > .
If K is closed convex set in H and ϕ(x) = δK (x) for all x ∈ K , where δK is the indicator

function of K defined by

δK (x) =

⎧⎨
⎩
, if x ∈ K ;

+∞, otherwise,

then the problem (.) reduces to the following system of general variational inequality
problem: Find x∗, y∗ ∈ K such that

⎧⎨
⎩

〈ρT(y∗,x∗) + g(x∗) – g(y∗),x – g(x∗)〉 ≥ ,

〈ρT(x∗, y∗) + g(y∗) – g(x∗),x – g(y∗)〉 ≥ 
(.)

for all x ∈ K and ρ,ρ > . The problem (.) with g = g has been studied by [].
If T = T = T and g = g = I , then the problem (.) reduces to the following system of

general variational inequality problem. Find x∗, y∗ ∈ K such that

⎧⎨
⎩

〈ρT(y∗,x∗) + x∗ – y∗,x – x∗〉 ≥ ,

〈ρT(x∗, y∗) + y∗ – x∗,x – y∗〉 ≥ 
(.)

for all x ∈ K and ρ,ρ > . The problem (.) is studied by Verma [, ] and Chang et al.
[].
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In the study of variational inequalities, projection methods and its variant form has
played an important role. Due to presence of the nonlinear term ϕ, the projection method
and its variant forms cannot be extended to suggest iterative methods for solving mixed
variational inequalities. If the nonlinear term ϕ in the mixed variational inequalities is a
proper, convex and lower semicontinuous function, then the variational inequalities in-
volving the nonlinear term ϕ are equivalent to the fixed point problems and resolvent
equations. Hassouni and Moudafi [] used the resolvent operator technique to study a
new class of mixed variational inequalities.
For a multivalued operator T : H → H , the domain of T , the range of T and the graph

of T denote by

D(T) =
{
u ∈H : T(u) �= ∅}

, R(T) =
⋃
u∈H

T(u)

and

Graph(T) =
{(
u,u∗) ∈ H ×H : u ∈ D(T) and u∗ ∈ T(u)

}
,

respectively.

Definition . T is called monotone if and only if for each u ∈ D(T), v ∈ D(T) and u∗ ∈
T(u), v∗ ∈ T(v), we have

〈
v∗ – u∗, v – u

〉 ≥ .

T is maximal monotone if it is monotone and its graph is not properly contained in the
graph of any other monotone operator.
T– is the operator defined by v ∈ T–(u)⇔ u ∈ T(v).

Definition . ([]) For a maximal monotone operator T , the resolvent operator associ-
ated with T , for any σ > , is defined as

JT (u) = (I + σT)–(u), ∀u ∈H .

It is known that a monotone operator is maximal if and only if its resolvent operator is
defined everywhere. Furthermore, the resolvent operator is single-valued and nonexpan-
sive i.e., ‖JT (x) – JT (y)‖ ≤ ‖x – y‖ for all x, y ∈ H . In particular, it is well known that the
subdifferential ∂ϕ of ϕ is a maximal monotone operator; see [].

Lemma . ([]) For a given z,u ∈ H satisfies the inequality

〈u – z,x – u〉 + σϕ(x) – σϕ(u)≥ , ∀x ∈H

if and only if u = Jϕ(z), where Jϕ = (I + σ∂ϕ)– is the resolvent operator and σ >  is a con-
stant.

Using Lemma ., we will establish following important relation.
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Lemma . The variational inequality problem (.) is equivalent to finding x∗, y∗ ∈ H
such that

⎧⎨
⎩
x∗ = x∗ – g(x∗) + Jϕ(g(y∗) – ρT(y∗,x∗)),

y∗ = y∗ – g(y∗) + Jϕ(g(x∗) – ρT(x∗, y∗)),
(.)

where Jϕ = (I + ∂ϕ)– is the resolvent operator and ρ,ρ > .

Proof Let x∗, y∗ ∈H be a solution of (.). Then for all x ∈ H , we have

⎧⎨
⎩

〈ρT(y∗,x∗) + g(x∗) – g(y∗),x – g(x∗)〉 + ϕ(x) – ϕ(g(x∗)) ≥ ,

〈ρT(x∗, y∗) + g(y∗) – g(x∗),x – g(y∗)〉 + ϕ(x) – ϕ(g(y∗))≥ ,

which can be written as
⎧⎨
⎩

〈g(x∗) – (g(y∗) – ρT(y∗,x∗)),x – g(x∗)〉 + ϕ(x) – ϕ(g(x∗)) ≥ ,

〈g(y∗) – (g(x∗) – ρT(x∗, y∗)),x – g(y∗)〉 + ϕ(x) – ϕ(g(y∗)) ≥ ,

using Lemma . for σ = , we get

⎧⎨
⎩
g(x∗) = Jϕ(g(y∗) – ρT(y∗,x∗)),

g(y∗) = Jϕ(g(x∗) – ρT(x∗, y∗)),

i.e.,

⎧⎨
⎩
x∗ = x∗ – g(x∗) + Jϕ(g(y∗) – ρT(y∗,x∗)),

y∗ = y∗ – g(y∗) + Jϕ(g(x∗) – ρT(x∗, y∗)).

This completes the proof. �

Definition . An operator g :H →H is said to be
() ζ -strongly monotone if for each x,x′ ∈H , there exists a constant ζ >  such that

〈
g(x) – g

(
x′),x – x′〉 ≥ ζ

∥∥x – x′∥∥

for all y, y′ ∈H ;
() η-Lipschitz continuous if for each x,x′ ∈ H , there exists a constant η >  such that

∥∥g(x) – g
(
x′)∥∥ ≤ η

∥∥x – x′∥∥.

An operator T :H ×H →H is said to be
() relaxed (ω, t)-cocoercive with respect to the first argument if for each x,x′ ∈H , there

exist constants t >  and ω >  such that

〈
T(x, ·) – T

(
x′, ·),x – x′〉 ≥ –ω

∥∥T(x, ·) – T
(
x′, ·)∥∥ + t

∥∥x – x′∥∥;

http://www.fixedpointtheoryandapplications.com/content/2013/1/108
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() μ-Lipschitz continuous with respect to the first argument if for each x,x′ ∈H , there
exists a constant μ >  such that

∥∥T(x, ·) – T
(
x′, ·)∥∥ ≤ μ

∥∥x – x′∥∥;

() γ -Lipschitz continuous with respect to the second argument if for each y, y′ ∈ H ,
there exists a constant γ >  such that

∥∥T(·, y) – T
(·, y′)∥∥ ≤ γ

∥∥y – y′∥∥.

Lemma . ([]) Let {an} and {bn} be two nonnegative real sequences satisfying the fol-
lowing conditions:

an+ ≤ ( – dn)an + bn, ∀n≥ n,

where n is some nonnegative integer, dn ∈ (, ) with
∑∞

n= dn = ∞ and bn = o(dn), then
an →  as n→ ∞.

Several iterative algorithms have been devised to study existence and approximation of
different classes of variational inequalities. Most of them are sequential iterative methods,
when we implement such algorithms on computers, then only one processor is used at a
time. Availability of multiprocessor computers enabled researchers to develop iterative
algorithms having the parallel characteristics. Lions [] studied a parallel algorithm for
a solution of parabolic variational inequalities. Bertsekas and Tsitsiklis [, ] developed
parallel algorithm using the metric projection. Recently, Yang et al. [] studied parallel
projection algorithm for a system of nonlinear variational inequalities.

2 Existence and convergence
Lemma . established the equivalence between the fixed-point problem and the varia-
tional inequality problem (.). Using this equivalence in this section, we construct a par-
allel iterative algorithm to approximate the solution of the problem (.) and study the
convergence of the sequence generated by the algorithm.

Algorithm . For arbitrary chosen points x, y ∈ H , compute the sequences {xn} and
{yn} such that

⎧⎨
⎩
xn+ = xn – g(xn) + Jϕ(g(yn) – ρT(yn,xn)),

yn+ = yn – g(yn) + Jϕ(g(xn) – ρT(xn, yn)),
(.)

where Jϕ = (I + ∂ϕ)– is the resolvent operator and ρ, ρ is positive real numbers.

Theorem . Let H be a real Hilbert space. Let Ti :H ×H →H and gi :H → H be map-
pings such that Ti is relaxed (ωi, ti)-cocoercive, μi-Lipschitz continuous with respect to the
first argument, γi-Lipschitz continuous with respect to the second argument and gi is ηi-
Lipschitz continuous, ζi-strongly monotone mapping for i = , . Assume that the following

http://www.fixedpointtheoryandapplications.com/content/2013/1/108
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assumptions hold:

∣∣∣∣ρ –
ti – γi( – κ) –ωiμ


i

(μ
i – γ 

i )

∣∣∣∣ <
√
(ωiμ


i + γi( – κ) – ti) – (μ

i – γ 
i )κ( – κ)

(μ
i – γ 

i )
,

∣∣ωiμ

i + γi( – κ) – ti

∣∣ >
√(

μ
i – γ 

i
)
κ( – κ),

where κ =
∑

i=

√
 – ζi + η

i < .
Then there exist x∗, y∗ ∈ H , which solves the problem (.). Moreover, the iterative se-

quences {xn} and {yn} generated by the Algorithm . converges to x∗ and y∗, respectively.

Proof Using (.), we have

‖xn+ – xn‖
=

∥∥xn – g(xn) + Jϕ
(
g(yn) – ρT(yn,xn)

)

–
[
xn– – g(xn–) + Jϕ

(
g(yn–) – ρT(yn–,xn–)

)]∥∥
≤ ∥∥xn – xn– –

(
g(xn) – g(xn–)

)∥∥
+

∥∥Jϕ
(
g(yn) – ρT(yn,xn)

)
– Jϕ

(
g(yn–) – ρT(yn–,xn–)

)∥∥
≤ ∥∥xn – xn– –

(
g(xn) – g(xn–)

)∥∥
+

∥∥g(yn) – g(yn–) – ρ
(
T(yn,xn) – T(yn–,xn–)

)∥∥
≤ ∥∥xn – xn– –

(
g(xn) – g(xn–)

)∥∥ +
∥∥(
g(yn) – g(yn–)

)
– (yn – yn–)

∥∥
+

∥∥yn – yn– – ρ
(
T(yn,xn) – T(yn–,xn)

)∥∥
+ ρ

∥∥T(yn–,xn) – T(yn–,xn–)
∥∥. (.)

Since T is relaxed (ω, t)-cocoercive and μ-Lipschitz continuous in the first argument,
we have

∥∥yn – yn– – ρ
(
T(yn,xn) – T(yn–,xn)

)∥∥

= ‖yn – yn–‖ – ρ
〈
T(yn,xn) – T(yn–,xn), yn – yn–

〉

+ ρ

∥∥T(yn,xn) – T(yn–,xn)

∥∥

≤ ‖yn – yn–‖ + ρω
∥∥T(yn,xn) – T(yn–,xn)

∥∥

– ρt‖yn – yn–‖ + ρ

∥∥T(yn,xn) – T(yn–,xn)

∥∥

≤ ‖yn – yn–‖ + ρωμ

‖yn – yn–‖ – ρt‖yn – yn–‖ + ρ

 μ

‖yn – yn–‖

=
(
 + ρωμ


 – ρt + ρ

 μ


)‖yn – yn–‖. (.)

Since g is η-Lipschitz continuous and ζ-strongly monotone,

∥∥xn – xn– –
(
g(xn) – g(xn–)

)∥∥

= ‖xn – xn–‖ – 
〈
g(xn) – g(xn–),xn – xn–

〉
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+
∥∥g(xn) – g(xn–)

∥∥

≤ (
 – ζ + η


)‖xn – xn–‖. (.)

Similarly,

∥∥yn – yn– –
(
g(yn) – g(yn–)

)∥∥ ≤ (
 – ζ + η


)‖yn – yn–‖. (.)

By γ-Lipschitz continuity of T with respect to second argument,

∥∥T(yn–,xn) – T(yn–,xn–)
∥∥ ≤ γ‖xn – xn–‖. (.)

It follows from (.)-(.) that

‖xn+ – xn‖ ≤ (ψ + ργ)‖xn – xn–‖ + (ψ + θ)‖yn – yn–‖, (.)

where ψ =
√
 – ζ + η

 and θ =
√
 + ρωμ


 – ρt + ρ

 μ

 .

Similarly, we get

‖yn+ – yn‖ ≤ (ψ + θ)‖xn – xn–‖ + (ψ + ργ)‖yn – yn–‖, (.)

where ψ =
√
 – ζ + η

 and θ =
√
 + ρωμ


 – ρt + ρ

μ

.

Now (.) and (.) imply

‖xn+ – xn‖ + ‖yn+ – yn‖ ≤ (ψ +ψ + θ + ργ)‖xn – xn–‖
+ (ψ +ψ + θ + ργ)‖yn – yn–‖

≤ �
(‖xn – xn–‖ + ‖yn – yn–‖

)
,

where � =max{(ψ +ψ + θ + ργ), (ψ +ψ + θ + ργ)} <  by assumption. Hence {xn}
and {yn} are both Cauchy sequences inH , and {xn} converges to x∗ ∈H and {yn} converges
to y∗ ∈H . Since g, g, T, T and Jϕ are all continuous, we have

⎧⎨
⎩
x∗ = x∗ – g(x∗) + Jϕ(g(y∗) – ρT(y∗,x∗)),

y∗ = y∗ – g(y∗) + Jϕ(g(x∗) – ρT(x∗, y∗)).

The result follows from Lemma .. This completes the proof. �

If T,T :H →H are univariate mappings, then the Algorithm . reduces to the follow-
ing.

Algorithm . For arbitrary chosen points x, y ∈ H , compute the sequences {xn} and
{yn} such that

⎧⎨
⎩
xn+ = xn – g(xn) + Jϕ(g(yn) – ρT(yn)),

yn+ = yn – g(yn) + Jϕ(g(xn) – ρT(xn)),

where Jϕ = (I + ∂ϕ)– is the resolvent operator and ρ, ρ is positive real numbers.

http://www.fixedpointtheoryandapplications.com/content/2013/1/108
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Theorem . Let H be a real Hilbert space. Let Ti, gi : H → H be mappings such that
Ti is relaxed (ωi, ti)-cocoercive, μi-Lipschitz continuous and gi is ηi-Lipschitz continuous,
ζi-strongly monotone mapping for i = , . Assume that the following assumptions hold:

∣∣∣∣ρ –
ti –ωiμ


i

μ
i

∣∣∣∣ <
√
(ωiμ


i – ti) –μ

i κ( – κ)

μ
i

,

∣∣ωiμ

i – ti

∣∣ > μi
√

κ( – κ),

where κ =
∑

i=

√
 – ζi + η

i < .
Then there exist x∗, y∗ ∈ H , which solves the problem (.). Moreover the iterative se-

quences {xn} and {yn} generated by the Algorithm . converges to x∗ and y∗, respectively.

3 Relaxed algorithm and approximation solvability
Lemma . implies that the system of general mixed variational inequality problem (.)
is equivalent to the fixed-point problem. This alternative equivalent formulation is very
useful for a numerical point of view. In this section, we construct a relaxed iterative al-
gorithm for solving the problem (.) and study the convergence of the iterative sequence
generated by the algorithm.

Algorithm . For arbitrary chosen points x, y ∈ H , compute the sequences {xn} and
{yn} such that

⎧⎨
⎩
xn+ = ( – αn)xn + αn(xn – g(xn) + Jϕ(g(yn) – ρT(yn,xn))),

yn+ = ( – βn)yn + βn(yn – g(yn) + Jϕ(g(xn) – ρT(xn, yn))),
(.)

where Jϕ = (I + ∂ϕ)– is the resolvent operator, {αn}, {βn} are sequences in [, ] and ρ, ρ

is positive real numbers.

We first prove a result, which will be helpful to prove main result of this section.

Lemma . Let H be a real Hilbert space. Let {xn} and {yn} be sequences in H such that

∥∥xn+ – x∗∥∥ +
∥∥yn+ – y∗∥∥ ≤ max

{
( – tn), ( – sn)

}(∥∥xn – x∗∥∥ +
∥∥yn – y∗∥∥)

(.)

for some x∗, y∗ ∈ H , where {sn} and {tn} are sequences in (, ) such that
∑∞

n= tn = ∞ and∑∞
n= sn = ∞. Then {xn} and {yn} converges to x∗ and y∗, respectively.

Proof Now, define the norm ‖ · ‖ on H ×H by

∥∥(x, y)∥∥ = ‖x‖ + ‖y‖, ∀(x, y) ∈ H ×H .

Then (H ×H ,‖ · ‖) is a Banach space. Hence, (.) implies that

∥∥(xn+, yn+) –
(
x∗, y∗)∥∥

 ≤ max
{
( – tn), ( – sn)

}∥∥(xn, yn) –
(
x∗, y∗)∥∥

.

http://www.fixedpointtheoryandapplications.com/content/2013/1/108
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Using Lemma ., we get

lim
n→∞

∥∥(xn, yn) –
(
x∗, y∗)∥∥

 = .

Therefore, sequences {xn} and {yn} converges to x∗ and y∗, respectively. This completes
the proof. �

We now present the approximation solvability of the problem (.).

Theorem . Let H be a real Hilbert space H . Let Ti : H × H → H and gi : H → H be
mappings such that Ti is relaxed (ωi, ti)-cocoercive, μi-Lipschitz continuous with respect to
the first argument, γi-Lipschitz continuous with respect to the second argument and gi is
ηi-Lipschitz continuous, ζi-strongly monotone mapping for i = , . Suppose that x∗, y∗ ∈ H
be a solution of the problem (.) and {αn}, {βn} are sequences in [, ]. Assume that the
following assumptions hold:

(i)  < �n = αn( – (ψ + ργ)) – βn(ψ + θ) < ,
(ii)  < �n = βn( – (ψ + ργ)) – αn(ψ + θ) < ,
(iii)

∑∞
n= �n = ∞ and

∑∞
n= �n = ∞,

where

θi =
√
 + ρiωiμ


i – ρti + ρ

i μ

i , ψi =

√
 – ζi + η

i , i = , .

Then the sequences {xn} and {yn} generated by the Algorithm . converges to x∗ and y∗,
respectively.

Proof From Theorem . the problem (.) has a solution (x∗, y∗) in H . By Lemma ., we
have

⎧⎨
⎩
x∗ = x∗ – g(x∗) + Jϕ(g(y∗) – ρT(y∗,x∗)),

y∗ = y∗ – g(y∗) + Jϕ(g(x∗) – ρT(x∗, y∗)).
(.)

To prove the result, we first evaluate ‖xn+ – x∗‖ for all n≥ . Using (.), we obtain

∥∥xn+ – x∗∥∥

≤ ∥∥( – αn)xn + αn
(
xn – g(xn) + Jϕ

(
g(yn) – ρT(yn,xn)

))
– x∗∥∥

≤ ( – αn)
∥∥xn – x∗∥∥ + αn

∥∥xn – x∗ –
(
g(xn) – g

(
x∗))∥∥

+ αn
∥∥Jϕ

(
g(yn) – ρT(yn,xn)

)
– Jϕ

(
g

(
x∗) – ρT

(
y∗,x∗))∥∥

≤ ( – αn)
∥∥xn – x∗∥∥ + αn

∥∥xn – x∗ –
(
g(xn) – g

(
x∗))∥∥

+ αn
∥∥g(yn) – g

(
y∗) – (

yn – y∗)∥∥

+ αn
∥∥yn – y∗ – ρ

(
T(yn,xn) – T

(
y∗,xn

))∥∥

+ αnρ
∥∥T

(
y∗,xn

)
– T

(
y∗,x∗)∥∥. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/108
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Since T is relaxed (ω, t)-cocoercive and μ-Lipschitz mapping with respect to the first
argument, we have

∥∥yn – y∗ – ρ
(
T(yn,xn) – T

(
y∗,xn

))∥∥

=
∥∥yn – y∗∥∥ – ρ

〈
T(yn,xn) – T

(
y∗,xn

)
, yn – y∗〉

+ ρ

∥∥T(yn,xn) – T

(
y∗,xn

)∥∥

≤ ∥∥yn – y∗∥∥ + ρω
∥∥T(yn,xn) – T

(
y∗,xn

)∥∥

– ρt
∥∥yn – y∗∥∥ + ρ


∥∥T(yn,xn) – T

(
y∗,xn

)∥∥

≤ (
 + ρωμ


 – ρt + ρ

 μ


)∥∥yn – y∗∥∥. (.)

Since g is η-Lipschitz continuous and ζ-strongly monotone,

∥∥xn – x∗ –
(
g(xn) – g

(
x∗))∥∥

=
∥∥xn – x∗∥∥ – 

〈
g(xn) – g

(
x∗),xn – x∗〉 + ∥∥g(xn) – g

(
x∗)∥∥

≤ (
 – ζ + η


)∥∥xn – x∗∥∥. (.)

Similarly, we have

∥∥yn – y∗ –
(
g(yn) – g

(
y∗))∥∥ ≤ (

 – ζ + η

)∥∥yn – y∗∥∥. (.)

By γ-Lipschitz continuity of T with respect to second argument,

∥∥T
(
y∗,xn

)
– T

(
y∗,x∗)∥∥ ≤ γ

∥∥xn – x∗∥∥. (.)

By (.)-(.), we have

∥∥xn+ – x∗∥∥ ≤ [
 – αn + αn(ψ + ργ)

]∥∥xn – x∗∥∥ + αn(ψ + θ)
∥∥yn – y∗∥∥, (.)

where ψ =
√
 – ζ + η

 and θ =
√
 + ρωμ


 – ρt + ρ

 μ

 .

Similarly, we have

∥∥yn+ – y∗∥∥ ≤ βn(ψ + θ)
∥∥xn – x∗∥∥ +

[
 – βn + βn(ψ + ργ)

]∥∥yn – y∗∥∥, (.)

where ψ =
√
 – ζ + η

 and θ =
√
 + ρωμ


 – ρt + ρ

μ

.

Now (.) and (.) imply

∥∥xn+ – x∗∥∥ +
∥∥yn+ – y∗∥∥

≤ [
 –

(
αn

(
 – (ψ + ργ)

)
– βn(ψ + θ)

)]∥∥xn – x∗∥∥

+
[
 –

(
βn

(
 – (ψ + ργ)

)
– αn(ψ + θ)

)]∥∥yn – y∗∥∥

≤ max
{
( –�n), ( –�n)

}(∥∥xn – x∗∥∥ +
∥∥yn – y∗∥∥)

,

http://www.fixedpointtheoryandapplications.com/content/2013/1/108
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where

�n = αn
(
 – (ψ + ργ)

)
– βn(ψ + θ),

�n = βn
(
 – (ψ + ργ)

)
– αn(ψ + θ).

By the assumptions and Lemma ., we get that the sequences {xn} and {yn} converges to
x∗ and y∗, respectively. This completes the proof. �

Remark . Theorem . extend and generalize the main result in [], which itself is a
extension and improvement of the main result in Chang et al. [].

If T,T :H →H are univariate mappings, then the Algorithm . reduces to the follow-
ing.

Algorithm . For arbitrary chosen points x, y ∈ H , compute the sequences {xn} and
{yn} such that

⎧⎨
⎩
xn+ = ( – αn)xn + αn(xn – g(xn) + Jϕ(g(yn) – ρT(yn))),

yn+ = ( – βn)yn + βn(yn – g(yn) + Jϕ(g(xn) – ρT(xn))),

where Jϕ = (I + ∂ϕ)– is the resolvent operator, {αn}, {βn} are sequences in [, ] and ρ, ρ

is positive real numbers.

As a consequence of Theorem ., we have following result.

Corollary . Let H be a real Hilbert space H . Let Ti, gi : H → H be mappings such that
Ti is relaxed (ωi, ti)-cocoercive, μi-Lipschitz continuous and gi is ηi-Lipschitz continuous,
ζi-strongly monotone mapping for i = , . Suppose that x∗, y∗ ∈H be a solution of the prob-
lem (.) and {αn}, {βn} are sequences in [, ].Assume that the following assumptions hold:

(i)  < �n = αn( –ψ) – βn(ψ + θ) < ,
(ii)  < �n = βn( –ψ) – αn(ψ + θ) < ,
(iii)

∑∞
n= �n = ∞ and

∑∞
n= �n = ∞,

where

θi =
√
 + ρiωiμ


i – ρti + ρ

i μ

i , ψi =

√
 – ζi + η

i , i = , .

Then the sequences {xn} and {yn} generated by the Algorithm . converges to x∗ and y∗,
respectively.

4 Algorithms for common element
Now,we consider, the approximation solvability of the system (.) which is also a common
fixed point of two Lipschitzianmappings.Wepropose a relaxed two-step algorithm,which
can be applied to the approximation of solution of the problem (.) and common fixed
point of two Lipschitzian mappings.

http://www.fixedpointtheoryandapplications.com/content/2013/1/108
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Algorithm . For arbitrary chosen points x, y ∈ H , compute the sequences {xn} and
{yn} such that

⎧⎨
⎩
xn+ = ( – αn)xn + αnS(xn – g(xn) + Jϕ(g(yn) – ρT(yn,xn))),

yn+ = ( – βn)yn + βnS(yn – g(yn) + Jϕ(g(xn) – ρT(xn, yn))),
(.)

where Jϕ = (I + ∂ϕ)– is the resolvent operator, {αn}, {βn} are sequences in [, ] and ρ, ρ

be positive real numbers.

Let F(Si) denote the set of fixed points of the mapping Si, i.e., F(Si) = {x ∈ H : Six = x},
Fix(S) =

⋂
i= F(Si) and SOL (.) the set of solutions of the problem (.).

Theorem . Let H be a real Hilbert space H . Let Ti : H × H → H and gi : H → H be
mappings such that Ti is relaxed (ωi, ti)-cocoercive, μi-Lipschitz continuous with respect
to the first argument, γi-Lipschitz continuous with respect to the second argument and gi
is ηi-Lipschitz continuous, ζi-strongly monotone mapping for i = , . Let Si :H →H be ϑi-
Lipschitzian mapping for i = ,  with Fix(S) �= ∅, {αn}, {βn} are sequences in [, ]. Assume
that the following assumptions hold:

(i)  < �n = αnϑ( – (ψ + ργ)) – βnϑ(ψ + θ) < ,
(ii)  < �n = βnϑ( – (ψ + ργ)) – αnϑ(ψ + θ) < ,
(iii)

∑∞
n= �n = ∞ and

∑∞
n= �n = ∞,

where ϑ =max{ϑ,ϑ} and

θi =
√
 + ρiωiμ


i – ρti + ρ

i μ

i , ψi =

√
 – ζi + η

i , i = , .

If SOL (.) ∩ Fix(S) �= ∅, then the sequences {xn} and {yn} generated by the Algorithm .
converges to x∗ and y∗, respectively, such that (x∗, y∗) ∈ SOL (.) and {x∗, y∗} ∈ Fix(S).

Proof Let us have (x∗, y∗) ∈ SOL (.) and {x∗, y∗} ∈ Fix(S). By Lemma ., we have

⎧⎨
⎩
x∗ = x∗ – g(x∗) + Jϕ(g(y∗) – ρT(y∗,x∗)),

y∗ = y∗ – g(y∗) + Jϕ(g(x∗) – ρT(x∗, y∗)).

Also since {x∗, y∗} ∈ Fix(S), we have

⎧⎨
⎩
x∗ = S(x∗ – g(x∗) + Jϕ(g(y∗) – ρT(y∗,x∗))),

y∗ = S(y∗ – g(y∗) + Jϕ(g(x∗) – ρT(x∗, y∗))).

To prove the result, we first evaluate ‖xn+ – x∗‖ for all n≥ . Using (.), we obtain

∥∥xn+ – x∗∥∥
≤ ∥∥( – αn)xn + αnS

(
xn – g(xn) + Jϕ

(
g(yn) – ρT(yn,xn)

))
– x∗∥∥

≤ ( – αn)
∥∥xn – x∗∥∥

+ αn
∥∥S

(
xn – g(xn) + Jϕ

(
g(yn) – ρT(yn,xn)

))
– Sx∗∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/108
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≤ ( – αn)
∥∥xn – x∗∥∥ + αnϑ

∥∥xn – x∗ –
(
g(xn) – g

(
x∗))∥∥

+ αnϑ
∥∥Jϕ

(
g(yn) – ρT(yn,xn)

)
– Jϕ

(
g

(
y∗) – ρT

(
y∗,x∗))∥∥

≤ ( – αn)
∥∥xn – x∗∥∥ + αnϑ

∥∥xn – x∗ –
(
g(xn) – g

(
x∗))∥∥

+ αnϑ
∥∥g(yn) – g

(
y∗) – (

yn – y∗)∥∥
+ αnϑ

∥∥yn – y∗ – ρ
(
T(yn,xn) – T

(
y∗,xn

))∥∥
+ αnϑρ

∥∥T
(
y∗,xn

)
– T

(
y∗,x∗)∥∥. (.)

Using the arguments as in the proof of Theorem ., from (.) we get that

∥∥xn+ – x∗∥∥ ≤ [
 – αn + αnϑ(ψ + ργ)

]∥∥xn – x∗∥∥ + αnϑ(ψ + θ)
∥∥yn – y∗∥∥, (.)

where ψ =
√
 – ζ + η

 and θ =
√
 + ρωμ


 – ρt + ρ

 μ

 .

Similarly, we get

∥∥yn+ – y∗∥∥ ≤ βnϑ(ψ + θ)
∥∥xn – x∗∥∥ +

[
 – βn + βnϑ(ψ + ργ)

]∥∥yn – y∗∥∥, (.)

where ψ =
√
 – ζ + η

 and θ =
√
 + ρωμ


 – ρt + ρ

μ

.

Adding (.) and (.), taking ϑ =max{ϑ,ϑ} we get
∥∥xn+ – x∗∥∥ +

∥∥yn+ – y∗∥∥
≤ [

 –
(
αn

(
 – ϑ(ψ + ργ)

)
– βnϑ(ψ + θ)

)]∥∥xn – x∗∥∥
+

[
 –

(
βn

(
 – ϑ(ψ + ργ)

)
– αnϑ(ψ + θ)

)]∥∥yn – y∗∥∥
≤ max

{
( –�n), ( –�n)

}(∥∥xn – x∗∥∥ +
∥∥yn – y∗∥∥)

,

where

�n = αn
(
 – ϑ(ψ + ργ)

)
– ϑβn(ψ + θ),

�n = βn
(
 – ϑ(ψ + ργ)

)
– ϑαn(ψ + θ).

By the assumptions and Lemma ., we get that the sequences {xn} and {yn} converges to
x∗ and y∗, respectively. This completes the proof. �

A mapping S : H → H is said to be asymptotically λ-strictly pseudocontractive [] if
there exist a sequence {kn} ⊂ [,∞) with limn→∞ kn =  such that

∥∥Snx – Sny
∥∥ ≤ kn‖x – y‖ + λ

∥∥(
x – Snx

)
–

(
y – Sny

)∥∥

for some λ ∈ (, ), for all x, y ∈H and n≥ .
Kim and Xu [] proved that, if S : H → H is an asymptotically λ-strictly pseudocon-

tractive mapping, then Sn is a Lipschitzian mapping with Lipschitz constant

Ln =
λ +

√
 + (kn – )( – λ)

 – λ

for each integer n > .
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Also if x∗ ∈ F(S), then x∗ ∈ F(Sn) for all integer n≥ .
Assume that Si :H →H is asymptotically λi-strictly pseudocontractivemappings for i =

,  with
⋂

i= F(Si) �= ∅. Now generate sequence {xn} and {yn} byAlgorithm.with S := Sj
and S := Sk for some integer j,k > . Theorem . can be applied to study approximate
solvability of the problem (.) and common fixed points of two asymptotically strictly
pseudocontractive mappings.
A mapping S :H → H is said to be asymptotically nonexpansive [] if there exists a se-

quence {kn} ⊂ [,∞) with limn→∞ kn =  such that ‖Snx – Sny‖ ≤ kn‖x – y‖ for all x, y ∈ K
and n ≥ . Clearly every asymptotically nonexpansive mapping is an asymptotically -
strictly pseudocontractive mapping. Theorem . can be applied to study approximate
solvability of the problem (.) and common fixed points of two asymptotically nonex-
pansive mappings.

Remark . An important feature of the algorithms used in the paper is its suitability for
implementing on multiprocessor computer. Assume that {xn} and {yn} are given, in order
to get the new iterative point; we can set one processor of computer to compute {xn+}
and other processor to compute {yn+}, i.e., {xn+} and {yn+} are computed parallel, which
will take less time then computing {xn+} and {yn+} in a sequence using a single processor;
we refer [, , –] and references therein for more examples and ideas of the parallel
iterative methods.
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