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1 Introduction and preliminaries

Fixed point theory has fascinated many mathematicians since 1922 with the celebrated Ba-
nach’s fixed point theorem. Fixed point theory plays a major role within as well as outside
mathematics, so the attraction of fixed point theory to large numbers of researchers is un-
derstandable, and the problem of fixed point has been studied in several directions; see for
example, [1-4]. The study of metric fixed point theory has been researched extensively in
the past decades. Recently, some generalizations of the notion of a metric space have been
proposed by some authors. In 1992, Matthews introduced a new notion of generalized
metric space called partial metric space (for short PMS) [5, 6], in which the distance of a
point from itself may not be zero. After the appearance of partial metric spaces, some au-
thors started to generalize Banach contraction mapping theorem to partial metric spaces
and focus on fixed point theory on partial metric spaces (see, e.g., [7-24]). A new category
of fixed point problems was addressed by Khan et al. [25]. In this study, they introduced
the concept of altering distance function. In [26], Choudhury introduced the concept of

weakly C-contractive mapping as follows.

Definition 1.1 [26] Let (X,d) be a metric space and 7' : X — X be a mapping. Then T is
said to be weakly C-contractive (or a weakly C-contraction) if for all x,y € X, the following
inequality holds:

1
d(Tx, Ty) < 3 (d(x, Ty) + d(Tx,y)) - qb(d(x, Ty),d(Tx,y)),
where ¢ : [0,+00) x [0,+00) — [0,+00) is a continuous function such that ¢(x,y) = 0 if

and only ifx = y = 0.
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Shatanawi [27] investigated some fixed point theorems and coupled fixed point theo-
rems for weakly C-contractive mapping by using an altering distance function in metric
and partially ordered metric spaces.

Recently, Haghi et al. [28] pointed that many fixed point generalizations to partial metric
spaces can be obtained from the corresponding results in metric spaces and considered
some cases to demonstrate this fact. The aim of this paper is to research fixed point and
common fixed point theorems for weakly C-contractive type mappings in partial metric
spaces. Our results extend and generalize some results of [27] to partial metric spaces;
all of our results cannot be obtained from the corresponding results in metric spaces.
Moreover, even in metric spaces, our results are the generalizations of some results of [27].
Also, we give an example to illustrate our results.

Throughout this paper, the letters N and N* denote the set of all nonnegative integer
numbers and the set of all positive integer numbers, respectively. Let us recall some defi-
nitions and properties of partial metric spaces.

Definition 1.2 [6] Let X be a nonempty set. The mapping p : X x X — [0, +00) is said to
be a partial metric on X if the following conditions hold:

(P1) x=y & py) =px) =p0,y)
(P2) plx,x) < p(x,9),
(P3) p(x,y) =p(y,x),

(P4) plx,y) < px,2) + p(z,y) - p(z,2),

for any x,y,z € X. The pair (X, p) is then called a partial metric space.

It is clear that, if p(x, ) = 0, then from (P;) and (P;), x = y. But if x = y, p(x, y) may not be 0.
For a partial metric p on X, the function d, : X x X — [0, +00) given by

dp(x,y) = 2p(x,y) — p(x, %) - p(5,7)

is a (usual) metric on X. Each partial metric p on X generates a Ty-topology 7, on X witha
base of the family of open p-balls {B,(x,¢) : x € X, & > 0}, where B,(x,¢) = {y € X : p(x,y) <
p(x,x) + ¢} forallx € X and ¢ > 0.

Let (X, p) be a partial metric space. Then:

A sequence {x,} in a partial metric space (X, p) converges to a point x € X if and only if
px,x) = lim,, 0 p(x, X,1).

A sequence {x,} in a partial metric space (X, p) is called a Cauchy sequence if there exists
(and is finite) limy, ;- 100 (%> X11)-

A partial metric space (X, p) is said to be complete if every Cauchy sequence {x,} in X
converges, with respect to 7,, to a point x € X such that p(x,x) = lim,, s— 400 P(Xm, %)

The following lemmas play a major role in proving our main results.

Lemma 1.1 [29] Let (X, p) be a partial metric space.
(A) A sequence {x,} is a Cauchy sequence in (X, p) if and only if {x,} is a Cauchy
sequence in (X, d,).
(B) (X,p) is complete if and only if (X, d,,) is complete. Moreover,

lim d,(x,x)=0 < p(x,x)=ngr+noop(xmx):nV;quwp(xn,xm). (L1)

n—+00
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Lemma 1.2 [29, 30] Assume that x,, — z as n — +00 in a PMS (X, p) such that p(z,z) = 0.
Then lim,,_, .00 p(x4,y) = p(2,y) for every y € X.

Lemma 1.3 [31] Let (X, p) be a partial metric space and let {x,} be a sequence in X such
that

lim p(x,.1,%,) = 0.
n—+0Q
If {x5,} is not a Cauchy sequence in (X, p), then there exist ¢ > 0 and two sequences {m(k)}
and {n(k)} of positive integers such that n(k) > m(k) > k and the following four sequences
tend to € when k — +o00:

P Xam(kys Xon(k))» P Xom(k)s Xan(k)+1)s
(1.2)

PE2m()-15 X2n(k))» P X2m(k)-1> X2n(i)+1)-

2 Main results
We start this section with the following definition, which can be seen in [9, 16, 17, 30].

Definition 2.1 Let (x,P) be a partial metric space. A mapping 7 : X — X is said to be
continuous at xo € X if for every & > 0, there exists § > 0 such that T'(B,(x¢,8)) C B,(Txo, €).

Definition 2.2 [25] The function ¢ : [0,+00) — [0,+00) is called an altering distance
function, if the following properties are satisfied:

(1) ¢ is continuous and nondecreasing;

(2) ¢(¥) =0ifand onlyif£=0.

Lemma 2.1 [31] Let (X,p) be a partial metric space, T : X — X be a given mapping.
Suppose that T is continuous at xo € X. Then, for each sequence {x,} in X, x, — x¢ in
T, = Tx, — Txg in T, holds.

Theorem 2.1 Let (X, X) be a partially ordered set and suppose that there exists a partial
metric p on X such that (X,p) is complete. Let f : X — X be a continuous nondecreasing
mapping. Suppose that for comparable x,y € X, we have

0 ) = o P EED ) g p6s,pifs), @

where W and ¢ are altering distance functions with

Y () -)=0 (2.2)

forallt>0,and ¢ : [0,+00) x [0, +00) — [0, +00) is a continuous function with ¢(x,y) = 0
if and only if x =y = 0. If there exists xo € X such that xy < fxo, then f has a fixed point.

Proof If xo = fxo, then xy is a fixed point of /. Suppose that xy < fxo, we can choose x; € X
such that fxy = x;. Since f is a nondecreasing function, we have

X0 < X1 =fxo < % =fx1 < %3 = fx.
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Continuing this process, we can construct a sequence {x,} in X such that x,,,; = fx, with
Xo <X XX X XXy XX Xt

Itis clear thatif p(x,,, x,,1) = O for some ny € N, thenf has a fixed point. Taking p(xy, %,.1) >
0 for all # € N, now let us prove the following inequality:

P X01) < p(Xy_1,%), nEN'. (2.3)
Suppose this is not true, then p(x,, x,,1) > p(x,,_1,%,) for some ny, that is,
PFngr Xnga1) > P(Kng—1, %ng)- (2.4)
From (2.1) and (2.4), we obtain that

w (p(xng »Xng +1))

= Iﬁ (p(fxno—lrfxno ))

<p(xn0—17fxno) + p(fxno—l; xno )

<(p 5

) - (p(xno—l»fxng )rp(fxno—l: Kng ))

(p(xno_l,xnou) + PXng ) Xny)
¢ 2

) - ¢(p(xn0—l¢xn0+1);p(xn0:xn0))

IA

(P(xnobxno) +p(xn01xng+1)

2 ) - ¢(p(xno—1:xno+l):p(xno:xno ))

¥

IA

(2 (max {p(xno—h %o )y P X xno+l)}) - (p(xno—ly Fg+1)> DX X ))

@ (DGng%ng41)) = B(PEng—15 g +1)s PXing» Xy ) )
this together with (2.2) shows that
D (P Eng-1%ng11)> P(Xng» %)) = 0.
Using the property of ¢, we have
PPng-1,%ng41) =0, p(xpg,%ny) = 0. (2.5)

Since

¥ (p(xnojxnoﬂ))
= Iﬁ (p(fxno—l»fxno ))

< <p(xno—11fxn0) +p(fxno—1: xno)
@

5 ) = & (PXng—1: /g )s Png-1, %, )

—y (p(xno_l,xn0+1) + P(Kngr Xny)

5 ) _¢(P(xn0—l:xno+1)vp(xn0:xn0));

applying (2.5), we get

W(p(xnwxnoﬂ)) =0. (2.6)
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From the property of v/, we have p(x,,,,%y,+1) = 0, which contradicts with p(x,, %,.1) > 0
for all n € N; hence (2.3) holds. Therefore, {p(x,,x,,1)} is a nonincreasing sequence, and

thus there exists » > 0 such that

lim p(x,,%x,.1) =7.
n—+00

Using (2.1), we obtain
¢(P(xn+1, xn+2))
= w(p(fxmfxnﬂ))
< (p(p(xmfxnﬂ) ;p(fxn;xn+l)> _ ¢(P(xn;fxnﬂ);p(fxn;xnﬂ))
_ P Xy X2) + P(Xs1, X11)
=9 B - ¢(p(xmxn+2);P(xn+1rxn+1))
<g (p(xn,xwrl) +2p(xn+1,xn+2)> _ ¢(P(xn,xn+2),p(xn+1,xn+1)), (27)

it means that

¢(p(xmxn+2):p(xn+lrxn+l)) < (p(p(xmxnﬂ) +2p(xn+lrxn+2)) _ W(p(xn+1;xn+2))-

Letting n — +00 in the above inequality, we get

liminf¢ (p(xn,xmz),p(xnn,xml)) =0,

n—+00

the continuity of ¢ guarantees that

d) (hm infp(xm xn+2): lim infp(xnﬂ’ xn+1)> =0,
n—+00

n—+00

and the property of ¢ gives that

liminf pe, %,12) = 0, Timinf p(yen,%ns1) = 0. 2:8)
Since
¥ (P(ni1,%n12))
=y (p(fxmfxnﬂ))
< (p(p(xn!fxn+l) ;P(fxn,xml)) B ¢(p(xn,fxn+1),p(fxn,xn+1))

- (p(xm xn+2) +2P(xn+1,xn+l)) _ ¢(p(xmxn+2),p(xn+1,xn+1)),

on taking inferior limit in the above inequalities and using (2.8), we obtain that ¥ (r) =0

and so r = 0, therefore,

lim p(xm xn+1) =0,
n—+00

Page 5 of 16
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moreover, we have

lim p(x,,x,) =0.
n—>+00

Now, we claim that {x,} is a Cauchy sequence in the metric space (X,d,) (and so also
in the space (X, p) by Lemma 1.1). For this, it is sufficient to show that {x,,} is a Cauchy
sequence in (X, d,). Suppose that this is not the case, then using Lemma 1.1 we have that
{x2,} is not a Cauchy sequence in (X, p). By Lemma 1.3, we obtain that there exist ¢ > 0
and two sequences {m(k)} and {n(k)} of positive integers such that n(k) > m(k) > k and
sequences in (1.2) tend to & when k — +o0. For two comparable elements y = xy,x)1 and
X = Xom(k), We can obtain, from (2.1), that

W (p(x2n(k)+1; me(k)))

= Y (P(feanw) fEam(-1))
<o <p(x2n(k): SX2m(k)-1) + PX2n(k)» X2m(k)-1) )

2
= O (P2t f2m(t0-1)s DX 2n(10s ¥2m(i)-1))
—y (p(x2n(k):x2m(k)) + P(X2(0)+1 X2m(k)-1) )

2

= (P20, B2 ) DXy 1, Bam()-1)) - (2.9)
Taking k — +00 in (2.9), we get
v (e) < p(e) - ¢(e,8),
which implies that ¢(g,¢) = 0, hence ¢ = 0, a contradiction. Thus, {x,,} is a Cauchy se-

quence in (X,d,) and so {x,} is a Cauchy sequence both in (X,d,) and in (X, p). Since
(X, p) is complete then the sequence {x,} converges to some z € X, that is

P(Z,Z) = lim P(me) = lim p(xn:xm)- (210)
n—+0Q n,m—>+00

Moreover, since {x,} is a Cauchy sequence in (X,d,), we have lim,_, .o dp(xy, %) = 0.
By dp(%n%m) = 2p(Xn, %m) — PXns %) — Py %) and lim,,, .o p(%4,%,) = 0, we have
limy,—, 400 P(*1, %) = 0. Then (2.10) yields that

p(z,z) = lim p(x,,z) = 0. (2.11)
Applying the triangular inequality, we have

p(2.f2) < p(z, %) + p(xXn, f2) = p(Xns %) < P2, %0) + p(Xn, f2) = p(2, %) + P(fn1,f2),

taking n — +00 in the above inequalities, then the continuity of f and Lemma 2.1 give that

p(z.fz) < pfz.f2),


http://www.fixedpointtheoryandapplications.com/content/2013/1/107

Chen and Zhu Fixed Point Theory and Applications 2013, 2013:107 Page 7 of 16
http://www.fixedpointtheoryandapplications.com/content/2013/1/107

hence

Pz.f2) = p(fz, fz). (2.12)

By combining (2.1) and (2.12), we have

¥ (p(z.f2)) = ¥ (p(fz.f2))

-y (M) - (paf2),p(f2,2))

= ¢o(p(z.f2)) - ¢ (p(2.f2), p(fz, 7)),

which yields that ¢(p(z,z), p(fz, z)) = 0, and thus p(z,fz) = 0, that is z = fz. Therefore, z is a
fixed point of f. O

Theorem 2.2 Suppose that X, f, V¥, ¢, and ¢ are the same as in Theorem 2.1 except the
continuity of f. Suppose that for a nondecreasing sequence {x,} in X with x, — x € X, we
have x, < x for all n € N. If there exists xy € X such that xo < fxo, then f has a fixed point.

Proof As in the proof of Theorem 2.1, we have a Cauchy sequence {x,} in X. Since (X, p)
is complete, there exists z € X such that x,, — z, that is,

p(z,2) = lim p(x,,z)= lim p(x,, %),
n—+0Q n,m—>+00

due to the hypothesis, we get x,, < z. Similar to the proof of Theorem 2.1, we have that

p(z,z) = lim p(x,,z) = 0.

n—+00

From (2.1), we obtain that

Y (P, f2) = ¥ (p(frn-1,f2))

(p(xn_l,fZ) + p(fxn_1,2)
2

- (p(xnl,fz) + p(xn,2)

IA

@ ) - ¢(p(xn—1: Z)tp(xnx Z))

2 ) - ¢(P(xn_1, z),p(xn,z)),

Letting n — +o00 in the above inequalities, and by Lemma 1.2, we have

v (p(z.f2) < 0(p(z.f2)) - ¢ (p(2.f2),0),

which implies, from (2.2), that ¢(p(z,fz),0) = 0, hence p(z,fz) = 0, and thus z = fz. There-
fore, f has a fixed point. g

Theorem 2.3 Let (X, p) be a complete partial metric space, f and g be self-mappings on X.
Suppose that for all x,y € X

¥ (p(fx,gy) < ¢ (‘W) - ¢ (p(x,g), p(fx,9)), (2.13)
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where ¥ and ¢ are altering distance functions with
V(t)—e(t) =0 (2.14)

forallt>0,and ¢ : [0, +00) x [0, +00) — [0, +00) is a continuous function with ¢(x,y) = 0
ifand only ifx =y =0.
Then f and g have a unique common fixed point.

Proof Let xy be an arbitrary point in X. One can choose x; € X such that fxy = x;. Also,
one can choose x; € X such that gx; = x,. Continuing this process, one can construct a

sequence {x,} in X such that
X241 = fXon, Xons2 = Xons1, M EN. (2.15)

Now, we discuss the following two cases.

Case 1. If p(x,,, x,41) = O for some 1y € N, then f and g have at least one common fixed
point. In fact, if p(x,,x,.1) = 0 for some ny € N, that is p(x,,,%,,+1) = 0, which implies that
Xy = Xug+1. If no = 2k (k € N), then xyx = x5441. Using (2.13), we have

14 (p(x2k+1,x2k+2))
=Yy (p(fok’ngkH))

P (Xt @oke1) + PUfors Xoke1)

< §0< D) ) - ¢(p(x2k1gx2k+l)’p(fx2k1x2k+1))

& (P (%215 X2142)s P(Fkes1, %2kc41) )

—y (P(xm Koks2) + P(x2k+1» x2k+1)>

IA

@ (P(2k ¥2k42) (X1, Xoks1))

o DKok Xok+1) +p(x2k+1,x2k+2))_ (

I A

(m {P(xzky Xoks1)s P(Xoks1s x2k+2)}) (P(xzk, x2k+2)»19(x2k+1xx2k+1))

@ (max{pais1, ¥241), PXkr1, ¥2k42) }) — D (D(Kaks1s Xaks2)s P(2k41, X2k41) )

(2 (P(xzku, x2k+2)) - ¢ (P(x2k+1, x2k+2),l9(x2k+1, x2k+1)) . (216)

With the help of (2.14) and (2.16), we conclude that ¢ (p(xoks1, ¥2k+2), P(*2k+1, X2k+1)) = O,
hence, using the property of ¢, we get p(xax+1,%¥2k+2) = 0, that is xpx.1 = Xpk42. By similar
arguments, we obtain ®ox,2 = X2x+3, X2k+3 = X2k+4 and so on. Thus, {x,} becomes a constant

from n = 2k, that is,

KXok = X2kl = X2k+2 = ° - (2.17)
Equations (2.15) and (2.17) yield that

Kok = gk = fRoks (2.18)

which implies that xy is the common fixed point of f and g. Similarly, one can show that
if ngp =2k +1 (k € N), then f and g have at least one common fixed point. Therefore, we
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have proved that if p(x,, x,,4,1) = 0 for some ny € N, then f and g have at least one common
fixed point.

Case 2. If p(x,, x,,42) = 0 for some 1y € N, then f and g have at least one common fixed
point. Indeed, if ng = 2k (k € N), then p(xok, %2k42) = 0. Hence, xpx = %9442, due to (2.13),

we have
¥ (p(ks1s X2k42))
= W(P(fxzk,gxzku))
(%24, &2k 1) + P(fXar, X2k41)
< (0(p 2o §¥2k1) p(f 2okl (P (%21 @X2k41) P2k X2k41))
P Xk Xoks2) + P(x2k+1» X2k41)
=9 — ¢ (P(2ks Xker2), P(Xoks1, %2441))
(ks Xak41) + P(X2kr 1, X2k42)
< €0(p . p A = @ (P(2k> X2k42)> P(H2k41, X241

p <p(x2k+2;x2k+l) +I9(x2k+1: Xok+2)
2

> - d)(P(karx2k+2)»P(x2k+lrx2k+l))

= 0 (p(Xak12: %2k41)) — B (DX, Xk s2), DKk 41, X2k41)) - (2.19)

Applying (2.14) and (2.19), we obtain ¢ (p(%ok, X2x+2), P(X2k+1, ¥2k+1)) = 0. Using the property
of ¢, we have

P Xk, %2k41) = 0. (2.20)
From (2.20) and using p(xax, x2k+2) = 0, we get that

4 (P(x2k+1,x2k+2))
= ¥ (p(fokr X2x+1))

<y (p(x:;k,gxzm) ;r Dok, Xok41)

) = ¢ (poakr @Hoka1)s P(froks Xacs1))

—y (P(xzk, Xok+2) + P(Xoks1, X2ks1)

) ) — ¢ (p(akr Xok42)s P21, ¥241))

= ¢(0) - ¢(0,0)

=0, (2.21)

which implies that ¥ (p(x2x11, ¥2x+2)) = 0, and thus p(x4,1, %2142) = 0. Hence we obtain that
f and g have at least one common fixed point from case 1. Similarly, it is easy to show that
if p(x,, %42) = 0 for some n = 2k +1 (k € N), then f and g have at least one common fixed
point, this completes the proof of case 2.

Taking p(x,,, %,41) > 0 and p(x,,, x,,42) > 0 for all n € N. Now we prove that for every k € N,
we have

P(Foke2s Xore1) < P(Xokrr, X2k )- (2.22)
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Suppose this is not true, then p(xox,2, %2141) > P(Xok41, %2x) for some k = ko, that is,
P(x2k0+2,x2k0+1) >p(x2ko+1,x2ko).
Using (2.13) and (2.15), we obtain that

W(P(xzkon»xzkmz))
= W(P(fxzko»gxzkoﬂ))

<o (P(kao ,gxzkon) + P(fx2k0 »X2ko 1)
2

) — ¢ (kg 85200 +1)> P2k » X2k 41) )

—y (P(kao 2 Xoko+2) + P(Xokg 41, Xokg+1)
2

) - ¢ (p(kao ) x2k0+2)1p(x2k0 +1>X2kg +1))

IA

(P(xzko,xzkou) + P(Xoky 1, X2k +2)

2 ) - ¢(P(x2k0,x2k0+2)»19(x2k0+1yx2k0+1))

¢

< @(max{p(waky, %aky+1)s P(Fkg 41, X2k 42) }) — D (D (Xakg» kg 42)s PK2kg 41 %24041))

= (p(p(kaOJrl) x2k0+2)) - ¢(P(x2k0,x2k0+2);]9(x2k0+1) x2k0+1))' (223)

Equations (2.14) and (2.23) give that ¢(p(xaky, X2ky+2)s P(Kokg+15 ¥2k9+1)) = 0. Using the
property of ¢, we get p(xax,,%2ky+2) = 0, which contradicts with p(x,,x,,2) > 0 for n € N,
hence (2.22) holds.

Similarly, one can show that for every k € N*, the following inequality holds.

P Xkt X2k) < P, Xok-1)- (2.24)

Equations (2.22) and (2.24) imply that the sequence {p(x,,%,.1)} is nonincreasing, and

consequently there exists some r > 0 such that

lim p(x,,%x,.1) =7. (2.25)

n—+00

By (2.25) and the following inequalities,

p(me x2n+2) < p(x2rn x2n+1) + p(x2n+1) x2n+2) - p(x2n+1: x2n+1)

< p(Xons Xona1) + P(Xone1s Xons2),

we get that {p(xy,,%2,42)} is bounded, and hence it has some subsequence {p(x2),

Xon(ky+2)} converging to some ry, that is,
lim  p(x2u(k)s X2n(k)+2) = To- (2.26)
k—+00

Taking (P5) into account, we have

PEon(+15 X2ni)+1) < P X211, X2n(k))»
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which combining with (2.25) shows that p(x2,()+1, ¥21(k)+1) is bounded, and hence there ex-

ists subsequence p(Xau(k,)+1, X2n(k;)+1) Of P(X2u(k)+1> X2n(k)+1) such that p(xa,,)

verges to some 7y, that is,
lim p(xon()+1s Xonk)e1) = 71
i—+00
By (2.13), we have

U (PX2nik)+1s Xanii)2)) = V(P Xanii)» 852nik+1))

=9

(p(xan 20 &%2n(k)+1) + PUXank)» Xon(k;
2

= @ (P(X2n(h)s &5 2n(ki)+1)s PR 2n(ic)» X2m(k

+1))

+1))

y <p(x2n(ki)» Konlk)+2) + PX2n(k;)+1s Xon(k;
2

— & (PFan) %20y +2)» DX 11, F2n(iy)

)

)

<g (p(xZn(k )2 X2n(k; )+1) +2p(x2n D+1> X2n(k;

_¢(p(x2n(k)>x2n(k +2)s p(x2n )+1> X2n(k
Letting i — +00 in (2.28), and using (2.25)-(2.27), we obtain that
Y (r) < o(r) — ¢(ro, 11),

which means that ¢(r9,71) = 0, hence ro =0 and r; = 0

Since

U (P21 Xan(i)+2)) = ¥ (PX2n(k)> @anii+1))

<

")
)

+1)

<p(x2n(k)gx2n )+1 +P(fx2n »X2n
2

(k,m))

— @ (Do) & 2m(ki)+1)s PP Xm(is) X2m(i41))

2

—y <p(x2n(k,-):x2n(k,')+2) + P(Xon(k) 1, X2

k,-)+1))

- ¢ (p(xZn(k i) X2n(k;) +2) p(x2n )+1> X2n(k;) +1))

taking the limit as i — +00, we have v/ (r) = 0, which implies that r = 0, that is,

lim p(x,,%x,.1) = 0.

n—+00

(ky+1) con-

(2.27)

(2.28)

(2.29)

(2.30)

Now, we claim that {x,} is a Cauchy sequence in the metric space (X,d,) (and so also

in the space (X, p) by Lemma 1.1). For this, it is sufficient to show that {x,,} is a Cauchy

sequence in (X, d,). Suppose that this is not the case, then using Lemma 1.1, we have that

{x2,} is not a Cauchy sequence in (X, p). By Lemma 1.3, we obtain that there exist ¢ > 0

and two sequences {m(k)} and {n(k)} of positive integers such that n(k) > m(k) > k and

sequences in (1.2) tend to € when k — +o0.

Page 11 of 16
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From (2.13), we get that

Y (PX2n(iy+1s %2m(t)) = V(LX) &F2mik)-1))
<0 (P(xzn(k),gxm(k)l) + p(fon(k):me(k)l))

2
= & (P(Xan(t> &2m(i-1)s PIX2(1) X2m(i-1))
_y (p(xZn(k)rx2m(k)) + P(X2n(k) 11 X2m(k)-1) )

2

= (P20, Bam() ) DXy 11, Xam()-1)) -

Letting k — +o00 in the above inequalities and using the continuity of ¥, ¢ and ¢, we get
that

V(e) < ple) - p(e, 8),

therefore, we get that ¢(e,¢) = 0. Hence, ¢ = 0 which is a contradiction. Thus, {x,} is a
Cauchy sequence in (X,d,), and {x,} is also a Cauchy sequence in (X, p). Since (X, p) is
complete, then the sequence {x,} converges to some z € X, that is,

p(z,z) = lim p(x,,z)= Lm p(x,,x,).
n— 400 +00

n,m—
Moreover, the sequence {x,,} and {x;,,1} converge to z € X, that is,
p(z,2) = lim p(xy,,2) = lim  p(xa, x2m)
n—+00 n,m—+0Q0
and
P(Z» Z) = lim p(x2n+1: z)= lim p(x2n+l: x2m+1)'
n—+00 n,m—+00
Using the fact that {x,} is a Cauchy sequence in (X, d,), we have lim,,_, , o0 dp (%, %) = 0,
which together with d,(x,,, %) = 2p(%4, %) — P(Xs X4) — P(Xns %) yields that lim,,_, o0 p(x,
%) = 0. Hence, we have
p(z,z) = lim p(x,,z) = lim p(xy,,2) = lim p(xy,1,2) = 0.
n—+00 n—+00 n—+00

By substituting x = x2,(t)+1, ¥ = z in (2.13), we get that

¥ (P2n)41,82)) = ¥ (p(fani)» 82))
<0 <P(x2n(k>:gz) ;’p(fon(k); 2) >

— ¢ (P(%2ni), 82) P(fXon(i), 2))

( PX2n(k),82) + P(Kan(t)+1, 2) )
= (p 2

- & (pXan(r)» 82) P X201 41,2) )

Page 12 of 16
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letting k — +00 and applying Lemma 1.2, we conclude that

¥ (plzg2) < ¢ (W) - ¢(p(z.82), p(2,2))

< ¢(p(z,g2)) - #(p(2,82),0),

which yields that ¢(p(z,gz),0) = 0; hence, p(z,gz) = 0, and thus z = gz. Similarly, one can
easily show that z = fz, therefore, z is the common fixed point of f and g.

Now we prove the uniqueness of common fixed point. Let us suppose that u is also the
common fixed point of f and g. Since

v (p(u,2)) = ¥ (p(fu, g2))
(p(u,gZ) + plfu, z)

=9

2 ) - ¢(p(u,g2), p(fu, z))

= 9(p(u,2)) — & (p(u,2), p(u,2)),

which means that ¢(p(u, z), p(u, z)) = 0; hence, p(u,z) = 0, and so u = z. Thus, the unique-
ness of the common fixed point is proved. O

By taking ¢ = ¢ in Theorems 2.1-2.3, respectively, we have the following results.

Corollary 2.1 Let (X, <) be a partially ordered set and suppose that there exists a partial
metric p on X such that (X,p) is complete. Let f : X — X be a continuous nondecreasing
mapping. Suppose that for comparable x,y € X, we have

0 ) = 0 (P EED ) g ps pt),

where V is an altering distance function and ¢ : [0, +00) X [0, +00) — [0, +00) is a continu-
ous function with ¢(x,y) = 0 if and only if x = y = 0. If there exists xy € X such that xo < fxo,
then f has a fixed point.

Corollary 2.2 Suppose that X, f, ¥, and ¢ are the same as in Corollary 2.1 except the
continuity of f. Suppose that for a nondecreasing sequence {x,} in X with x, — x € X, we
have x, < x for all n € N. If there exists xy € X such that xo < fxo, then f has a fixed point.

Corollary 2.3 Let (X, p) be a complete partial metric space, f and g be self-mappings on X.
Suppose that there exist functions W and ¢ such that for all x,y € X

v (p(fe.gy) < v (M) - ¢(p(x,9), p(fx,y)),

where r is an altering distance function and ¢ : [0, +00) X [0, +00) — [0, +00) is a contin-
uous function with ¢(x,y) =0 ifand only if x =y = 0.
Then f and g have a unique common fixed point.

Remark 2.1 If we replace the partial metric p by (usual) metric d in Corollaries 2.1-2.3,
then we get Theorems 2.1-2.3 of [27].
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Now, we introduce an example to support the usability of our results.

Example 2.1 Let X = [0,1] be endowed with the usual partial metricp: X x X — [0, +00)
defined by p(x,y) = max{x, y}. It is easy to show that the partial metric space (X, p) is com-
plete. Also, define the mappings f,g: X — X by fx = % and gx = %2, respectively. Let us
take ¥, ¢ : [0,+00) — [0,+00) such that ¥ (¢) = £* and ¢(t) = %, respectively, and take
¢ :[0,+00) x [0,+00) — [0, +00) such that ¢(z,s) = %. If x > y, then

x2 yZ 2
p(fx,gy) = maX{Z, E} =T

and

2 2 2 2 2
_ r Al I r Al I i
p(x,gy)+p(fx,y)—p(x, 5)+p(4,y) max{x, z }+p(4,y> x+p<4,y).

So, we have
x4 x2
B 16
C@rpCEy)? e p(5.9)
i 8 16
- w(w) - ¢ (p(x,29), p(fx, ).
If x <y, then

2 .2
p(fx,gy) =maX{%,yg} <

NS

and

2 2 2 2 2
_ ' I Y i v
p(x,gy)+p(fx,y)—p(x, 5)+p<4,y) p(x, 5>+max{ ) ,y} p< = ) + .

So, we have

v (pfngy) = 1

@) e )
- 8 16

—y (p(x,gy) +p(fx,y)

2 ) - ¢(p(x.g) p(f.7)).
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From the above arguments, we conclude that (2.13) holds; hence, all the required hy-
potheses of Theorem 2.3 are satisfied. Thus, we deduce the existence and uniqueness of a
common fixed point of f and g. Here, 0 is the unique common fixed point.
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