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1 Introduction

Let H be a real Hilbert space with inner product (-,-) and induced norm || - ||. Let C be a
nonempty, closed and convex subset of H. We need some nonlinear operators which are
introduced below.

Let T,A : H — H be nonlinear operators.

+ T is nonexpansive if || Tx — Ty|| < ||lx — y|| for allx,y € H.

« T is Lipschitz continuous if there exists a constant L > 0 such that
| Tx—Ty| <L|lx—y|, forallx,y € H.

+ A:H — H is monotone if (x —y,Ax — Ay) > 0, for all x,y € H.

+ Given is a number >0, A: H — H is n-strongly monotone if
(x —y,Ax — Ay) > nllx —y||%, forall x,y € H.

+ Given is a number v > 0. A: H — H is v-inverse strongly monotone (v-ism) if
(x—y,Ax — Ay) > v||Ax — Ay||%, for all x,y € H.

It is known that inverse strongly monotone operators have been studied widely (see
[1-3]), and applied to solve practical problems in various fields; for instance, in traffic
assignment problems (see [4, 5]).

o T:H — H is said to be an averaged mapping if T = (1 — «)I + S, where « is a number
in (0,1) and S: H — H is nonexpansive. In particular, projections are (1/2)-averaged
mappings.

Averaged mappings have received many investigations, see [6—10].

Consider the following constrained convex minimization problem:

minf(x), 1.1)
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where f: C — R is a real valued convex function. Assume that the minimization problem
(1.1) is consistent, and let S denote its solution set. It is known that the gradient-projection
algorithm is one of the powerful methods for solving the minimization problem (1.1) (see
[11-18]), and sometimes the minimization problem (1.1) has more than one solution. So,
regularization is needed. We can use the idea of regularization to design an iterative algo-
rithm for finding the minimum-norm solution of (1.1).

We consider the regularized minimization problem:
. o 2
minf, (x) = f(x) + —[lx]I”. (1.2)
xeC 2

Here, a > 0 is the regularization parameter, f is convex function with L-Lipschitz contin-
uous gradient Vf. Let xyin be minimum-norm solution of (1.1), namely, X, satisfies the

property:
l%min|l = min{ [lx[| : x € S}.

%min can be obtained by two steps. First, observing that the gradient Vf, = Vf +al is (L +«)-
Lipschitzian and «-strongly monotone, the mapping Proj-(/ — y Vf,) is a contraction with

coefficient \/1 -yQRa-yL+a)?) <1- %ay, where 0 < y < ﬁ So, the regularized
problem (1.2) has a unique solution, which is denoted as x, € C and which can be ob-
tained via the Banach contraction principle. Secondly, letting @ — 0 yields x, — %, in
norm. The following result shows that for suitable choices of y and «, the minimum-norm

solution ¥, can be obtained by a single step.

Theorem 1.1 [9] Assume that the minimization problem (1.1) is consistent and let S de-
note its solution set. Assume that the gradient Vf is L-Lipschitz continuous. Let {x,}°, be
generated by the following iterative algorithm:

Xns1 = Projo(I — yu Ve, ) %0 = Projc(l —Yu(Vf + a,,]))x,,, n>0. (1.3)

Let {y,} and {«,} satisfy the following conditions:
(1) 0< ¥y <au/(L+ay)? forall n
(i) oy — 0 (and y, — 0) as n — oo;
(ili) Y02 auyn = 00;
(V) (1Vn = Vur| + @V = @1 Yua ) (@ yn)* — 0 as n — oo,

Then x,, — Xmin A4S 1 —> 00.

In the assumptions of Theorem 1.1, the sequence {y,} is forced to tend to zero. If we
keep it as a constant, then we have weak convergence as follows.

Theorem 1.2 [19] Assume that the minimization problem (1.1) is consistent and let S de-
note its solution set. Assume that the gradient Vf is L-Lipschitz continuous. Let {x,}.°, be
generated by the following iterative algorithm:

Xps1 = Projc(I — y Vfy, )%, = Projc(l -y(Vf+ anl))xn, n>0. (1.4)

Assume that 0 <y <2/L andy .| a, < 00. Then {x,}52 converges weakly to a solution of
the minimization problem (1.1).
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In 2001, Yamada [10] introduced the following hybrid steepest descent method:
X1 = ([ = 8,0 F) Ty, (L.5)

where F : H — H is k-Lipschitzian and 5-strongly monotone, and 0 < u < 2n/k%. It is
proved that the sequence {x,}%, generated by (1.5) converges strongly to x* € Fix(T),

which solves the variational inequality:
(F(x*),x* —2) <0, VzeFix(T).

In this paper, we introduce a modification of algorithm (1.4) which is based on Yamada’s
method. It is proved that the sequence generated by our proposed algorithm converges

strongly to a minimizer of (1.1), which is also a solution of a certain variational inequality.

2 Preliminaries
In this section, we introduce some useful properties and lemmas which will be used in the

proofs for the main results in the next section.

Proposition 2.1 [7, 8] Let the operators S, T,V : H — H be given:
(i) fT=Q0-a)S+aV, forsome a € (0,1) and if S is averaged and V' is nonexpansive,
then T is averaged.
(ii) The composition of finitely many averaged mappings is averaged. That is, if each of
the mappings {T;}Y, is averaged, then so is the composite Ty - - - Ty. In particular, if
Ty is az-averaged and T is ay-averaged, where oy, a3 € (0,1), then the composite
T1T; is a-averaged, where a = a1 + otg — 01¢to.

(iti) If the mappings {T;}N, are averaged and have a common fixed point, then

N
(\Fix(T:) = Fix(Ty - - T).
i=1

Here, the notations Fix(T) denotes the set of fixed point of the mapping T; that is,
Fix(T):={x € H: Tx = x}.

Proposition 2.2 [7,20] Let T : H — H be given. We have:
(i) T is nonexpansive, if and only if the complement I — T is (1/2)-ism;
(i) If T is v-ism, then for y >0, y T is (v/y)-ism;
(iii) T is averaged, if and only if the complement I — T is v-ism for some v > 1/2; indeed,
fora €(0,1), T is a-averaged, if and only if I — T is (1/2a)-ism.

The so-called demiclosed principle for nonexpansive mappings will often be used.

Lemma 2.3 (Demiclosed Principle [21]) Let C be a closed and convex subset of a Hilbert
space H and let T : C — C be a nonexpansive mapping with Fix(T) # 9. If {x,}, is a
sequence in C weakly converging to x and if {(I — T)x,};°, converges strongly to y, then
(I = T)x =y. In particular, if y = 0, then x € Fix(T).
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Recall the metric (nearest point) projection Proj from a real Hilbert space H to a closed
convex subset C of H is defined as follows: given x € H, Proj-x is the unique point in C
with the property

ll = Projc x[| = inf {llx -yl :y € C}.
Proj is characterized as follows.

Lemma 2.4 Let C be a closed and convex subset of a real Hilbert space H. Given x € H
and y € C, then y = Proj.x if and only if there holds the inequality

(x-yy-2)>0, VzeC.
Lemma 2.5 Assume that {a,}}, is a sequence of nonnegative real numbers such that
an1 < (1= Y)an + Vuby + By >0,

where {y,}:°o and {B,}52, are sequences in (0,1) and {5,,}52, is a sequence in R such that
(1) Z:O:O Yn = OC;
(i) either imsup,,_, .8, <0 0r Y oo0 Vuldul < 00;
(i) Y02y Bu < 0.

Then lim,_, o a,, = 0.

We adopt the following notation:
+ x, — x means that x,, — x strongly;

+ %, — x means that x,, — x weakly.

3 Main results
Recall that throughout this paper, we use S to denote the solution set of constrained convex
minimization problem (1.1).

Let H be a real Hilbert space and C be a nonempty closed convex subset of Hilbert
space H. Let F: C — H be a k-Lipschitzian and 5-strongly monotone operator with con-
stant k > 0, n > 0 such that 0 < i < 2n/k2. Suppose that Vf is L-Lipschitz continuous. We
now consider a mapping Q; on C defined by:

Qs(x) = Projo(I = suF)T,(x), VxeC,

where s € (0,1), and T, is nonexpansive. Let T;, and A, satisfy the following conditions:

(i) Projo(I —yVfi,) =1 -6, +6,T,, and y € (0,2/L);

(i) 6, = 201050,
(iii) A is continuous with respect to s and A = o(s).

It is easy to see that Q is a contraction. Indeed, we have for each x,y € C,

1Qs(x) = Q)| = |ProjcI — siF)T;,(x) — Projc(I — suF)T;,(9)||
< ||t = suF) Ty (x) = (I = suF) T, )

= (@-st)lx-yl,

Page 4 of 18
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where 7 = % w(2n — uk?). Hence, Q; has a unique fixed point in C, denoted by x; which
uniquely solves the fixed-point equation

Xs = PrOjC(I _SPLF) T)»s(xs)' (31)
The following proposition summarizes the properties of the net {x;}.

Proposition 3.1 Let x; be defined by (3.1). Then the following properties for the net {x}
hold:

(@) {xs} is bounded for s € (0,1);

(b) limy_g [l — Th gl = 0;

(c) s defines a continuous curve from (0,1) into C.

Proof It is well known that: ¥ € C solves the minimization problem (1.1) if and only if ¥

solves the fixed-point equation

2—-yL
4

2+yL

X+

x=Projc(I-yVf)x = Tx,

where 0 < y < 2/L is a constant. It is clear that ¥ = T, i.e., x € S = Fix(T).
(a) Take a fixed p € S, we obtain that

llxs - 21
= | Projc (1 - siF) Ty, (x,) — Projc p|
< | - suP) Ty, (x) - p||
= || = suF) Ty, (xs) = (I - suF + suF)p||
< |t = suF)T; (&) = (I = suF) T, (p) |
+ [T =suB) T, () = U = suF)T @) | + s | F @) |
< (1 =s0)llxs — pll + | T, ) = Tp || + sk | o, (p) = Tp| + 51| F ) .

It follows that

_ L +suk)| T, (p) - TP)I
- ST

I~ pl + £ |F). (3:2)
For x € C, note that

Proj-(I -y Vfi)x = (1 - 65)x + 0, T %
and

Proj(I — yVf)x = (1-0)x + 6 Tx,

2ey(Lik 24yL
where@szw and 0 = ==,

Then we get

16 = 6% + 6, Ty ,x — 0 Tx|| = |Projc(I - ¥ Vi, )x — Projc(I — y Vx| < yalx].
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Since 6; = w and 6 = %, there exists a real positive number M > 0 such that

Asy (5 ok
Asy (Sl + 11 T1l) < A M|x]l. (3.3)

T, x—Tx| <
175 = 2+ y(L+As)

It follows from (3.2) and (3.3) that

1 kA
f“ B Myl + %HF(p)H.

llxs — pll <
s

Since A; = o(s), there exists a real positive number M’ > 0 such that % <M, and

I, — pll
1 k
< *j“ M - Mljp|| + %HF(p) ||

1 k
< *r““ MM |p|| + §||F<p)||.

Hence, {x;} is bounded.
(b) Note that the boundedness of {x} implies that {FT),(x;)} is also bounded. Hence, by

the definition of {x;}, we have
”xs - Tksxsll
= ||Projc(I = suF) Ty (%) — Proj T, x|
= “ (I - SMF) T)»S (xs) - Tksxs ||

= SH//LFTAS (xS)H — 0.
(c) For y €(0,2/L), there exists

Projo(I — yVfi,) = 1= 0 + 6,T;,

and

Projc(I =y Vfi,,) = L= 0] + 65, T »

24y (L+X 2+y (L+hsg)
where 6, = % and 0;, = ——2.

So for x; € C, we get

” T)»S (xs) - T)LSO (xs) H
_ H 4Projc(I - yVf,) = 2=y (L + A

S

2+ y(L+As)

4Projc(I =y Vi) = [2 =y (L + )1

2+ y(L+As)

4 Proj(I - ny)\x)x 4Projc(I -y Vi)
2+ y(L+As) s 2+ y(L+Agy)
[Z—V(L+?»s)]1x Ry

2+ y(L+As) s 2+ y(L+As) s

S

S
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Xs

~ 412 + y(L + Asy)IProjc(I — y V) — 412 + y(L + As)] Proj(I - ny,\SO)
- ” 2+ YL+ A2+ YL+ Ag)]
4y ks — Ay |
2+ y(L+A)][2+ y(L+Ag)l
~ H 4y (hsy — ks) Projc(I - y Vi)
B 2+ YL+r)][2+ YL+ Ag)]
4[2 + y (L + A5)](Proj (I — y Vfi,) — Proj (I - va)\so))
' 2+ y L+ A2+ y L+ Ag)]
Ay ks — Ay |
[2 + Y (L+ )2+ y(L + Agy)]
_ Aylks = A Il Projc = y Vi, )|
2+yL+2)]2+y I+ X))
4[2 + y (L + )]l Projc(I = y Vi )xs = Projc(I — y Vi sl
* 24y @+ a2+ 7L+ Ag)]
4Vl)‘s _)‘50|
TRy @ a2+ y (L Ayl

[l I

S

S

[l I

[l

< As = Ao [y [Projc( = y VA | + 4y llall + v [l ]
= NIAs =g,

for some appropriate constant N > 0 such that
N = y||Projc( = y Vx| + 57 [l
Now take s,s9 € (0,1) and calculate

ll%5 — 2% I
= |Projc(I — spF) T, (%) — Projc(I — souF) T, (%5,
< || (T = spF) Ty (x5) = (I = 501 F) T (s, |
= |(T = soF) T (x5) = (I = so st F) T, (x5) = (I = so puF) Ty (5) + (I = spF) T () |
< | = sopF) Ty, (%) = (I = sopuF) T, (x5, |
+ |(I = spF) T, (%) = (I = 50 F) T, () |
< (1=s507) [l — sy || + || T, (&) = T, () | + pals = sol | F T, (oxs) |
+ S0k || Ty (o5) = T ()|
< (L=30T) s = %o [l + [As = Ao IN + pals = sol | FT, (x5)| + s014kI s = 2o IN

= (L= 507) %5 = 5o Il + s = So | i FT3 () || + 125 = Ao IN(L + 50 42).

It follows that

FT) (x 1+ souk)N
s = ) < PUED@I oy A sonON Y, -
SoT ST

Since {FT),(x,)} is bounded, and A is continuous with respect to s, x; defines a continuous
curve from (0,1) into C. (I
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The following theorem shows that the net {x;} converges strongly as s — 0 to a mini-
mizer of (1.1), which solves some variational inequality.

Theorem 3.2 Let H be a real Hilbert space and C be a nonempty, closed and convex subset
of Hilbert space H. Let F : C — H be a k-Lipschitzian and n-strongly monotone operator
with constant k > 0, > 0 such that 0 < u < 2n/k?. Suppose that the minimization problem
(1.1) is consistent and let S denote its solution set. Assume that the gradient Vf is Lips-
chitzian with constant L > 0. Let x; be defined by (3.1), where the parameter s € (0,1) and
T,, is nonexpansive. Let T, and ), satisfy the following conditions:

(i) Projc(I -y Vfi,) = Q-6 +6,T, and y €(0,2/L);
(11) 0. = 2+y (L+Ag)
577 4

(ili) As is continuous with respect to s and rg = o(s).
Then the net {x,} converges strongly as s — 0 to a minimizer x* of (1.1), which solves the
variational inequality

(Fx*,x* - z) <0, Vzes. (3.4)
Equivalently, we have Projs(I — wF)x* = x*.

Proof 1t is easy to see the uniqueness of a solution of the variational inequality (3.4). In-
deed, suppose both ¥ € S and x € S are solutions to (3.4), then

(Fx,x—x) <0 (3.5)
and

(Fx,x—%) < 0. (3.6)
Adding up (3.5) and (3.6) gets

(F¥—FR,%—%) <0.
The strong monotonicity of F implies that ¥ = x and the uniqueness is proved. Below we

use x* € S to denote the unique solution of the variational inequality (3.4).
Let us show that x;, — x* as s — 0. Set

¥s = (I = SpF) Ty ().
Then we have x; = Proj y,. For any given z € S, we get
Xs—2Z
=Projcys—z

=Projoys —ys+ys— 2z
=Projcys —ys + ([ = suF) T (%) — (I — suF)z — SpF(2). (3.7)
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Since Proj . is the metric projection from H onto C, we have

(ys — X5, Z _xs> = 0.

Note that Proj-(I — ¥ Vf)z = z and Proj-(I — y Vf) = %I + 2+4”L T, so we get z = Tz, i.e.,

z€ S =Fix(T).
It follows from (3.7) that

lls — 21>
= (Projcys — ¥s, Projc ys — 2) + s(~uF(2), x; — z)
+(U = suE) Ty, (x5) — (I - suF)z, x5 — 2)
s(—1F (@), xs — z) + ((I - suF) T, (x5) — (I — siF)z, %, — 2)

IA

< s(-uF(2), % — z) + | (I = SWF) Ty, (w) — (I = spuF)z| - [l; — 2]

S(-1F (@)% = 2) + (| (I = SuE) Ty, (xs) = (1 = suF) T ()|

IA

+ | I = suB)T(x5) = (I = spF) Tz ) - [l — 2l
< s(~uF(2),5 — z) + (L= sT) 1% — 2]l + || T, () — T(xs) |

+ spk | o () = T(x) ||) - lloes — 2.
By (3.3), we obtain that

2
lls — 2l

1 k
< — [ 7060 - TG - s =2l + “7 | 73, (6s) = TG | - 1 — 21

+ %(—,uF(z),xS - z)

llcs — z|| A uk
< 7; - M|lx | + — s M|l - flxs = 2l

+ %(—,uF(z),xs - z). (3.8)

Since {x;} is bounded, it is obvious that if {s,} is a sequence in (0, 1) such that s, — 0, and
Xg, — X.
By Proposition 3.1(b) and (3.3), we have
”xsn - szn ”
< xs, = Ty, %s, | + 1| T, 25, — T, |l
< 1%, = Tog, %s, || + A5, M5, [l = O.
So, by Lemma 2.3, we get x € Fix(T) = S.
Since A = o(s), we obtain from (3.8) that x;, - ¥ € S.

Next, we show that x solves the variational inequality (3.4). Observe that

x5 = Projeys = Proje ys — ys + (I — sF) T ().
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Hence, we conclude that
1 . 1
WF(x5) = ;(Pro]cys —ys) + ;[(1 —spF) T (x5) = (I - S/'LF)(xs)]-
Since T, is nonexpansive, I — T), is monotone. Note that, for any given z € S, z = Tz and

(Projcys — ys, Proj-ys —z) < 0.
By (3.3), it follows that

(MF(xs): Xs — Z)

1 1
= =(Projc ys — Yo X5 — 2) + —((I = suF) Ty, (%) — (I — SF)xg, %5 — 2)
S S

< —%((1 — SF)xs — (I — spF) Ty, (), %5 — 2)

- _%((1 — T3,)s = sp(F(xs) = FT, (%)), % — 2)

- _3(1 = T3 sy 5 = 2) + u{F(os) = FT, (1), % — 2)

_ _2((1 T )we— (- Th)ox—2) - %((1 ~ T)z %~ 2)

+ u(F(x5) = FT, (), % — 2)

< _%((1 = T:,)z, % — 2) + W(F(x;) — FT, (), % — 2)

1
= <z = Tzl -zl + | Fes) = FT, () | - lls — 2]l
As
< :Mllzll lls — 2l + pkllxs — To sl lloes — 2. (3.9)

Since A = o(s), by Proposition 3.1(b), we obtain from (3.9) that
(WF(x),x—z) <0.
Sox € Sisasolution of the variational inequality (3.4). We get ¥ = x* by uniqueness. There-
fore, x; — x* as s — 0.
The variational inequality (3.4) can be rewritten as
((I — uF)x" —x*,x* —z) >0, Vzes.
So in terms of Lemma 2.4, it is equivalent to the following fixed point equation:
Proj(I — uF)x™ = x*.
Next, we study the following iterative method. For a given arbitrary initial guess xo € C,
we propose the following explicit scheme that generates a sequence {x,}.°, in an explicit
way:

Xnsl = PrOjC(I - Snl'LF) TA,, (xn)’ (310)

where the parameters {s,,} C (0,1). Let T3, and X, satisfy the following conditions:

Page 10 of 18
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(i) Projc(I -y V£,)=Q0=-60,)I+6,T,,and 0 <y <2/L;
(11) 9’1 _ 2+V(i+>\n)

(iii) Ay, = o(sy).
It is proved that the sequence {x,}°, converges strongly to a minimizer x* € S of (1.1),

)

which also solves the variational inequality (3.4). |

Theorem 3.3 Let H be a real Hilbert space and C be a nonempty, closed and convex sub-
set of Hilbert space H. Let F : C — H be a k-Lipschitzian and n-strongly monotone oper-
ator with constant k > 0, n > 0 such that 0 < u < 2n/k*. Suppose that the minimization
problem (1.1) is consistent and let S denote its solution set. Assume that the gradient Vf
is Lipschitzian with constant L > 0. Let {x,,}.°, be generated by algorithm (3.10) and the
parameters {s,} C (0,1). Let T5,,, A, and s, satisfy the following conditions:

(C1) Projo(I-yVf,)=10-0,)+6,T,, and y € (0,2/L);

(C2) 6, = 2282 for all n;

(C3) limy— 008, =0 and Y ooy s, = 00;

(C4) ZEZ() $n41 = Sn| < 00;

(C5) Ay =0(sy) and Y 2o |hps1 = Anl < 00.
Then the sequence {x,} generated by the explicit scheme (3.10) converges strongly to a min-

imizer x* of (1.1), which is also a solution of the variational inequality (3.4).

Proof 1t is well known that:
(a) x € C solves the minimization problem (1.1) if and only if x solves the fixed-point

equation

2—-yL
4

2+yL

X% =Projc(I - yVf)x = X+ Tx,
where 0 < ¥ < 2/L is a constant. It is clear that X = T'x, i.e., x € S = Fix(T).
(b) the gradient Vf is 1/L-ism.
(c) Proj-(I — yVfa,) is W averaged for y € (0,2/L), in particular, the following

relation holds:

2—y(L+Xy) . 2+y(L+A,)
I+

Proj-(I-yV =
.]C( Y ﬁn) 4 4

T, =0-6,)I+6,T;,.
We observe that {x,} is bounded. Indeed, take a fixed p € S, we get

%1 = pll
= |[Projc(I - s, F) Ty, () = Projc p|
< |t = sy F) T, (x) - p |
= ||t = 8, F) T, (%) = (I = 5,11 F)p — 5,).F ()
< | = $uF) Ts,, () = (I = s, uF)p|| + 50| LE @)
< | = suuF) Ty, (%) — (I = s,uF) T, (p)
+ (= sutF) T3, () = (I = s, F) Tp|| + 5, | LE () |
< (=505 = pll + | T, (@) = TO)| + 551k | T2, (0) = T@) || + 51| LE ()]
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It follows that

41 =PIl < @ = $,7) 1% = pll + A + 85,0) | T3, (p) = T®) | + 80| LE(P)]-

Note that, by using the same argument as in the proof of (3.3), there exists a real positive
number M > 0 such that

Ay Glipl + 11 Tpl)

< L:M|pll. 3.11
iy Lih) S el (3.11)

I1T:,p - Tpll <

Since A, = o(s,), there exists a real positive number M’ > 0 such that ﬁ—: <M’ and by (3.11)

we get

”xn+l —P”
= (1 _Snr)”xn —P” + (1 + Snﬂk)}\nM"p” +Sn ”MF(P) ||
<A =8, 1%0 = pll + A+ pk)s, M M||p|| + s | LE () ||

NHE@ + A+ ploMMipll
T

=1 =s,7) %0 —-pll +5,

It follows from induction that

ILE@) + 1+ pk)M'M|pl|
llxn = pll < maX{ llxo = plI, v . LA > 0. (3.12)
Consequently, {x,} is bounded. It implies that {75, (x,)} is also bounded.
We claim that
1041 = %u [l — O. (3.13)

Indeed, since

2-y(L+A\y,) 2+ y(L+Ay)
I+

P 1 1_ V =
r0jc(I — yVfi,) 1 2

T,

we obtain that

_4Projc(I-yVf,) = [2-y(L+ 1)1
N 2+y(L+A,) ’

An

By using the same argument as in the proof of Proposition 3.1(c), we obtain that

| T, (0 1) = Ty (o) |

) H 4Projcl - yVfi,) = 2=y (L + )]
- 2+ y(L+Ay)

 4Projc( -y V)~ 2=y L+ Al
2+ (L + A1)

< |An = Anaal - [v |Proje = v Vf,) ®u1) || + 57 %411l

= K|)\n - )\n—llr

! (%-1)

(xn—l)

Page 12 0of 18
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for some appropriate constant K > 0 such that
K 2 y||Projc( =y Vf,)n-0)| + 57 60l 720
Thus, we get

%6541 — %l
= ||Projc(I = sy F) Ty, (%) = Projc (I = su1uF) T, (%) |
< ||t = sy F) Ty, (%n) — (I = 541 b F) T,y (%01) |
= || = $uF) T, (6n) = I = 53t F) T, (%1) + (I = $uptF) T, (%n-1)
= (I = sy F) T,y (%01) |
< | = suuF)T5, (%) = (I = 5, uF) T, (25) |
+ | = syt F) T, (1) = (I = Syt lF) T,y (1) |
< (L= spO)l%n = Fnea |l + || T, on1) = T,y () |
+ | suptFTo, (¥n1) = Sp1 i F Ty (81) | + || Sno1 i F T, (n-1) = SnaptF T, (%1) |
< (L= 5,0 1%n = Fnoa | + KIAw = At | + 18y = Spca || F T3, (01) |
+ Spo1lk - K|y = Ay
= (L= syl — o1l + 180 = St || FTo, () || + 12w = At | (K + elsuca |k - K)

< (U= 800 = na | + 150 = S [ FTo, () | + A = At [ (K + ik - K)
for some appropriate constant E > 0 such that

E>|FT;,(x.1)|, n=0.

Consequently, we get
”xn+l _xn” = (1 - Snt)”xn _xn—ln + MElsn - Sn—1| + |)‘n - )‘1'1—1|(I< + /‘Lk : 1<)

By Lemma 2.5, we obtain ||x,,1 —x,| — O.
Next, we show that

1%, — T, % || — O. (3.14)

Indeed, it follows from (3.13) that

1% — T, %l
< %1 = Zull + %001 — T, %l
= | ne1 — %l + |Proje( — suuF) Ty, (%) — Proje T, () |
< %1 = xall + | = 4t F) T, () = T |

= (a1 = %nll + 80 | LE T3, () || = 0.

Page 13 0f 18
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Now we show that

lim sup(xn —x*, —,LLF(x*)) <0, (3.15)

n—00

where x* € S is a solution of the variational inequality (3.4).
Indeed, take a subsequence {x,, } of {x,} such that

limsup(w,, — x*, —uF(x*)) = klirn (oo — ", = F (x¥)). (3.16)
— 00

n—0o0

Without loss of generality, we may assume that x,, — X.
We observe that

%60 = Tl < |0 = T, @) || + || T () = T |-
It follows from (3.11) that
lloen — Txn || < ”xn - Tkn(xn)” + ApM| x|

By (3.14), we get ||x, — Tx,|| — O.
In terms of Lemma 2.3, we get x € Fix(T) = S.
Consequently, from (3.16) and the variational inequality (3.4), it follows that

limsup(x, —x*, —uF (x*)) = (% - %, -uF (x*)) < 0.

n— 00

Finally, we show that x,, — x*.
As a matter of fact, set

In=U —s,uF) Ty, (x,), n=>0.

Then, %11 = Projc yn — yu + Yn.
In terms of Lemma 2.4 and (3.11), we obtain

-
= (Projc yu = Yn + Y — & X1 — &)
= (Projc Y = ¥ Proje yu — &) + (v — &%, 2,11 — &)
< (yn — 2" Xpi1 — x7)
S () a1 = ) (L= S BV T (50) = (L = 5,0 )T 1 — )
< Su(~F (%), %1 — &%) + | = 80t F) T, (%) — (I = 54 b F) T | |21 — &
< 8u(~F ("), 21 = &) + (| (L = sutF) T3, () = (L = 5, i F) T, (67 |
+ [ = sun )T, (%) = (I =54t E)T (+°) |) |01 = 27
< sul=pF (x), 21 = &) + (U= 557) 00 = 27| + | T3, (6") = T (") |

(
stk T, (57) = () ) - o =]
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1
SRR P Y N
+ Su{=F (2% ), %p41 = &) + (MM + Stk - M) | | |01 — 5* .

It follows that
a1 = 2**
1-s,T w12 25, B N o
= 1+s,T e =] 1+snt( HE ("), %ra = ")
o 22D - |
1+s,7
2
<1 —s,,r)“xn —x* H2 + 1 +SS" T(—uF(x*),xml —x*>
n

+ 2(A M + sk - A M) ||x* || ||xn+1 —x* ||
=(1-s,7) ||x,, —x* ||2

An

2
+ s,,[l ot (= F (%), a1 — %) + . (M + kM) | o* ||| 1 — 2 H]

since {x,} is bounded, we can take a constant L’ > 0 such that

L' > (M + pkM) |« ||| %1 = 2|, 1> 0.
It then follows that

|1 = 2> < (1= 5,7) |20 =% + 5480 (317)
where 8, = 72— (~itF(x"), X1 — &) + Zj—n"L/.

By (3.15) and A, = o(s,), we get limsup,,_, ., 8, < 0. Now applying Lemma 2.5 to (3.17)
concludes that x,, — x* as n — oo. O

4 Application
In this section, we give an application of Theorem 3.3 to the split feasibility problem (say
SED, for short), which was introduced by Censor and Elfving [22]. Since its inception in
1994, the split feasibility problem (SFP) has received much attention (see [7, 23, 24]) due
to its applications in signal processing and image reconstruction, with particular progress
in intensity-modulated radiation therapy.

The SFP can mathematically be formulated as the problem of finding a point x with the

property
xe€C and BxeQ, (4.1)

where C and Q are nonempty, closed and convex subset of Hilbert space H; and H,, re-
spectively. B: H; — H, is a bounded linear operator.

It is clear that x* is a solution to the split feasibility problem (4.1) if and only if x* € C
and Bx™ — Proj, Bx™ = 0. We define the proximity function f by

1 .
f@) = S 1Bx ~ Projq Bx|”,
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and consider the constrained convex minimization problem
in () = min | Bx — Proj B (42)
minf(x) = min = || Bx — Proj, Bx||*. .
xeC xeC 2 Jo

Then x* solves the split feasibility problem (4.1) if and only if x* solves the minimization
problem (4.2) with the minimize equal to 0. Byrne [7] introduced the so-called CQ algo-
rithm to solve the (SFP).

%na1 = Proje(I — yB*(I = Projg)B)x,, n>0, (4.3)

where 0 < y < 2/||B||2. He obtained that the sequence {x,} generated by (4.3) converges
weakly to a solution of the (SFP).
In order to obtain strong convergence iterative sequence to solve the (SFP), we propose

the following algorithm:
X1 = Projc(l — s, uF) Ty, (x4), (4.4)

where the parameters {s,,} C (0,1) and {T},} satisfy the following conditions:

(C1) Projc(I -y (B*(I = Projg)B + Aul)) = (1 = 0,)I + 6, T, and y € (0,2/L);

(C2) 6, = W for all n,
where F : C — H is k-Lipschitzian and n-strongly monotone operator with constant k > 0,
n > 0 such that 0 < u < 2n/k?. We can show that the sequence {x,} generated by (4.4)
converges strongly to a solution of the (SFP) (4.1) if the sequence {s,} C (0,1) and the
sequence {1,} of parameters satisfy appropriate conditions.

Applying Theorem 3.3, we obtain the following result.
Theorem 4.1 Assume that the split feasibility problem (4.1) is consistent. Let the sequence
{x,} be generated by (4.4). Where the sequence {s,} C (0,1) and the sequence {,} satisfy
the conditions (C3)-(C5). Then the sequence {x,,} converges strongly to a solution of the split
feasibility problem (4.1).
Proof By the definition of the proximity function f, we have
Vf(x) = B*(I - Projq)Bx,

and Vf is Lipschitz continuous, i.e.,

|Vfx) - V)| < Lix-yl,

where L = ||B||%.
Set f;,,(x) = f(x) + % |lx]|?, consequently

Vi, ) = V(%) + Al (x)

= B*(I - Projq)Bx + Ayx.
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Then the iterative scheme (4.4) is equivalent to
X1 = Proj(I — s, uF) Ty, (%),

where the parameters {s,} C (0,1). {T;,,} satisfy the following conditions:
(C1) ProjoI-yVf,)=01-6,)1+6,T;,and y €(0,2/L);
(C2) 6, = 2L for g1 .
Due to Theorem 3.3, we have the conclusion immediately. O
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