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Abstract
This paper gives a new proof of the existence of equilibrium in a simple model of an
exchange economy. We first formulate and prove a simple combinatorial lemma and
then we use it to prove the existence of equilibrium. The combinatorial lemma allows
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1 Introduction
Consider an economywith n goods populatedwith a finite numberm of consumers whose
preferences �i, defined on R

n
+, are continuous, strictly monotone and strictly convex.a

Suppose also that each consumer possesses a stock ωi ∈ R
n
+ of goods and that the (to-

tal) supply ω = ω + · · · + ωm is positive, ω > . Suppose that at each positive price vector
p = (p, . . . ,pn) each consumer i wants to maximize his/her preferences among affordable
bundles of goods, i.e., he/she plans to buy a bundle of goods xi(p) ∈ R

n such that its value
pxi(p) is not greater than the value pωi of the disposable stock ωi and xi(p) is the best
among affordable bundles: px ≤ pωi, x ∈ R

n
+, x �= xi(p) implies xi(p) �i x and it is not true

that x �i xi(p). The monotonicity of preferences implies that pxi(p) = pωi. Hence, at the
given prices p, it holds px(p) = pω, where x(p) = x(p) + · · ·+ xn(p) is the (total) demand for
goods at prices p. Plans of all consumers can come into effect only if x(p) = ω - again by
the monotonicity assumption on preferences. Does there exist an equilibrium price vec-
tor, i.e., a positive price vector p such that x(p) = ω? It is well known that the answer to
that question is positive; see [] for a survey of the basic existence results. It is obvious
that p is an equilibrium price vector if and only if the difference z(p) := x(p) – ω vanishes.
If we allow p to vary over the positive orthant of Rn, we obtain the function z; the excess
demand function of the economy. One can show that z is homogeneous of degree zero,
continuous on the set of positive prices, it satisfies Walras’ law and a boundary condition,
and it is bounded from below [, Theorem ..]. One can also show that if a function f
defined on the positive orthant of Rn possesses the properties listed in the previous sen-
tence, then there exists an economy whose excess demand function z is different from f
only on a neighborhood of the boundary of Rn

+ in R
n and the set of equilibrium prices

© 2013 Maćkowiak; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.fixedpointtheoryandapplications.com/content/2013/1/104
mailto:p.mackowiak@ue.poznan.pl
http://creativecommons.org/licenses/by/2.0
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for z coincides with the set of zeros of f []. In this work, we are going to use the ex-
cess demand approach to prove the existence of equilibrium [, Section ]: we just impose
conditions a function should possess to be the excess demand function of an economy and
then we prove that there exists an equilibrium price vector.b The novelty of our approach
is that we are proving the existence of equilibrium (see the theorem in Section ) in a new
and constructive way.c It is important to emphasize that we do not rely on the Sperner
lemma [, p.] to prove the result. Instead of that, we introduce a combinatorial lemma
(Lemma ) formulated for a special triangulation of a closed simplex only. The particular
triangulation decreases generality of the lemma but is computationally advantageous [,
p.].d

In the next section, we introduce notation. Section  presents necessary notions from
combinatorial topology and ends with the combinatorial lemma (Lemma ). In Section ,
we define the notions of excess demand function and equilibrium, and thenwederive some
properties of excess demand functions. Finally, we prove the existence theorem. Section 
contains an algorithm for computation of equilibria. In Section , we clarify some dif-
ferences between the boundary condition we use (see Definition ()) and the standard
boundary condition met in the literature. We also present a connection between fixed
points of continuous functions and equilibria (zeros) of excess demand functions. At the
end of Section , we pose a few open questions.

2 Notation
Let N denote the set of positive integers and for any n ∈ N let R

n denote the n-
dimensional Euclidean space, and [n] := {, . . . ,n}, [] := ∅. Moreover, ei is the ith unit
vector of the standard basis of Rn, where i ∈ [n]. In what follows, for n ∈ N the set
�n := {x ∈R

n
+ :

∑n
i= xi = }, where R+ is the set of nonnegative real numbers, is the stan-

dard (n – )-dimensional (closed) simplex and int�n := {x ∈ �n : xi > , i ∈ [n]} is its (rel-
ative) interior. For a set X ⊂ R

n, ∂(X) denotes its boundary (or relative boundary of the
closure of X if X is convex). For vectors x, y ∈R

n their scalar product is xy =
∑n

i= xiyi. The
Euclidean norm of x ∈R

n is denoted by |x|. For any set A, #A denotes its cardinality.

3 Definitions, facts and a combinatorial lemma
We need some more or less standard definitions and facts from combinatorial topology;
they can be found in [] and []. Let us fix n ∈N.
- Let vj ∈R

n, j ∈ [k], k ≤ n + , be affinely independent. The set σ defined as
σ := {x ∈R

n : x =
∑k

j= αjvj,α ∈ �k} is called a (k – )-simplex with vertices vj, j ∈ [k].
We write it briefly as σ = 〈vj : j ∈ [k]〉 or σ = 〈v, . . . , vk〉. If we know that σ is a
(k – )-simplex, then the set of its vertices is denoted by V (σ ). If p ∈ σ , then the vector
αp := (αp

 , . . . ,α
p
k ) ∈ �k is called the vector of the barycentric coordinates of p in σ , if

p =
∑k

j= α
p
j vj. For each p ∈ σ , its barycentric coordinates αp in the simplex σ are

uniquely determined.
- If σ is a (k – )-simplex, then 〈A〉, where ∅ �= A⊂ V (σ ), is called a (#A – )-face of σ .
- A collection {σj : j ∈ [J]}, J ∈ N, of nonempty subsets of a (k – )-simplex S ⊂R

n,
 < k ≤ n + , is called a triangulation of S if it meets the following conditions:
. σj is a (k – )-simplex, j ∈ [J],
. if σj ∩ σj′ �= ∅ for j, j′ ∈ [J], then σj ∩ σj′ is a common face of σj and σj′ ,
. S =

⋃
j∈[J] σj.
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- Two different (k – )-simplices σj, σj′ , j, j′ ∈ [J], j �= j′, in a triangulation of a
(k – )-simplex S are adjacent if 〈V (σ )∩V (σ ′)〉 is a (k – )-face for both of them. Each
(k – )-face of a simplex σj, j ∈ [J], is a (k – )-face for exactly two different simplices
in the triangulation, provided the (k – )-face is not contained in ∂(S).

- The K-triangulation of an (n – )-simplex S = 〈v, . . . , vn〉 ⊂ R
n with grid sizem–,

where m is a positive integer,e is the collection of all (n – )-simplices σ of the form
σ = 〈p,p, . . . ,pn〉, where vertices p,p, . . . ,pn ∈ S satisfy the following conditions:
. each barycentric coordinate α

p
i , i ∈ [n], of p in S is a nonnegative multiple

of m–,
. αpj+ = αpj +m–(eπj – eπj+), where π = (π, . . . ,πn–) is a permutation of [n – ],

αpl is the vector of the barycentric coordinates of pl , l ∈ {j, j + }, j ∈ [n – ].
The K-triangulation of S with grid sizem– is denoted by K(S,m) and the set of all
vertices of simplices in K(S,m) is denoted by V (S,m). Obviously,
V (S,m) =

⋃
σ∈K (S,m)V (σ ) = {αv + · · · + αnvn : α ∈ �n,αi ∈ {, /m, . . . ,  – /m, }}.

For any ε >  and for a sufficiently large m, each simplex in K(S,m) has the diameter
not greater than ε. Moreover, there exists exactly one simplex in K(S,m) such that vn

is its vertex.f

A basic tool used in the proof of our main result is the following.

Lemma  Let S := 〈v, . . . , vn〉 ⊂ R
n be an (n – )-simplex and l : V (S,m) → {, , . . . ,n},

m ≥ , be a function satisfying for all p ∈ V (S,m) the following conditions:
. α

p
i =  ⇒ l(p) �= i, i ∈ [n – ],

. l(p) =  if αp
n = ,

. l(p) = n if αp
n = ,

. l(p) ∈ [n – ] if  < α
p
n < .

Then there exists a unique finite sequence of simplices σ, . . . ,σJ ∈ K(S,m), J ∈N, such that
σj and σj+ are adjacent for j ∈ [J – ], n ∈ l(σ),  ∈ l(σJ ), [n – ] ⊂ l(σj), j ∈ [J], and σj+ /∈
{σ, . . . ,σj}, j ∈ [J – ].g

Proof Let σ denote the unique simplex in K(S,m) whose vertex is pn := vn. Vectors of the
barycentric coordinates of vertices of σ (other than pn) are of the form

αpj =
(
, . . . , , m–︸︷︷︸

jth coordinate

, , . . . , ,  –m–), j ∈ [n – ].

Since α
pj
i =  implies l(pj) �= i, then l(pj) = j, j ∈ [n] and therefore [n – ] ⊂ l(σ). More-

over, since for all v ∈ V (S,m) αv
i =  implies l(v) �= i, then l(σ ′) = [n – ] entails σ ′ is not

contained in ∂(S), where σ ′ is an (n – )-face of some σ ∈ K(S,m). Whence, no (n – )-
face of σ ∈ K(S,m) on whose vertices function l assumes all values in [n – ] is contained
in the boundary of S. Further, there exists exactly one σ ∈ K(S,m)\{σ}, which is adja-
cent to σ. Obviously, l(σ) = [n – ]. Let pn+ be the only element of V (σ)\V (σ). Since
l({p, . . . ,pn–}) = [n – ] and l(pn+) ∈ [n – ], there exists exactly one vertex pi among
p, . . . ,pn– such that l(pi ) = l(pn+) and function l attains all values in [n–] on the (n–)-
face 〈V (σ )\{pi}〉. So, we can find a simplex σ ∈ K(S,m)\{σ,σ} adjacent to σ with
[n – ] ⊂ l(σ), and if  ∈ l(σ) - the process is complete, if not - proceeding as earlier
we can find a simplex σ ∈ K(S,m)\{σ,σ,σ} and so on.h Suppose we have constructed

http://www.fixedpointtheoryandapplications.com/content/2013/1/104
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Figure 1 The K-triangulation of 2-simplex S = 〈v1,v2,v3〉 with grid size 6. The small triangles are
members of the triangulation K (S, 6). The number at a vertex of a simplex in K (S, 6) is the value of l assigned to
the vertex and one sees that l satisfies the assumptions of Lemma 1. The sequence of simplices σ1, . . . ,σ12

meets the requirements described in the proof of Lemma 1.

the sequence σ, . . . ,σJ . If  ∈ l(σJ ), then the sequence satisfies the claim. Suppose that
 /∈ l(σJ ). Since each (n – )-face which is not contained in ∂(S) is shared by exactly two
simplices of K(S,m), there exists precisely one simplex σ ′ in K(S,m)\{σ, . . . ,σJ} such that
σJ and σ ′ share the (n– )-face σ ′ ∩ σJ with l(σ ′ ∩ σJ ) = [n– ] - this ensures that σJ+ = σ ′

and that no simplex of K(S,m) appears twice (or more) in the sequence σ, . . . ,σJ+, where
 /∈ l(σJ ). Thus, in view of the finiteness of K(S,m) and since l(σ ′) = [n – ] implies σ ′ is
not contained in ∂(S), we conclude that there exists J such that  ∈ l(σJ ), otherwise we
could construct an infinite sequence of simplices built of finitely many different elements
of K(S,m), which would imply that a simplex appears more than once in the sequence -
which is an absurd. The choice of σj+ guarantees that σj+ /∈ {σ, . . . ,σj}, j ∈ [J –]. Unique-
ness of the constructed sequence comes from the preceding sentence, uniqueness of the
simplex containing vn, and the fact that each (n – )-face in the (relative) interior of S is
shared by exactly two simplices of the triangulation. �

4 The existence of equilibrium
Definition  Let us fix n ∈ N. We say that a function z : int�n → R

n, z(p) = (z(p), . . . ,
zn(p)), is an excess demand function, if it satisfies the following conditions:
. z is continuous on int�n,
. Walras’ law holds, that is, pz(p) =  for p ∈ int�n,
. the boundary condition holds: if pj ∈ int�n, j ∈N, limj→+∞ pj = p ∈ ∂(�n) and

pi = , i ∈ [n], then limj→+∞ zi(pj) = +∞,
. z is bounded from below: infp∈int�n zi(p) > –∞, i ∈ [n].

Definition  Let z : int�n →R
n be an excess demand function, n ∈N. A point p ∈ int�n

is called an equilibrium point for z, if z(p) = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/104
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Themain goal of the paper is to give a new proof of the fact that for each excess demand
function there exists an equilibrium point. First, we are going to characterize the behavior
of z near the (relative) boundary of its domain, which is crucial for the theorem to follow.
The intuition for the lemma below is as follows: if the price pi of a good i is low (in com-
parison to some other price - prices are standardized; they sum up to ) then the demand
significantly exceeds the supply of that good; if the price pi is (relatively) high - so all the
other prices are low - then the demand for the ith good is considerably less than its supply.

Lemma  Let z : int�n →R
n be an excess demand function. Then there exists ε >  such

that for i ∈ [n] and p ∈ int�n we have

(
pi ≤ ε ⇒ zi(p) > 

)
and

(
pi ≥  – ε ⇒ zi(p) < 

)
.

Proof Suppose that the former implication is not true. Then there exist i ∈ [n] and a se-
quence pj ∈ int�n, j ∈ N : limj→+∞ pj = p, pi = , and limj→+∞ zi(pj) ≤  , which contradicts
the boundary condition. This implies that there exists ε >  for which the just considered
implication is true and without loss of generality we can assume that ε <  – ε. To prove
the latter implication, observe that pi ≥ – ε implies pi′ ≤ ε, i �= i′, so the first implication
guarantees that zi′ (p) > , i′ �= i. Now, fromWalras’ law, we get  <

∑
i′ �=i pi′zi′ (p) = –pizi(p),

and zi(p) <  is satisfied. �

Lemma Let z and ε be as in Lemma . Let S := {p ∈ int�n : pn ∈ (, –ε/]} and define
the function z̃ : int�n →R

n– as follows:

∀p ∈ int�n z̃(p) :=
(
( – pn)zi(p) + pnzn(p)

)n–
i= . ()

Then
. z̃ is continuous,
. z̃ is bounded from below: infp∈int�n z̃i(p) > –∞, i ∈ [n – ],
. p̃z(p) + · · · + pn–̃zn–(p) =  for p ∈ int�n,
. if pj ∈ S, j ∈ N, limj→+∞ pj = p ∈ ∂(�n) and pi = , i ∈ [n – ], then

limj→+∞ z̃i(pj) = +∞,
. ∃ε ∈ (, ε/] ∀p ∈ S ∀i ∈ [n – ]:

(
pi ≤ ε ⇒ z̃i(p) > 

)
and

(
pi ≥  – ε ⇒ z̃i(p) < 

)
.

Proof The continuity of z̃ is obvious. The boundedness from below of z̃ stems from the
fact that z is bounded from below and the weights pn,  – pn, are positive and less than 
for all pn ∈ (, ). The following equalities show that property () is met:

p̃z(p) + · · · + pn–̃zn–(p)

= p
(
( – pn)z(p) + pnzn(p)

)
+ · · · + pn–

(
( – pn)zn–(p) + pnzn(p)

)
= ( – pn)

(
pz(p) + · · · + pn–zn–(p)

)
+ (p + · · · + pn–)︸ ︷︷ ︸

=–pn

pnzn(p)

= ( – pn)pz(p) = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/104
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If pj ∈ S, j ∈ N, converges to a point p with pi =  for some i ∈ [n – ] then ( –
pjn)zi(pj) diverges to +∞ and since the product pjnzn(pj) is bounded from below it holds:
limj→+∞ z̃i(pj) = +∞. To prove that () is true it suffices to observe that for p ∈ S we have
 – pn ≥ ε/ and to proceed as in the proof of Lemma  with z̃ in place of z. �

The formula used to define the function z̃ resembles the linear homotopy between func-
tions

(
( – ε/)z(·, ε/) + (ε/)zn(·, ε/)

)n–
i= ,

and

(
(ε/)z(·,  – ε/) + ( – ε/)zn(·,  – ε/)

)n–
i= ;

just put t in place of pn, assume that t changes from ε/ through  – ε/ and the ‘homo-
topy’ is

H(p, . . . ,pn–, t) :=
(
( – t)zi(·, t) + tzn(·, t)

)n–
i= .

But H is not a homotopy since the domain of H(·, t) changes as t changes.
The important thing which Lemma  reveals is that at each fixed pn ∈ (, ) the function

z̃(·,pn) is an excess demand function defined on a simplex of dimension n –  instead of
n – .i

Now suppose that ε and ε satisfy the statement of Lemma  and let for i ∈ [n]:

ei :=
(

ε

n – 
, . . . ,

ε

n – 
,  – ε︸ ︷︷ ︸
ith coordinate

,
ε

n – 
, . . . ,

ε

n – 

)
∈ int�n. ()

We can assume that the vectors ei, i ∈ [n], are linearly independent; it suffices to take
sufficiently small ε > . The set S := 〈ei : i ∈ [n]〉 ⊂ int�n is an (n – )-simplex with the
vertices ei, i ∈ [n]. If p ∈ S ∩ S, then pi ∈ [ε/(n – ),  – ε], i ∈ [n – ] and if α

p
i =  (i.e.,

pi = ε/(n – ) < ε/) then z̃i(p) > ; similarly, if α
p
i =  (i.e. pi =  – ε >  – ε/) then

z̃i(p) < . Moreover, if p ∈ S and pn ≥  – ε then zn(p) <  and if pn ≤ ε then zn(p) > 
(see Lemma ). We are now in a position to prove the main result of the paper.

Theorem Let z be as in Lemma . For each ε >  there exists p ∈ int�n : zi(p) ≤ ε, i ∈ [n].

Proof If n = , then there is nothing to prove: int� = {} ⊂ R, and byWalras’ law, z(p) = 
at p = . Suppose that n ≥ . Let us fix ε >  and define ε′ := εε, where ε comes from
Lemma . Let also S be as in the hypothesis of Lemma  and let S be the (n– )-simplex
with vertices given by (). By the continuity of the restriction of z̃ to the compact set S,
there exists δ >  such that if p,p′ ∈ S and |p – p′| < δ, then |̃z(p) – z̃(p′)| < ε′. Choose an
integerm ≥  for which all simplices in K(S,m) have diameter less than min{δ, ε/}. Let
k denote the smallest integer in [m] for which (– k

m ) ε
n– + (–ε) km ≥ – ε

 - this ensures
that a point p ∈ S whose last barycentric coordinate in S is greater than or equal to k/m

http://www.fixedpointtheoryandapplications.com/content/2013/1/104
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satisfies pn ≥ –ε/. To justify this statement, observe that –ε– ε
n– ≥ –ε ≥ –ε > 

and α
p
n ≥ k/m entail

pn =
(
 – αp

n
) ε

n – 
+ ( – ε)αp

n =
ε

n – 
+

(
 – ε –

ε

n – 

)
αp
n

≥ ε

n – 
+

(
 – ε –

ε

n – 

)
k
m

=
(
 –

k
m

)
ε

n – 
+ ( – ε)

k
m

≥  – ε/.

Theminimality of k assures that for any nonnegative integer k < k if p ∈ S and α
p
n ≤ k/m,

then pn <  – ε/ and p ∈ S; the latter implies that the claim of Lemma () applies to
p. Notice that if p ∈ S and pn ≥  – ε/ then zn(p) <  and if pn < ε/ then zn(p) > 
(see Lemma ). Let us define a function l from the set of vertices V (S,m) to [n] ∪ {} as
follows:j

l(p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n, if αp
n = ,

, if αp
n = ,

min{i ∈ [n – ] : αp
i > }, if  > α

p
n ≥ k/m,

min{i ∈ [n – ] : z̃i(p) ≤ }, if k/m > α
p
n > ,

()

where z̃ is defined in (). For i ∈ [n– ], if p ∈ V (S,m),  > α
p
n ≥ k/m, and α

p
i =  then it is

clear that l(p) �= i, since if l(p) = i, then we would obtain α
p
i > . Assume that p ∈ V (S,m)

and  < α
p
n < k/m. Since p ∈ int�n, Lemma () ensures that z̃i(p) ≤  for some i ∈ [n– ]

- so, l(p) is well defined. Moreover, αp
n < k/m implies α

p
n = k/m for some nonnegative in-

teger k such that k < k and, therefore, due to Lemma (), it holds that z̃i(p) >  for α
p
i = 

from which we obtain l(p) �= i whenever α
p
i = . Therefore, the assumptions of the com-

binatorial Lemma  are satisfied. Hence, there exists a sequence of simplices σ, . . . ,σJ in
K(S,m) such that σj and σj+ are adjacent and n ∈ l(σ),  ∈ l(σJ ), [n – ] ⊂ l(σj), j ∈ [J].
There exists the first simplex in that sequence, call it σj , such that for all j > j the last
barycentric coordinate of all vertices of σj in S are less than k/m. Simplices σj ∩ σj+

are adjacent, i.e. they share an (n – )-face, and in other words, they differ by one ver-
tex only. By the choice of j all vertices p ∈ V (σj+) satisfy α

p
n < k/m, and there is a ver-

tex p ∈ V (σj )\V (σj+) such that α
p
n ≥ k/m. Now, the adjacency of σj and σj+, the fact

that all simplices in K(S,m) have diameters less than ε/ and the inequality pn ≥  – ε/
entail that pn ≥  – ε for p ∈ V (σj+), which implies zn(p) <  for p ∈ V (σj+). Reason-
ing analogously, we get for the last simplex, σJ , that it holds: zn(p) > , p ∈ V (σJ ). By the
choice of j, all simplices σj, j ≥ j + , are contained in S ∩ S. Moreover, their diame-
ters are less than δ so p,p′ ∈ σj, j ≥ j + , implies |̃zi(p) – z̃i(p′)| ≤ ε′, i ∈ [n – ]. Since⋃

j≥j σj is (arcwise) connected and V (σj )∩ z–n ((–∞, )) �= ∅ and V (σJ )∩ z–n ((, +∞)) �= ∅
then by the continuity of z̃ there exists a simplex σj , j ≥ j +  :  ∈ zn(σj ). Let p ∈ σj :
zn(p) = . So |p – p′| < δ, p′ ∈ V (σj ). Since for each i, there exists a vertex pi of σj such
that z̃i(pi) ≤  (by the inclusion [n – ] ⊂ l(σj )), ( – pn)zi(p) = z̃i(p) ≤ z̃i(pi) + ε′ ≤ ε′,
i ∈ [n – ]. Further, zi(p) ≤ ε′

(–pn) ≤ ε′
ε

= ε, i ∈ [n – ], since pn ∈ [ε,  – ε], if zn(p) = ,
due to Lemma . We have found a point p ∈ int�n : zi(p) ≤ ε, i ∈ [n], which ends the
proof. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/104
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Figure 2 This figure explains the idea of the proof of theorem for n = 3. Values of l assigned to the
vertices in V(S2,m) are independent of z̃ if the considered vertex is above or on the line p3 ≤ 1 – ε1/2 - here
the second and third row of the formula (3) are used to define vales of l. If a vertex is below the line
p3 ≤ 1 – ε1/2 - but not at the bottom of S2 - then z̃ is used to compute the value of l. The thick curve presents
a hypothetical sequence of simplices σ1, . . . ,σJ . For vertices of simplices above (p3 ≥ 1 – ε1)-line (below
(p3 ≤ ε1)-line) values of zn are negative (positive). If σj is below (p3 ≤ 1 – ε1/2)-line then each coordinate of z̃
admits a non-positive value at a vertex of σj . Somewhere between (p3 ≥ 1 – ε1) and (p3 ≤ ε1)-lines there is a
simplex σj such that zn(p)zn(p′)≤ 0 for a pair of vertices p, p′ of σj - that simplex is what we are looking for.

Figure  illustrates the proof.

Corollary Let z be as in the above theorem. There exists an equilibrium point for z.

Proof Let εq > , q ∈N, be a sequence converging to . In view of the proof of the theorem,
for each q ∈ N there exists a point pq ∈ S such that zi(pq) ≤ εq, i ∈ [n]. The Bolzano-
Weierstrass theorem and compactness of S imply that there exists a convergent sub-
sequence pq′ of pq, such that limq′→+∞ pq′ = p ∈ S. From the continuity of z, it follows
that zi(p) ≤ , for i ∈ [n]. Since p ∈ S ⊂ int�n, pi > , i ∈ [n]. Walras’ law ensures that
z(p) = . �

5 An algorithm for the computation of equilibrium
From the proof of the theorem, we can derive the following algorithm for computation
of a point p ∈ int�n satisfying zi(p) ≤ ε, i ∈ [n], where ε >  is a given accuracy level.
The algorithm below uses the function l : V (S,m) → {, , . . . ,n} defined in () and we
reasonably assume that n≥ .

Step 0: Determine ε, ε satisfying claim of Lemma 2 and Lemma 3(5),

respectively. Fix accuracy level: ε > .Find δ > such that

if p,p′ ∈ S, where S is defined as in the proof of the the-

orem, and |p – p′| < δ then |̃z(p) – z̃(p′)| < εε and let m ≥  be an

http://www.fixedpointtheoryandapplications.com/content/2013/1/104
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integer for which all simplices in K(S,m) have diameter

less than min{δ, ε/}. Let σ be is as in the proof of Lemma 1

for S = S, set FaceVertices := V (σ)\{en}, v := en (see formula (2))

and go to step 1.

Step 1: Determine the only vertex v ∈ V (S,m) such that v �= v and

〈FaceVertices∪ {v}〉 ∈ K(S,m). Go to step 2.

Step 2: If 〈FaceVertices ∪ {v}〉 ⊂ S, where S is defined in Lemma 3, and

zn(v) >  STOP: v satisfies zi(v) ≤ ε, i ∈ [n]. Otherwise,

assign the only element of l–(l(v))∩ FaceVertices as the value of v.
Set FaceVertices := (FaceVertices\{v})∪ {v} and go to step 1.

Step  initializes the necessary parameters for correct course of the algorithm and in fact
it is the most difficult part of the algorithm, unless we know some properties of the con-
sidered excess demand function (e.g., differentiability, its lower bound or if it is a Lip-
schitz function on compact subsets of int�n). It is easy to determine m if we know δ

and ε; it suffices to take m ≥ (n–)
√


min{δ,ε/} , which is a consequence of the definition of the
K-triangulation and the fact that the diameter of a simplex equals the maximum dis-
tance between its vertices. In Steps  and , set 〈FaceVertices〉 is a face of an element
of K(S,m) such that l(FaceVertices) = [n – ]. In Step , we check if currently consid-
ered simplex 〈FaceVertices ∪ {v}〉, where v is such a vertex in K(S,m) that 〈FaceVertices〉
is common (n – )-face of the currently considered simplex and its direct predecessor
〈FaceVertices∪ {v}〉, is contained in S, which implies that the value of l depends on func-
tion z̃ (see Lemma  and formula ()). If it is the case, and in addition zn(v) > , then v is
what we seek for. If not, we have to find the next adjacent simplex; to this goal, we have
to decide which vertex should be removed from FaceVertices. To achieve this, we find the
vertex v ∈ FaceVertices, which bears the same value of l as v and we form the new set
FaceVertices substituting v in place of v and then we repeat the operations. The algorithm
succeeds in finding approximate zero in a finite number of iterations due to Lemma , the
theorem and its proof. It is worth to emphasize that at a given iteration of the algorithm
(Step -Step ) exactly one new value of l is computed and to proceed on with computa-
tions it is sufficient to know only the last simplex; there is no need to remember the earlier
stages in the course of the algorithm. Moreover, the values of l need to be computed only
at the vertices of the constructed sequence of simplices.

6 Final comments
6.1 The boundary condition
The standard form of the boundary condition imposed on/satisfied by an excess demand
functions is:k pj ∈ int�n, j ∈ N, limj→+∞ pj = p ∈ ∂(�n), pi = , implies limj→+∞ max{zi(pj) :
i ∈ [n]} = +∞. The difference is that we assume that if the (relative) price of a good i tends
to , then the excess demand for the good i goes to +∞. The standard condition claims
that if the (relative) price of a good i tends to , then the excess demand for some good,
not necessarily i, goes to +∞. Our condition is satisfied if there is a consumer with Cobb-
Douglas preferences and owns a positive quantity of each good. But even if z is an excess
demand function that satisfies the standard boundary condition, we can approximate z (as
close as we wish on compact subsets of int�n) with an excess demand function satisfying
the version of the boundary condition used in the paper; see the below construction of the
function zh and just put there z in place of g .

http://www.fixedpointtheoryandapplications.com/content/2013/1/104
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6.2 Fixed points of continuous functions defined on the standard simplex
Here, we show how to relate a continuous function f : �n → �n and an excess demand
function, for which we can apply our algorithm and we can find approximate fixed points
of f .Weuse a construction byUzawa []. Let a continuous function g :�n →R

n be defined
as

∀x ∈ �n : g(x) := f (x) –
xf (x)
xx

x.

Since xg(x) = xf (x) – xf (x) = , then the function g meets Walras’ law. Let us fix a number
h >  and define a function zh : int�n →R

n as

zh(x) =
(
zh (x), . . . , z

h
n(x)

)
:=

(
g(x) + h

(
(nx)– – 

)
, . . . , gn(x) + h

(
(nxn)– – 

))
.

One can easily check that zh is an excess demand function. Now, by the corollary, we see
that for each h >  there exists a point xh ∈ int�n: zh(xh) = , written equivalently as

gi
(
xh

)
= –h

(


nxhi
– 

)
, i ∈ [n].

Let h → + and xh → x ∈ �n (taking a subsequence if necessary). If xi > , then gi(x) = .
If xi =  then 

nxhi
→ +∞ and 

nxhi
–  → +∞, so –h( 

nxhi
– ) < , but boundedness of g

implies that –h( 
nxhi

–), h > , is bounded.We obtain g(x) ≤ , which ensures that f (x) = x
(see []). Hence, to find an approximate fixed point of f , we can apply the algorithm for
zh, h sufficiently small.
The equivalence of the existence of equilibria for excess demand functions defined on

the standard closed simplicesl and Brouwer’s theorem was shown in []. The proofs of the
equivalence for the excess demand functions considered in the current paper can be found
in [] or [].

6.3 Open questions
Combinatorial Lemma  seems to be interesting for its own sake in spite of the fact that it
is proved for a particular triangulation. We have seen that it implies the existence of equi-
librium for an excess demand function. A slight modification of the proof of Theorem 
in [] allows to claim that the existence of equilibrium for an excess demand function is
equivalent to the Brouwer fixed point theorem (see also []). The famous Sperner lemma,
which is a combinatorial tool used to prove Brouwer’s fixed point theorem (and which is
equivalent to it [, p.]) has many implications (e.g., see [, pp.-]). What are other
implications of Lemma ? Does Lemma  generalize to any triangulation of the standard
simplex? Is it equivalent to Sperner’s lemma? What about the behavior of the algorithm
presented in the paper in comparison to the behavior of other computational methods for
finding equilibria (e.g., methods presented in [])? How to modify the algorithm to allow
for the computation of (approximate) equilibria of excess demand mappings rather than
functions?
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Endnotes
a Precise definitions can be found in [1] or [2, Chapter 1]. The presented description of exchange economies goes

along the lines of [2, pp.29-31] and is rather standard.
b Homogeneity of degree zero is among these conditions: we can restrict our considerations to excess demand

functions defined on the open standard simplex and not on the whole positive orthant of Rn - see Definition 1 in
Section 4.

c Constructive in the sense that it allows to derive a (simplicial) algorithm for computation of an approximate
equilibrium.

d We find [4] by Yang as a comprehensive source of information on computation of equilibria and fixed points. Since
the primary goal of this paper is to derive the existence of equilibria in a novel way without referring to Brouwer’s
fixed point theorem and not to construct algorithm for computation of equilibria, the algorithm presented below
should be treated as a by-product which is important, as we believe, but whose properties should be examined in
the future.

e Our K -triangulation is called the K2(m)-triangulation in [4, p.64].
f We could not have found a reference for this statement but it is proof is elementary.
g For simplicity: if we know that σ is a simplex we write l(σ ) instead of - formally correct way - l(V(σ )). Notice, that the

codomain of the function l could be easily changed to [n – 1] in place of [n]∪ {0}, but we do not do that to discern
the ’top’ of a simplex from its ’bottom’ - see Figure 1.

h The method of construction of the sequence is similar to the one used in the proof of the correctness of the Scarf
algorithm - see [4, p.68].

i The idea for the definition of z̃ comes from the proof of Theorem 1 in [6] as it comes as a loose suggestion for the
proof of our main theorem below.

j The idea for l is closely related to the notion of the standard integer labeling rule [4, p.63].
k See [2, Theorem 1.4.4] or [1, Lemma 4].
l This assumption eliminates both boundary conditions presented above.
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