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Abstract
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1 Introduction
The notion of asymptotic pointwise contraction was introduced by Kirk []: Let (M,d) be
a metric space. A mapping T : M → M is called an asymptotic pointwise contraction if
there exists a function α :M → [, ) such that for each integer n ≥ ,

d
(
Tnx,Tny

) ≤ αn(x)d(x, y) for each x, y ∈M,

where αn → α pointwise on M. Moreover, Kirk and Xu [] proved that if C is a weakly
compact convex subset of a Banach space E and T : C → C an asymptotic pointwise con-
traction, then T has a unique fixed point v ∈ C, and for each x ∈ C, the sequence of Picard
iterates {Tnx} converges in norm to v.
Very recently, Saeidi [] introduced the concept of (weak) asymptotic pointwise contrac-

tion type: Let (M,d) be a metric space. A mapping T :M →M is said to be of asymptotic
pointwise contraction type (resp. of weak asymptotic pointwise contraction type) if TN is
continuous for some integer N ≥  and there exists a function α :M → [, ) such that for
each x inM,

lim sup
n→∞

sup
y∈M

{
d
(
Tnx,Tny

)
– αn(x)d(x, y)

} ≤ , (.)

(
resp. lim inf

n→∞ sup
y∈M

{
d
(
Tnx,Tny

)
– αn(x)d(x, y)

} ≤ 
)
, (.)

where αn → α pointwise onM.
It is easy to see that an asymptotic pointwise contraction is of asymptotic pointwise

contraction type, but the converse is not true []. The following result was proved in [].

Theorem . [] Let C be a nonempty weakly compact subset of a Banach space E, and
let T : C → C be a mapping of weak asymptotic pointwise contraction type. Then T has a
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unique fixed point v ∈ C and, for each x ∈ C, the sequence of Picard iterates {Tnx} converges
in norm to v.

On the other hand, Khamsi andKozlowski [] studied the concept of asymptotic pointwise
contractions in modular function spaces.
In this paper, motivated by Khamsi and Kozlowski [, ] and Saeidi [], we study the

notion of asymptotic pointwise contraction type in a modular function space. Moreover,
we present fixed results which extend the earlier results in [, ].

2 Preliminaries
Let � be a nonempty set, and let � be a nontrivial σ -algebra of subsets of �. Let P be a
δ-ring of subsets of � such that E ∩ A ∈ P for any E ∈ P and A ∈ �. Let us assume that
there exists an increasing sequence of sets Kn ∈P such that � =

⋃
Kn. By ξ we denote the

linear space of all simple functions with supports from P . By M∞ we denote the space
of all extended measurable function, i.e., all function f : � → [–∞, +∞] such that there
exists a sequence {gn} ∈ ξ , |gn| ≤ |f | and gn(ω)→ f (ω) for all ω ∈ �.
By A we denote the characteristic function of the set A.

Definition . [] Let ρ :M∞ → [,∞] be a nontrivial, convex and even function. We
say that ρ is a regular convex function pseudomodular if:
(a) ρ() = ;
(b) ρ is monotone, i.e., |f (ω)| ≤ |g(ω)| for all ω ∈ � implies ρ(f )≤ ρ(g), where

f , g ∈M∞;
(c) ρ is orthogonally subadditive, i.e., ρ(f A∪B)≤ ρ(f A) + ρ(f B) for any A,B ∈ � such

that A∩ B 	= ∅, f ∈M∞;
(d) ρ has the Fatou property, i.e., |fn(ω)| ↑ |f (ω)| for all ω ∈ � implies ρ(fn) ↑ ρ(f ),

where f ∈M∞;
(e) ρ is order continuous in ξ , i.e., gn ∈ ξ and |gn(ω)| ↓  implies ρ(gn) ↓ .

Similarly as in the case of measure spaces, we say that a set A ∈ � is ρ-null if ρ(gA) = 
for every g ∈ ξ . We say that a property holds ρ-almost everywhere if the exceptional set
is ρ-null. As usual we identify any pair of measurable sets whose symmetric difference is
ρ-null as well as any pair of measurable functions differing only on a ρ-null set. With this
in mind, we define

M(�,�,P ,ρ) =
{
f ∈M∞ :

∣∣f (ω)∣∣ <∞ ρ-a.e.
}
,

where each f ∈ M(�,�,P ,ρ) is actually an equivalence class of functions equal ρ-a.e.
rather than an individual function. Where no confusion exists, we write M instead of
M(�,�,P ,ρ).

Definition . [, ] Let ρ be a regular function pseudomodular;
(a) we say that ρ is a regular convex function semimodular if ρ(αf ) =  for every α > 

implies f =  ρ-a.e.;
(b) we say that ρ is a regular convex function modular if ρ(f ) =  implies f =  ρ-a.e.

The class of all nonzero regular convex function modulars on � is denoted byR.
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Definition . [–] Let ρ be a convex function modular.
(a) A modular function space is the vector space Lρ(�,�), or briefly Lρ , defined by

Lρ =
{
f ∈M : ρ(λf ) →  as λ → 

}
.

(b) The following formula defines a norm in Lρ (frequently called Luxemburg norm):

‖f ‖ρ = inf
{
α > ;ρ(f /α)≤ 

}
.

In the following theorem, we recall some of the properties of modular function spaces
that will be used later on in this paper.

Lemma . [–] Let ρ ∈ R. Defining Lρ = {f ∈ Lρ ;ρ(f , ·) is order continuous} and Eρ =
{f ∈ Lρ ;λf ∈ Lρ for every λ > }, we have

(i) Lρ ⊃ Lρ ⊃ Eρ ;
(ii) Eρ has the Lebesgue property, i.e., ρ(αf ,Dk) → , for α > , f ∈ Eρ and Dk ↓∅;
(iii) Eρ is the closure of ξ (in the sense of ‖ · ‖ρ ).

Definition . [, ] Let ρ ∈R.
(a) We say that {fn} is ρ-convergent to f and write fn → f (ρ) if and only if ρ(fn – f ) → .
(b) A sequence {fn} where fn ∈ Lρ is called ρ-Cauchy if ρ(fn – fm) →  as m,n→ ∞.
(c) A set C ⊂ Lρ is called ρ-closed if for any sequence {fn} in C, the convergence

fn → f (ρ) implies that f belongs to C.
(d) A set C ⊂ Lρ is called ρ-bounded if sup{ρ(f – g); f ∈ C, g ∈ C} < ∞.
(e) For a set C ⊂ Lρ , the mapping T : C → C is called ρ-continuous if fn → f (ρ), then

T(fn)→ T(f )(ρ).
(f ) A set C ⊂ Lρ is called ρ-a.e. closed if for any sequence {fn} in C which ρ-a.e.

converges to some f , then we must have f ∈ C.
(g) A set C ⊂ Lρ is called ρ-a.e. compact if for any sequence {fn} in C, there exists a

subsequence {fnk } which ρ-a.e. converges to some f ∈ C.
(h) Let f ∈ Lρ and C ⊂ Lρ . The ρ-distance between f and C is defined as

dρ(f ,C) = inf
{
ρ(f – g); g ∈ C

}
.

Let us recall that ρ-convergence does not necessarily imply ρ-Cauchy condition. Also,
fn → f does not imply in general λfn → λf , λ > .

Definition . [] We say that Lρ has the property (R) if and only if every nonincreasing
sequence {Cn} of nonempty, ρ-bounded, ρ-closed, convex subsets of Lρ has nonempty
intersection.

Definition. [] We say that the functionmodular ρ is uniformly continuous if for every
ε >  and L > , there exists δ >  such that

∣∣ρ(g) – ρ(h + g)
∣∣ ≤ ε if ρ(h)≤ δ and ρ(g)≤ L.
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Definition . [] A function λ : C → [,∞], where C ⊂ Lρ is nonempty and ρ-closed, is
called ρ-lower semicontinuous if for any α > , the set Cα = {f ∈ C;λ(f ) ≤ α} is ρ-closed.

It can be proved that ρ-lower semicontinuity is equivalent to the condition

λ(f ) ≤ lim inf
n→∞ λ(fn) provided f , fn ∈ C and ρ(f – fn) → .

The following result plays an important role in the proof of the main results.

Lemma . [] Assume that ρ ∈R has the property (R). Let C ⊂ Lρ be nonempty, convex,
ρ-closed and ρ-bounded. If ϕ : C → [,∞) is a ρ-lower semicontinuous convex function,
then there exists x ∈ C such that

ϕ(x) = inf
{
ϕ(x);x ∈ C

}
.

Let us recall the notion of ρ-type.

Definition . [] Let C ⊂ Lρ be convex and ρ-bounded. A function τ : C → [,∞) is
called a (ρ)-type (or shortly a type) if there exists a sequence {ym} of elements of C such
that for any z ∈ C, the following holds:

τ (z) = lim sup
m→∞

ρ(ym – z).

Lemma . [] Let ρ ∈ R be uniformly continuous. Let C ⊂ Lρ be nonempty, convex,
ρ-closed and ρ-bounded. Then any ρ-type τ : C → [,∞) is ρ-lower semicontinuous in C.

3 Asymptotic pointwise contractive type conditions in modular function
spaces

Definition . [] Let ρ ∈ R and C ⊂ Lρ be non-empty and ρ-closed. A mapping T :
C → C is called an asymptotic pointwise mapping if there exists a sequence of mappings
αn : C → [, ] such that

ρ
(
Tnf – Tng

) ≤ αn(f )ρ(f – g) for any f , g ∈ C.

(a) If {αn} converges pointwise to α : C → [, ), then T is called asymptotic pointwise
ρ-contraction.

(b) If lim supn→∞ αn(f ) ≤  for any f ∈ C, then T is called asymptotic pointwise
nonexpansive.

(c) If lim supn→∞ αn(f ) ≤ k for any f ∈ C with  < k < , then T is called strongly
asymptotic pointwise ρ-contraction.

Khamsi and Kozlowski proved the following results in modular function spaces.

Theorem . [] Let C ⊂ Lρ be nonempty, ρ-closed and ρ-bounded. Let T : C → C be an
asymptotic pointwise ρ-contraction. Then T has at most one fixed point in C.Moreover, if
x is a fixed point of T , then the orbit {Tnx} is ρ-convergent to x for any x ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2013/1/101
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Theorem . [] Let us assume that ρ ∈ R is uniformly continuous and has the prop-
erty (R). Let C ⊂ Lρ be nonempty, convex, ρ-closed and ρ-bounded. Let T : C → C be an
asymptotic pointwise ρ-contraction. Then T has a unique fixed point x ∈ C. Moreover,
the orbit {Tnx} is ρ-convergent to x for any x ∈ C.

Below, we introduce the notion of asymptotic pointwise ρ-contraction type in modular
function spaces.

Definition . LetC ⊂ Lρ be nonempty, ρ-bounded and ρ-closed. AmappingT : C → C
is said to be of asymptotic pointwise ρ-contraction type (resp. of weak asymptotic point-
wise ρ-contraction type) if TN is ρ-continuous for some integer N ≥  and there exists a
function α : C → [, ) such that, for each x in C,

lim sup
n→∞

sup
y∈C

{
ρ
(
Tnx – Tny

)
– αn(x)ρ(x – y)

} ≤ , (.)

(
resp. lim inf

n→∞ sup
y∈C

{
ρ
(
Tnx – Tny

)
– αn(x)ρ(x – y)

} ≤ 
)
, (.)

where αn → α pointwise onM.
Taking

rn(x) = sup
y∈M

{
ρ
(
Tnx – Tny

)
– αn(x)ρ(x – y)

} ∈R
+ ∪ {∞},

it can be easily seen from (.) (resp. (.)) that

lim
n→∞ rn(x) = , (.)
(
resp. lim inf

n→∞ rn(x)≤ 
)

(.)

for all x ∈M, and

ρ
(
Tnx – Tny

) ≤ αn(x)ρ(x – y) + rn(x). (.)

We will obtain fixed point results for these mappings in modular function spaces.
First, it is worth mentioning that the ρ-limit of any ρ-convergent sequence in Lρ is

unique. This fact follows from the following reasoning: Assume that ρ(un – u) →  and
ρ(un – v) → . Then

ρ

(
u – v


)
≤ 


ρ(u – un) +



ρ(v – un)→ ,

which implies that u = v.
The following theorem is our main result.

Theorem . Let ρ ∈R be uniformly continuous and have the property (R). Let C ⊂ Lρ be
nonempty, convex, ρ-closed and ρ-bounded. Let T : C → C be a mapping of weak asymp-
totic pointwise ρ-contraction type. Then T has a unique fixed point v ∈ C and, for each
x ∈ C, the sequence of Picard iterates {Tnx} is ρ-convergent to v.
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Proof Fix an x ∈ C and define a function τ by

τ (u) = lim sup
n→∞

ρ
(
Tnx – u

)
, u ∈ C.

By Lemma ., τ is ρ-lower semicontinuous in C. By Lemma ., then there exists x ∈ C
such that

τ (x) = inf
{
τ (x);x ∈ C

}
.

Let us prove that τ (x) = . Indeed, for any n,m ≥ , we have

τ
(
Tmx

)
= lim sup

n→∞
ρ
(
Tnx – Tmx

)

= lim sup
n→∞

ρ
(
Tm+nx – Tmx

)

= lim sup
n→∞

ρ
(
Tm(

Tnx
)
– Tmx

)

≤ lim sup
n→∞

αm(x)ρ
(
Tnx – x

)
+ rm(x)

= αm(x)τ (x) + rm(x),

which implies

τ (x) = inf
{
τ (x);x ∈ C

} ≤ τ
(
Tmx

) ≤ αm(x)τ (x) + rm(x). (.)

Since T is of weak asymptotic pointwise ρ-contraction type, by (.) we have
lim infn→∞ rm(x) ≤ . Thus, for a subsequence {rmk (x)} of {rm(x)}, we have

lim
k→∞

rmk (x) ≤ . (.)

Now, by (.) and (.), we obtain

τ (x) ≤ lim inf
k→∞

[
αmk (x)τ (x) + rmk (x)

]
= α(x)τ (x),

which forces τ (x) =  as α(x) < . Hence ρ(Tnx – x) →  as n → ∞. From this and the
continuity of TN , for some N ≥ , it follows that ρ(TN+nx – TNx) →  as n → ∞. Since
the ρ-limit of any ρ-convergent sequence is unique, we must have TNx = x, namely, x
is a fixed point of TN . Now, repeating the above proof for x instead of x, we deduce that
Tnx is ρ-convergent to a member v of C; i.e., ρ(Tnx – v) → . But TkNx = x for all
k ≥ . Hence, v = x and then Tnx → x(ρ).
We show that Tx = x; for this purpose, consider an arbitrary ε > . Then there exists a

k >  such that ρ(Tnx – x) < ε for all n > k. So, by choosing a natural number k > k/N ,
we obtain

ρ(Tx – x) = ρ
(
T

(
TkNx

)
– x

)
= ρ

(
TkN+x – x

)
< ε.

Since the choice of ε >  is arbitrary and ρ ∈R, we get Tx = x.
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It is easy to verify thatT can have only one fixed point. Indeed, if u, v ∈ C are fixed points
of T , then by (.), we have

ρ(u – v) = ρ
(
Tnu – Tnv

) ≤ αn(u)ρ(u – v) + rn(u), ∀n≥ .

Taking lim inf in the above inequality, we obtain

ρ(u – v) ≤ α(u)ρ(u – v).

Since α(u) <  and ρ ∈ R, we immediately get u = v. �

Next, using the ρ-a.e. strong Opial property of the function modular, we prove a fixed
point theorem which does not assume the uniform continuity of ρ .

Definition . [, ] We say that Lρ satisfies the ρ-a.e. strong Opial property (or shortly
SO-property) if for every {fn} ∈ Lρ which is ρ-a.e. convergent to zero such that there exists
a β >  for which

sup
{
ρ(βfn)

}
<∞,

the following equality holds for any g ∈ Lρ :

lim inf
n→∞ (fn + g) = lim inf

n→∞ ρ(fn) + ρ(g).

Lemma . [] Let ρ ∈ R. Assume that Lρ has the ρ-a.e. strong Opial property. Let C ⊂
Eρ be a nonempty, ρ-a.e. compact subset such that there exists β >  such that δρ(βC) =
sup{ρ(β(x– y));x, y ∈ C} < ∞. Let D ⊂ C be a nonempty ρ-a.e. closed subset. For any n ≥ ,
let λn : D → [,∞) be such that for any y ∈ D, there exists a sequence {yn} ⊂ C such that,
for every n≥ , the following holds:

λn(y) –

n

≤ ρ(y – yn),

and ρ(x – yn)≤ λn(x) for every x ∈ D and n ≥ . Let λ(x) = lim supn→∞ λn(x) for any x ∈D.
Then there exists x ∈D at which λ attains infimum, i.e.,

λ(x) = inf
{
λ(x);x ∈ D

}
.

Theorem . Let ρ ∈ R. Assume that Lρ has the ρ-a.e. strong Opial property. Let C ⊂ Eρ

be a nonempty ρ-a.e. compact convex subset such that δρ(βC) = sup{ρ(β(x– y));x, y ∈ C} <
∞ for some β > . Then any T : C → C of weak asymptotic pointwise ρ-contraction type
has a unique fixed point x ∈ C. Moreover, the orbit {Tnx} is ρ-convergent to x for any
x ∈ C.

Proof Fix an x ∈ C and define a function τ by

τ (u) = lim sup
n→∞

ρ
(
Tnx – u

)
, u ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2013/1/101
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By Lemma . applied with λ(u) = τ (u), D = C, λn(u) = ρ(Tnx – u), and with yn = Tnx
chosen for all u ∈ C, there exists x ∈ C such that

τ (x) = inf
{
τ (x);x ∈ C

}
.

The rest of the proof is like the one used for Theorem .. �
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