# RESEARCH

**Open** Access

# Asymptotic pointwise contractive type in modular function spaces

Farhan Golkarmanesh<sup>1\*</sup> and Shahram Saeidi<sup>2</sup>

\*Correspondence: fgolkarmanesh@yahoo.com <sup>1</sup>Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran Full list of author information is available at the end of the article

# Abstract

In this paper, we introduce asymptotic pointwise contractive type conditions in modular function spaces and present fixed point results for mappings under such conditions.

**MSC:** 47H09; 47H10; 54H25

**Keywords:** asymptotic pointwise  $\rho$ -contraction type; modular function space

# **1** Introduction

The notion of asymptotic pointwise contraction was introduced by Kirk [1]: Let (M, d) be a metric space. A mapping  $T: M \to M$  is called an asymptotic pointwise contraction if there exists a function  $\alpha : M \to [0, 1)$  such that for each integer  $n \ge 1$ ,

 $d(T^n x, T^n y) \le \alpha_n(x) d(x, y)$  for each  $x, y \in M$ ,

where  $\alpha_n \to \alpha$  pointwise on *M*. Moreover, Kirk and Xu [2] proved that if *C* is a weakly compact convex subset of a Banach space *E* and  $T: C \to C$  an asymptotic pointwise contraction, then *T* has a unique fixed point  $v \in C$ , and for each  $x \in C$ , the sequence of Picard iterates  $\{T^n x\}$  converges in norm to *v*.

Very recently, Saeidi [3] introduced the concept of (weak) asymptotic pointwise contraction type: Let (M, d) be a metric space. A mapping  $T : M \to M$  is said to be of asymptotic pointwise contraction type (resp. of weak asymptotic pointwise contraction type) if  $T^N$  is continuous for some integer  $N \ge 1$  and there exists a function  $\alpha : M \to [0, 1)$  such that for each x in M,

$$\limsup_{n \to \infty} \sup_{y \in M} \left\{ d \left( T^n x, T^n y \right) - \alpha_n(x) d(x, y) \right\} \le 0,$$
(1.1)

$$\left(\operatorname{resp.} \liminf_{n \to \infty} \sup_{y \in M} \left\{ d\left(T^n x, T^n y\right) - \alpha_n(x) d(x, y) \right\} \le 0 \right), \tag{1.2}$$

where  $\alpha_n \rightarrow \alpha$  pointwise on *M*.

It is easy to see that an asymptotic pointwise contraction is of asymptotic pointwise contraction type, but the converse is not true [3]. The following result was proved in [3].

**Theorem 1.1** [3] Let C be a nonempty weakly compact subset of a Banach space E, and let  $T: C \rightarrow C$  be a mapping of weak asymptotic pointwise contraction type. Then T has a

© 2013 Golkarmanesh and Saeidi; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



unique fixed point  $v \in C$  and, for each  $x \in C$ , the sequence of Picard iterates  $\{T^n x\}$  converges in norm to v.

On the other hand, Khamsi and Kozlowski [4] studied the concept of asymptotic pointwise contractions in modular function spaces.

In this paper, motivated by Khamsi and Kozlowski [4, 5] and Saeidi [3], we study the notion of asymptotic pointwise contraction type in a modular function space. Moreover, we present fixed results which extend the earlier results in [3, 4].

## 2 Preliminaries

Let  $\Omega$  be a nonempty set, and let  $\Sigma$  be a nontrivial  $\sigma$ -algebra of subsets of  $\Omega$ . Let  $\mathcal{P}$  be a  $\delta$ -ring of subsets of  $\Omega$  such that  $E \cap A \in \mathcal{P}$  for any  $E \in \mathcal{P}$  and  $A \in \Sigma$ . Let us assume that there exists an increasing sequence of sets  $K_n \in \mathcal{P}$  such that  $\Omega = \bigcup K_n$ . By  $\xi$  we denote the linear space of all simple functions with supports from  $\mathcal{P}$ . By  $\mathcal{M}_{\infty}$  we denote the space of all extended measurable function, *i.e.*, all function  $f : \Omega \to [-\infty, +\infty]$  such that there exists a sequence  $\{g_n\} \in \xi, |g_n| \leq |f| \text{ and } g_n(\omega) \to f(\omega)$  for all  $\omega \in \Omega$ .

By  $1_A$  we denote the characteristic function of the set *A*.

**Definition 2.1** [6] Let  $\rho : \mathcal{M}_{\infty} \to [0, \infty]$  be a nontrivial, convex and even function. We say that  $\rho$  is a regular convex function pseudomodular if:

- (a)  $\rho(0) = 0;$
- (b) ρ is monotone, *i.e.*, |f(ω)| ≤ |g(ω)| for all ω ∈ Ω implies ρ(f) ≤ ρ(g), where f, g ∈ M<sub>∞</sub>;
- (c)  $\rho$  is orthogonally subadditive, *i.e.*,  $\rho(f_{1_{A\cup B}}) \leq \rho(f_{1_A}) + \rho(f_{1_B})$  for any  $A, B \in \Sigma$  such that  $A \cap B \neq \emptyset, f \in \mathcal{M}_{\infty}$ ;
- (d)  $\rho$  has the Fatou property, *i.e.*,  $|f_n(\omega)| \uparrow |f(\omega)|$  for all  $\omega \in \Omega$  implies  $\rho(f_n) \uparrow \rho(f)$ , where  $f \in \mathcal{M}_{\infty}$ ;
- (e)  $\rho$  is order continuous in  $\xi$ , *i.e.*,  $g_n \in \xi$  and  $|g_n(\omega)| \downarrow 0$  implies  $\rho(g_n) \downarrow 0$ .

Similarly as in the case of measure spaces, we say that a set  $A \in \Sigma$  is  $\rho$ -null if  $\rho(g1_A) = 0$  for every  $g \in \xi$ . We say that a property holds  $\rho$ -almost everywhere if the exceptional set is  $\rho$ -null. As usual we identify any pair of measurable sets whose symmetric difference is  $\rho$ -null as well as any pair of measurable functions differing only on a  $\rho$ -null set. With this in mind, we define

$$\mathcal{M}(\Omega, \Sigma, \mathcal{P}, \rho) = \{ f \in \mathcal{M}_{\infty} : |f(\omega)| < \infty \ \rho \text{-a.e.} \},\$$

where each  $f \in \mathcal{M}(\Omega, \Sigma, \mathcal{P}, \rho)$  is actually an equivalence class of functions equal  $\rho$ -a.e. rather than an individual function. Where no confusion exists, we write  $\mathcal{M}$  instead of  $\mathcal{M}(\Omega, \Sigma, \mathcal{P}, \rho)$ .

**Definition 2.2** [4, 5] Let  $\rho$  be a regular function pseudomodular;

- (a) we say that  $\rho$  is a regular convex function semimodular if  $\rho(\alpha f) = 0$  for every  $\alpha > 0$ implies  $f = 0 \rho$ -a.e.;
- (b) we say that  $\rho$  is a regular convex function modular if  $\rho(f) = 0$  implies  $f = 0 \rho$ -a.e.

The class of all nonzero regular convex function modulars on  $\Omega$  is denoted by  $\Re$ .

**Definition 2.3** [7–9] Let  $\rho$  be a convex function modular.

(a) A modular function space is the vector space  $L_{\rho}(\Omega, \Sigma)$ , or briefly  $L_{\rho}$ , defined by

$$L_{\rho} = \{ f \in \mathcal{M} : \rho(\lambda f) \to 0 \text{ as } \lambda \to 0 \}.$$

(b) The following formula defines a norm in  $L_{\rho}$  (frequently called Luxemburg norm):

 $||f||_{\rho} = \inf \{ \alpha > 0; \rho(f/\alpha) \le 1 \}.$ 

In the following theorem, we recall some of the properties of modular function spaces that will be used later on in this paper.

**Lemma 2.4** [7–9] Let  $\rho \in \mathfrak{R}$ . Defining  $L^0_{\rho} = \{f \in L_{\rho}; \rho(f, \cdot) \text{ is order continuous}\}$  and  $E_{\rho} = \{f \in L_{\rho}; \lambda f \in L^0_{\rho} \text{ for every } \lambda > 0\}$ , we have

- (i)  $L_{\rho} \supset L_{\rho}^{0} \supset E_{\rho}$ ;
- (ii)  $E_{\rho}$  has the Lebesgue property, i.e.,  $\rho(\alpha f, D_k) \rightarrow 0$ , for  $\alpha > 0, f \in E_{\rho}$  and  $D_k \downarrow \emptyset$ ;
- (iii)  $E_{\rho}$  is the closure of  $\xi$  (in the sense of  $\|\cdot\|_{\rho}$ ).

**Definition 2.5** [4, 5] Let  $\rho \in \mathfrak{R}$ .

- (a) We say that  $\{f_n\}$  is  $\rho$ -convergent to f and write  $f_n \to f(\rho)$  if and only if  $\rho(f_n f) \to 0$ .
- (b) A sequence  $\{f_n\}$  where  $f_n \in L_\rho$  is called  $\rho$ -Cauchy if  $\rho(f_n f_m) \to 0$  as  $m, n \to \infty$ .
- (c) A set  $C \subset L_{\rho}$  is called  $\rho$ -closed if for any sequence  $\{f_n\}$  in C, the convergence  $f_n \to f(\rho)$  implies that f belongs to C.
- (d) A set  $C \subset L_{\rho}$  is called  $\rho$ -bounded if  $\sup\{\rho(f g); f \in C, g \in C\} < \infty$ .
- (e) For a set  $C \subset L_{\rho}$ , the mapping  $T: C \to C$  is called  $\rho$ -continuous if  $f_n \to f(\rho)$ , then  $T(f_n) \to T(f)(\rho)$ .
- (f) A set  $C \subset L_{\rho}$  is called  $\rho$ -a.e. closed if for any sequence  $\{f_n\}$  in C which  $\rho$ -a.e. converges to some f, then we must have  $f \in C$ .
- (g) A set  $C \subset L_{\rho}$  is called  $\rho$ -a.e. compact if for any sequence  $\{f_n\}$  in C, there exists a subsequence  $\{f_{n_k}\}$  which  $\rho$ -a.e. converges to some  $f \in C$ .
- (h) Let  $f \in L_{\rho}$  and  $C \subset L_{\rho}$ . The  $\rho$ -distance between f and C is defined as

$$d_{\rho}(f,C) = \inf \big\{ \rho(f-g); g \in C \big\}.$$

Let us recall that  $\rho$ -convergence does not necessarily imply  $\rho$ -Cauchy condition. Also,  $f_n \rightarrow f$  does not imply in general  $\lambda f_n \rightarrow \lambda f$ ,  $\lambda > 1$ .

**Definition 2.6** [4] We say that  $L_{\rho}$  has the property (*R*) if and only if every nonincreasing sequence  $\{C_n\}$  of nonempty,  $\rho$ -bounded,  $\rho$ -closed, convex subsets of  $L_{\rho}$  has nonempty intersection.

**Definition 2.7** [4] We say that the function modular  $\rho$  is uniformly continuous if for every  $\epsilon > 0$  and L > 0, there exists  $\delta > 0$  such that

$$|\rho(g) - \rho(h+g)| \le \epsilon$$
 if  $\rho(h) \le \delta$  and  $\rho(g) \le L$ .

**Definition 2.8** [4] A function  $\lambda : C \to [0, \infty]$ , where  $C \subset L_{\rho}$  is nonempty and  $\rho$ -closed, is called  $\rho$ -lower semicontinuous if for any  $\alpha > 0$ , the set  $C_{\alpha} = \{f \in C; \lambda(f) \le \alpha\}$  is  $\rho$ -closed.

It can be proved that  $\rho$ -lower semicontinuity is equivalent to the condition

 $\lambda(f) \leq \liminf_{n \to \infty} \lambda(f_n) \quad \text{provided } f, f_n \in C \text{ and } \rho(f - f_n) \to 0.$ 

The following result plays an important role in the proof of the main results.

**Lemma 2.9** [4] Assume that  $\rho \in \Re$  has the property (R). Let  $C \subset L_{\rho}$  be nonempty, convex,  $\rho$ -closed and  $\rho$ -bounded. If  $\varphi : C \to [0, \infty)$  is a  $\rho$ -lower semicontinuous convex function, then there exists  $x_0 \in C$  such that

$$\varphi(x_0) = \inf \{ \varphi(x); x \in C \}.$$

Let us recall the notion of  $\rho$ -type.

**Definition 2.10** [4] Let  $C \subset L_{\rho}$  be convex and  $\rho$ -bounded. A function  $\tau : C \to [0, \infty)$  is called a ( $\rho$ )-type (or shortly a type) if there exists a sequence { $y_m$ } of elements of *C* such that for any  $z \in C$ , the following holds:

 $\tau(z) = \limsup_{m \to \infty} \rho(y_m - z).$ 

**Lemma 2.11** [4] Let  $\rho \in \Re$  be uniformly continuous. Let  $C \subset L_{\rho}$  be nonempty, convex,  $\rho$ -closed and  $\rho$ -bounded. Then any  $\rho$ -type  $\tau : C \to [0, \infty)$  is  $\rho$ -lower semicontinuous in C.

# 3 Asymptotic pointwise contractive type conditions in modular function spaces

**Definition 3.1** [4] Let  $\rho \in \mathfrak{R}$  and  $C \subset L_{\rho}$  be non-empty and  $\rho$ -closed. A mapping  $T : C \to C$  is called an asymptotic pointwise mapping if there exists a sequence of mappings  $\alpha_n : C \to [0,1]$  such that

 $\rho(T^n f - T^n g) \le \alpha_n(f)\rho(f - g)$  for any  $f, g \in C$ .

- (a) If  $\{\alpha_n\}$  converges pointwise to  $\alpha : C \to [0, 1)$ , then *T* is called asymptotic pointwise  $\rho$ -contraction.
- (b) If  $\limsup_{n\to\infty} \alpha_n(f) \le 1$  for any  $f \in C$ , then *T* is called asymptotic pointwise nonexpansive.
- (c) If  $\limsup_{n\to\infty} \alpha_n(f) \le k$  for any  $f \in C$  with 0 < k < 1, then *T* is called strongly asymptotic pointwise  $\rho$ -contraction.

Khamsi and Kozlowski proved the following results in modular function spaces.

**Theorem 3.2** [4] Let  $C \subset L_{\rho}$  be nonempty,  $\rho$ -closed and  $\rho$ -bounded. Let  $T : C \to C$  be an asymptotic pointwise  $\rho$ -contraction. Then T has at most one fixed point in C. Moreover, if  $x_0$  is a fixed point of T, then the orbit  $\{T^nx\}$  is  $\rho$ -convergent to  $x_0$  for any  $x \in C$ .

**Theorem 3.3** [4] Let us assume that  $\rho \in \Re$  is uniformly continuous and has the property (R). Let  $C \subset L_{\rho}$  be nonempty, convex,  $\rho$ -closed and  $\rho$ -bounded. Let  $T : C \to C$  be an asymptotic pointwise  $\rho$ -contraction. Then T has a unique fixed point  $x_0 \in C$ . Moreover, the orbit  $\{T^nx\}$  is  $\rho$ -convergent to  $x_0$  for any  $x \in C$ .

Below, we introduce the notion of asymptotic pointwise  $\rho$ -contraction type in modular function spaces.

**Definition 3.4** Let  $C \subset L_{\rho}$  be nonempty,  $\rho$ -bounded and  $\rho$ -closed. A mapping  $T : C \to C$  is said to be of asymptotic pointwise  $\rho$ -contraction type (resp. of weak asymptotic pointwise  $\rho$ -contraction type) if  $T^N$  is  $\rho$ -continuous for some integer  $N \ge 1$  and there exists a function  $\alpha : C \to [0, 1)$  such that, for each x in C,

$$\limsup_{n \to \infty} \sup_{y \in C} \left\{ \rho \left( T^n x - T^n y \right) - \alpha_n(x) \rho(x - y) \right\} \le 0,$$
(3.1)

$$\left(\operatorname{resp.} \liminf_{n \to \infty} \sup_{y \in C} \left\{ \rho \left( T^n x - T^n y \right) - \alpha_n(x) \rho(x - y) \right\} \le 0 \right), \tag{3.2}$$

where  $\alpha_n \rightarrow \alpha$  pointwise on *M*.

Taking

$$r_n(x) = \sup_{y \in \mathcal{M}} \left\{ \rho \left( T^n x - T^n y \right) - \alpha_n(x) \rho(x - y) \right\} \in \mathbb{R}^+ \cup \{\infty\},$$

it can be easily seen from (3.1) (resp. (3.2)) that

$$\lim_{n \to \infty} r_n(x) = 0, \tag{3.3}$$

$$\left(\operatorname{resp.} \liminf_{n \to \infty} r_n(x) \le 0\right) \tag{3.4}$$

for all  $x \in M$ , and

$$\rho\left(T^{n}x - T^{n}y\right) \le \alpha_{n}(x)\rho(x - y) + r_{n}(x).$$
(3.5)

We will obtain fixed point results for these mappings in modular function spaces.

First, it is worth mentioning that the  $\rho$ -limit of any  $\rho$ -convergent sequence in  $L_{\rho}$  is unique. This fact follows from the following reasoning: Assume that  $\rho(u_n - u) \rightarrow 0$  and  $\rho(u_n - v) \rightarrow 0$ . Then

$$\rho\left(\frac{u-v}{2}\right) \leq \frac{1}{2}\rho(u-u_n) + \frac{1}{2}\rho(v-u_n) \to 0,$$

which implies that u = v.

The following theorem is our main result.

**Theorem 3.5** Let  $\rho \in \Re$  be uniformly continuous and have the property (R). Let  $C \subset L_{\rho}$  be nonempty, convex,  $\rho$ -closed and  $\rho$ -bounded. Let  $T : C \to C$  be a mapping of weak asymptotic pointwise  $\rho$ -contraction type. Then T has a unique fixed point  $v \in C$  and, for each  $x \in C$ , the sequence of Picard iterates  $\{T^n x\}$  is  $\rho$ -convergent to v. *Proof* Fix an  $x \in C$  and define a function  $\tau$  by

$$\tau(u) = \limsup_{n \to \infty} \rho(T^n x - u), \quad u \in C.$$

By Lemma 2.11,  $\tau$  is  $\rho$ -lower semicontinuous in *C*. By Lemma 2.9, then there exists  $x_0 \in C$  such that

$$\tau(x_0) = \inf \{ \tau(x); x \in C \}.$$

Let us prove that  $\tau(x_0) = 0$ . Indeed, for any  $n, m \ge 1$ , we have

$$\tau (T^m x_0) = \limsup_{n \to \infty} \rho (T^n x - T^m x_0)$$
  
= 
$$\limsup_{n \to \infty} \rho (T^{m+n} x - T^m x_0)$$
  
= 
$$\limsup_{n \to \infty} \rho (T^m (T^n x) - T^m x_0)$$
  
$$\leq \limsup_{n \to \infty} \alpha_m (x_0) \rho (T^n x - x_0) + r_m (x_0)$$
  
= 
$$\alpha_m (x_0) \tau (x_0) + r_m (x_0),$$

which implies

$$\tau(x_0) = \inf\{\tau(x); x \in C\} \le \tau(T^m x_0) \le \alpha_m(x_0)\tau(x_0) + r_m(x_0).$$
(3.6)

Since *T* is of weak asymptotic pointwise  $\rho$ -contraction type, by (3.4) we have  $\liminf_{n\to\infty} r_m(x_0) \leq 0$ . Thus, for a subsequence  $\{r_{m_k}(x_0)\}$  of  $\{r_m(x_0)\}$ , we have

$$\lim_{k \to \infty} r_{m_k}(x_0) \le 0. \tag{3.7}$$

Now, by (3.6) and (3.7), we obtain

$$\tau(x_0) \leq \liminf_{k \to \infty} \left[ \alpha_{m_k}(x_0) \tau(x_0) + r_{m_k}(x_0) \right] = \alpha(x_0) \tau(x_0),$$

which forces  $\tau(x_0) = 0$  as  $\alpha(x_0) < 1$ . Hence  $\rho(T^n x - x_0) \to 0$  as  $n \to \infty$ . From this and the continuity of  $T^N$ , for some  $N \ge 1$ , it follows that  $\rho(T^{N+n}x - T^Nx_0) \to 0$  as  $n \to \infty$ . Since the  $\rho$ -limit of any  $\rho$ -convergent sequence is unique, we must have  $T^Nx_0 = x_0$ , namely,  $x_0$  is a fixed point of  $T^N$ . Now, repeating the above proof for  $x_0$  instead of x, we deduce that  $T^nx_0$  is  $\rho$ -convergent to a member  $\nu$  of C; *i.e.*,  $\rho(T^nx_0 - \nu) \to 0$ . But  $T^{kN}x_0 = x_0$  for all  $k \ge 1$ . Hence,  $\nu = x_0$  and then  $T^nx_0 \to x_0(\rho)$ .

We show that  $Tx_0 = x_0$ ; for this purpose, consider an arbitrary  $\epsilon > 0$ . Then there exists a  $k_0 > 0$  such that  $\rho(T^n x_0 - x_0) < \epsilon$  for all  $n > k_0$ . So, by choosing a natural number  $k > k_0/N$ , we obtain

$$\rho(Tx_0 - x_0) = \rho(T(T^{kN}x_0) - x_0) = \rho(T^{kN+1}x_0 - x_0) < \epsilon.$$

Since the choice of  $\epsilon > 0$  is arbitrary and  $\rho \in \mathfrak{R}$ , we get  $Tx_0 = x_0$ .

It is easy to verify that *T* can have only one fixed point. Indeed, if  $u, v \in C$  are fixed points of *T*, then by (3.5), we have

$$\rho(u-v) = \rho(T^n u - T^n v) \le \alpha_n(u)\rho(u-v) + r_n(u), \quad \forall n \ge 1.$$

Taking lim inf in the above inequality, we obtain

$$\rho(u-v) \le \alpha(u)\rho(u-v).$$

Since  $\alpha(u) < 1$  and  $\rho \in \mathfrak{R}$ , we immediately get u = v.

Next, using the  $\rho$ -a.e. strong Opial property of the function modular, we prove a fixed point theorem which does not assume the uniform continuity of  $\rho$ .

**Definition 3.6** [4, 10] We say that  $L_{\rho}$  satisfies the  $\rho$ -a.e. strong Opial property (or shortly SO-property) if for every  $\{f_n\} \in L_{\rho}$  which is  $\rho$ -a.e. convergent to zero such that there exists a  $\beta > 1$  for which

$$\sup\big\{\rho(\beta f_n)\big\}<\infty,$$

the following equality holds for any  $g \in L_{\rho}$ :

$$\liminf_{n\to\infty}(f_n+g)=\liminf_{n\to\infty}\rho(f_n)+\rho(g).$$

**Lemma 3.7** [4] Let  $\rho \in \mathfrak{R}$ . Assume that  $L_{\rho}$  has the  $\rho$ -a.e. strong Opial property. Let  $C \subset E_{\rho}$  be a nonempty,  $\rho$ -a.e. compact subset such that there exists  $\beta > 1$  such that  $\delta_{\rho}(\beta C) = \sup\{\rho(\beta(x-y)); x, y \in C\} < \infty$ . Let  $D \subset C$  be a nonempty  $\rho$ -a.e. closed subset. For any  $n \ge 1$ , let  $\lambda_n : D \to [0, \infty)$  be such that for any  $y \in D$ , there exists a sequence  $\{y_n\} \subset C$  such that, for every  $n \ge 1$ , the following holds:

$$\lambda_n(y) - \frac{1}{n} \leq \rho(y - y_n),$$

and  $\rho(x - y_n) \le \lambda_n(x)$  for every  $x \in D$  and  $n \ge 1$ . Let  $\lambda(x) = \limsup_{n \to \infty} \lambda_n(x)$  for any  $x \in D$ . Then there exists  $x_0 \in D$  at which  $\lambda$  attains infimum, i.e.,

 $\lambda(x_0) = \inf \{ \lambda(x); x \in D \}.$ 

**Theorem 3.8** Let  $\rho \in \mathfrak{R}$ . Assume that  $L_{\rho}$  has the  $\rho$ -a.e. strong Opial property. Let  $C \subset E_{\rho}$  be a nonempty  $\rho$ -a.e. compact convex subset such that  $\delta_{\rho}(\beta C) = \sup\{\rho(\beta(x-y)); x, y \in C\} < \infty$  for some  $\beta > 1$ . Then any  $T : C \to C$  of weak asymptotic pointwise  $\rho$ -contraction type has a unique fixed point  $x_0 \in C$ . Moreover, the orbit  $\{T^n x\}$  is  $\rho$ -convergent to  $x_0$  for any  $x \in C$ .

*Proof* Fix an  $x \in C$  and define a function  $\tau$  by

$$\tau(u) = \limsup_{n \to \infty} \rho(T^n x - u), \quad u \in C.$$

By Lemma 3.7 applied with  $\lambda(u) = \tau(u)$ , D = C,  $\lambda_n(u) = \rho(T^n x - u)$ , and with  $y_n = T^n x$  chosen for all  $u \in C$ , there exists  $x_0 \in C$  such that

$$\tau(x_0) = \inf \{ \tau(x); x \in C \}.$$

### The rest of the proof is like the one used for Theorem 3.5.

### **Competing interests**

The authors declare that they have no competing interests.

### Authors' contributions

All the authors contributed equally. All authors read and approved the final manuscript.

### Author details

<sup>1</sup>Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran. <sup>2</sup>Department of Mathematics, University of Kurdistan, Sanandaj, 416, Iran.

### Acknowledgements

The authors are grateful to the referees for their careful reading of the paper and several helpful comments.

### Received: 9 September 2012 Accepted: 11 March 2013 Published: 17 April 2013

### References

- Kirk, WA: Asymptotic pointwise contraction. In: Plenary Lecture, the 8th International Conference on Fixed Point Theory and Its Applications. Chiang Mai University, Thailand, 16-22 July 2007 (2007)
- 2. Kirk, WA, Xu, H-K: Asymptotic pointwise contractions. Nonlinear Anal. 69, 4706-4712 (2008)
- 3. Saeidi, S: Mapping under asymptotic pointwise contractive type conditions. J. Nonlinear Convex Anal. (in press)
- Khamsi, MA, Kozlowski, WM: On asymptotic pointwise contraction in modular function spaces. Nonlinear Anal. 73, 2957-2967 (2010)
- Khamsi, MA, Kozlowski, WM: On asymptotic pointwise nonexpansive mappings in modular function spaces. J. Math. Anal. Appl. 380, 697-708 (2011)
- Khamsi, MA: Fixed point theory in modular function spaces. In: Recent Advances on Metric Fixed Point Theorem, vol. 48, pp. 31-58. Universidad de Silva, Silva (1996)
- 7. Kozlowski, WM: Notes on modular function spaces I. Comment. Math. 28, 91-104 (1988)
- 8. Kozlowski, WM: Notes on modular function spaces II. Comment. Math. 28, 105-120 (1988)
- 9. Kozlowski, WM: Modular Function Spaces. Ser. Monogr. Textbooks Pure Appl. Math., vol. 122. Dekker, New York (1988)
- 10. Khamsi, MA: A convexity property in modular function spaces. Math. Jpn. 44, 269-279 (1996)

### doi:10.1186/1687-1812-2013-101

**Cite this article as:** Golkarmanesh and Saeidi: **Asymptotic pointwise contractive type in modular function spaces.** *Fixed Point Theory and Applications* 2013 **2013**:101.

# Submit your manuscript to a SpringerOpen<sup>®</sup> journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com