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Abstract
The purpose of this paper is to construct a three-step iteration method (as follows)
and obtain the convergence theorem for a countable family of Lipschitz
pseudocontractive mappings in Hilbert space H. For the iteration format,

⎧⎪⎨
⎪⎩
zn = (1 – γn)xn + γnTnxn,

yn = (1 – βn)xn + βnTnzn,

xn+1 = (1 – αn)xn + αnTnyn,

under suitable conditions, we prove that the sequence {xn} generated from above
converges strongly to a common fixed point of {Tn}n≥1. The results obtained in this
paper improve and extend previous results that have been proved for this class of
nonlinear mappings.
MSC: 47H05; 47H09; 47H10

Keywords: Lipschitz pseudocontractive mapping; uniformly closed; monotone
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1 Introduction
Let C be a nonempty subset of H . A mapping T : C →H is said to be nonexpansive, if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C. (.)

AmappingT : C →H is called α-strictly pseudocontractive in the terminology of Brow-
der and Petryshyn [] if for all x, y ∈ C there exists α >  such that

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖ – α
∥∥x – y – (Tx – Ty)

∥∥. (.)

Without loss of generality, wemay assume that α ∈ (, ). If I denotes the identity operator,
then (.) can be rewritten as

〈
(I – T)x – (I – T)y, j(x – y)

〉 ≥ α
∥∥(I – T)x – (I – T)y

∥∥.
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A mapping T is called pseudocontractive if

〈Tx – Ty,x – y〉 ≤ ‖x – y‖. (.)

Note that inequality (.) can be equivalently written as

‖Tx – Ty‖ ≤ ‖x – y‖ + ∥∥(I – T)x – (I – T)y
∥∥, ∀x, y ∈ C. (.)

Apart from their being an important generalization of nonexpansive mappings and
α-strict pseudocontractive mappings, interest in pseudocontractive mappings stems
mainly from their firm connection with the important class of nonlinear monotone map-
pings, where a mapping A with domain D(A) and range R(A) in H is called monotone if
the inequality

‖x – y‖ ≤ ∥∥x – y + s(Ax –Ay)
∥∥

holds for every x, y ∈ D(A) and for all s > . We observe that A is monotone if and only
if T := I – A is pseudocontractive, and thus a zero of A, N(A) := {x ∈ D(A) : Ax = }, is a
fixed point of T , F(T) := {x ∈ D(T) : Tx = x}. It is now well known (see, e.g., []) that if
A is monotone then the solutions of the equation Ax =  correspond to the equilibrium
points of some evolution systems. Consequently, considerable research efforts, especially
within the past  years or so, have been devoted to iterative methods for approximating
fixed points of T when T is pseudocontractive (see, for example, [–] and the references
contained therein).
The most general iterative algorithm for nonexpansive mappings studied by many au-

thors is the following:

x ∈ C, xn+ = ( – αn)xn + αnTxn, n≥ , (.)

where {αn}n≥ ⊂ (, ) and satisfies the following additional assumptions: (i) limn→∞ αn =
; (ii)

∑∞
n= αn = ∞, the sequence {xn}n≥ generated by (.) is generally referred to as the

Mann iteration scheme in the light of Mann [].
TheMann iteration process does not generally converge to a fixed point of T even when

the fixed point exists. If, for example, C is a nonempty, closed, convex and bounded sub-
set of a real Hilbert space, T : C → C is nonexpansive, and the Mann iteration process
is defined by (.) with (i) limn→∞ αn = ; (ii)

∑∞
n= αn = ∞, one can only prove that the

sequence is an approximate fixed point sequence, that is, ‖xn – Txn‖ →  as n → ∞. To
get the sequence {xn}n≥ to converge to a fixed point of T (when such a fixed point exists),
some type of compactness condition must be additionally imposed either on C (e.g., C is
compact) or on T .
Later, some authors tried to prove convergence ofMann iteration scheme to a fixed point

of a much more general and important class of Lipschitz pseudocontractive mappings.
But, in , Chidume and Mutangadura [] gave an example of a Lipschitz pseudocon-
tractive self-map of a compact convex subset of a Hilbert space with a unique fixed point
for which no Mann sequence converges. Consequently, for this class of maps, the Mann
sequencemay not converge to a fixed point of Lipschitz pseudocontractivemappings even
when C is a compact convex subset of H .

http://www.fixedpointtheoryandapplications.com/content/2013/1/100
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In , Ishikawa [] introduced an iteration process, which in some sense is more gen-
eral than that of Mann and which converges to a fixed point of a Lipschitz pseudocontrac-
tive self-map T of C. The following theorem is proved.

Theorem IS [] If C is a compact convex subset of a Hilbert space H , T : C → C is a Lips-
chitz pseudocontractive mapping and x is any point of C, then the sequence {xn} converges
strongly to a fixed point of T , where {xn} is defined iteratively for each integer n≥  by

⎧⎨
⎩
yn = ( – βn)xn + βnTxn,

xn+ = ( – αn)xn + αnTyn,
(.)

where {αn}, {βn} are sequences of positive numbers satisfying the conditions:

(i)  ≤ αn ≤ βn ≤ ; (ii) lim
n→∞βn = ; (iii)

∞∑
n=

αnβn = ∞.

The iteration method of Theorem IS, which is now referred to as the Ishikawa iterative
method has been studied extensively by various authors. But it is still an open question
whether or not this method can be employed to approximate fixed points of Lipschitz
pseudocontractive mappings without the compactness assumption on C or T (see, e.g.,
[, , ]).
In order to obtain a strong convergence theorem for pseudocontractive mappings with-

out the compactness assumption, Zhou [] established the hybrid Ishikawa algorithm for
Lipschitz pseudocontractive mappings as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = ( – αn)xn + αnTxn,

zn = ( – βn)xn + βnTyn,

Cn = {z ∈ C : ‖zn – z‖ ≤ ‖xn – z‖ – αnβn( – αn – Lα
n)‖xn – Txn‖},

Qn = {z ∈ C : 〈xn – z,x – xn〉 ≥ },
xn+ = PCn∩Qnx, n ∈N .

(.)

He proved that the sequence {xn} defined by (.) converges strongly to PF(T)x, where
PC is the metric projection from H into C. We observe that the iterative algorithm (.)
generates a sequence {xn} by projecting x onto the intersection of closed convex sets Cn

and Qn for each n≥ .
In , Yao et al. [] introduced the hybrid Mann algorithm as follows. Let C be

a nonempty, closed and convex subset of a real Hilbert space H . Let T : C → C be a
L-Lipschitz pseudocontractive mapping such that F(T) = ∅. Assume that the sequence
{αn} ⊂ [a,b] for some a,b ∈ (, 

+L ). Then for C = C and x = PCx, they proved that the
sequence {xn} defined by

⎧⎪⎪⎨
⎪⎪⎩
yn = ( – αn)xn + αnTxn,

Cn+ = {z ∈ Cn : ‖αn(I – T)yn‖ ≤ αn〈xn – z, (I – T)yn〉},
xn+ = PCn+x, n ∈N ,

(.)

converges strongly to PF(T)x.

http://www.fixedpointtheoryandapplications.com/content/2013/1/100
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More recently, Tang et al. [] generalized algorithm (.) to the hybrid Ishikawa iterative
process. Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let
T : C → C be a Lipschitz pseudocontractivemapping. Let {αn}, {βn} be a sequence in [, ].
Suppose that x ∈ H . For C = C and x = PCx, define a sequence {xn} of C as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = ( – αn)xn + αnTzn,

zn = ( – βn)xn + βnTxn,

Cn+ = {z ∈ Cn : ‖αn(I – T)yn‖ ≤ αn〈xn – z, (I – T)yn〉
+ αnβnL‖xn – Txn‖ · ‖yn – xn + αn(I – T)yn‖},

xn+ = PCn+x, n ∈N .

(.)

Then they proved that the hybrid algorithm (.) strongly converges to a fixed point of
Lipschitz pseudocontractive mappings. It is worth mentioning that the schemes in (.)-
(.) are not easy to compute. They involve computation of the intersection of Cn and Qn

for each n≥ .
Recently, Habtu Zegeye et al. [] generalized algorithm (.) to Ishikawa iterative pro-

cess (not hybrid) as follows. LetC be a nonempty, closed and convex subset of a realHilbert
space H . Let Ti : C → C, i = , , . . . ,N , be a finite family of Lipschitz pseudocontractive
mappings with Lipschitzian constants Li, for i = , , . . . ,N , respectively. Assume that the
interior of F :=

⋂N
i= F(Ti) is nonempty. Let {xn} be a sequence generated from an arbitrary

x ∈ C by

⎧⎨
⎩
yn = ( – βn)xn + βnTnxn,

xn+ = ( – αn)xn + αnTnyn.
(.)

Under some conditions, {xn} converges strongly to x∗ ∈ F .
Our concern now is the following: Is it possible to construct a three-step iterationmethod

and obtain a convergence theorem for a countable family of pseudocontractive mappings?
It is our purpose in this paper to construct a three-step iteration method and obtain

the convergence theorem for a countable family of pseudocontractive mappings provided
that the interior of the common fixed points is nonempty. No compactness assumption is
imposed either on one of themappings or onC. The results obtained in this paper improve
and extend the results of Theorem IS, Zhou [], Yao et al. [], Tang et al. [] and Habtu
Zegeye et al. [].

2 Preliminaries
Let C be a nonempty subset of a real Hilbert space H . The mapping T : C → H is called
Lipschitz or Lipschitz continuous if there exists L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ C. (.)

If L = , thenT is called nonexpansive; and if L <  thenT is called a contraction. It is easy to
see fromEq. (.) that every contractionmapping is nonexpansive and every nonexpansive
mapping is Lipschitz.

http://www.fixedpointtheoryandapplications.com/content/2013/1/100
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A countable family of mapping {Tn}∞n= : C → H is called uniformly Lipschitz with Lip-
schitz constant Ln > , n≥ , if there exists  < L = supn≥ Ln such that

‖Tnx – Tny‖ ≤ L‖x – y‖, ∀x, y ∈ C,n≥ . (.)

A countable family of mapping {Tn}∞n= : C → H is called uniformly closed if xn → x∗

and ‖xn – Tnxn‖ →  imply x∗ ∈ ⋂∞
n= F(Tn).

In the sequel, we also need the following definition and lemma.
Let H be a real Hilbert space. The function φ :H ×H → R defined by

φ(x, y) := ‖x – y‖ = ‖x‖ – 〈x, y〉 + ‖y‖, for x, y ∈H ,

is studied by Alber [], Kamimula and Takahashi [] and Riech [].
It is obvious from the definition of the function φ that

(‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖x‖ + ‖y‖), for x, y ∈H .

The function φ also has the following property:

φ(y,x) = φ(y, z) + φ(z,x) + 〈z – y,x – z〉, for x, y, z ∈H . (.)

Lemma . Let H be a real Hilbert space. Then for all x, y ∈H and α ∈ [, ] the following
inequality holds:

∥∥αx + ( – α)y
∥∥ = α‖x‖ + ( – α)‖y‖ – α( – α)‖x – y‖.

Remark . We now give an example of a countable family of uniformly closed and
uniformly Lipschitz pseudocontractive mappings with the interior of the common fixed
points nonempty. Suppose thatX := R andC := [–, ] ⊂ R. Let {Tn}n≥ : C → C be defined
by

Tnx :=

⎧⎨
⎩
x, x ∈ [–, ),

( 
n +


 )x, x ∈ [, ].

(.)

Then we observe that F :=
⋂∞

n= F(Tn) = [–, ], and hence the interior of the common
fixed points is nonempty.

Now, we show that {Tn}n≥ is a countable family of pseudocontractive mappings. Sup-
pose that C = [–, ) and C = [, ]. If x, y ∈ C, we have that

〈Tnx – Tny,x – y〉 = 〈x – y,x – y〉 = |x – y|. (.)

If x, y ∈ C, we have that

〈Tnx – Tny,x – y〉 =
〈(


n

+



)
x –

(

n

+



)
y,x – y

〉

=
(


n

+



)
|x – y|

≤ |x – y|. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/100
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If x ∈ C, y ∈ C, considering ( 
n –


 )y(x – y) > , we have that

〈Tnx – Tny,x – y〉 =
〈
x –

(

n

+



)
y,x – y

〉

= |x – y| –
(


n

–



)
y(x – y)

≤ |x – y|. (.)

Therefore, from (.), (.) and (.) we obtain that {Tn}n≥ is a countable family of pseu-
docontractive mappings.
Next, we show that {Tn}n≥ is uniformly Lipschitzwith Lipschitz constant L = supn≥ Ln =

. If x, y ∈ C, we have that

|Tnx – Tny| = |x – y| ≤ |x – y|. (.)

If x, y ∈ C, we have that

|Tnx – Tny| =
(


n

+



)
|x – y| ≤ |x – y|. (.)

If x ∈ C, y ∈ C, we have that

|Tnx – Tny| =
∣∣∣∣x –

(

n

+



)
y
∣∣∣∣

=
∣∣∣∣x – y –


n

y +


y
∣∣∣∣

≤ |x – y| +
(


n

+



)
y

≤ |x – y| +
(


n

+



)
|x – y|

≤ |x – y|. (.)

Therefore, from (.), (.) and (.) we obtain that {Tn}n≥ is uniformly Lipschitz.
Finally, we show that {Tn}n≥ is uniformly closed.
If there exists {xn} ⊂ C such that xn → x∗ ∈ [–, ], and |xn –Tnxn| = , we observe that

[–, ] ⊂ F ;
If there exists {xn} ⊂ C such that xn → x∗ ∈ [, ], if and only if x∗ = , we have that

|xn – Tnxn| = , it is obvious that  ∈ F ;
If there exists {xn} ⊂ C:
(i) ∃N , as n >N , xn ∈ C. The proof is the same as the proof of the second situation;
(ii) ∃N , as n >N , xn ∈ C. The proof is the same as the proof of the first situation;
(iii) {xnk } ⊂ C, {xnj} ⊂ C. If there exists xn → x∗, then we have that x∗ = . The proof is

the same as the proof of the second situation. So, we can obtain that {Tn}n≥ is
uniformly closed.

http://www.fixedpointtheoryandapplications.com/content/2013/1/100
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3 Main results
Theorem . Let C be a nonempty, closed and convex subset of a real Hilbert space H , let
{Tn}∞n= : C → C be a countable family of uniformly closed and uniformly Lipschitz pseu-
docontractive mappings with Lipschitzian constants Ln, let L := supn≥ Ln. Assume that the
interior of F :=

⋂∞
n= F(Tn) is nonempty. Let {xn} be a sequence generated from an arbitrary

x ∈ C by the following algorithm:
⎧⎪⎪⎨
⎪⎪⎩
zn = ( – γn)xn + γnTnxn,

yn = ( – βn)xn + βnTnzn,

xn+ = ( – αn)xn + αnTnyn,

(.)

where {αn}, {βn}, {γn} ⊂ (, ) satisfying the following conditions: (i) αn ≤ βn ≤ γn, ∀n ≥ ;
(ii) lim infn→∞ αn = α > ; (iii) supn≥ γn ≤ γ with γ L +γ L +γ L +γL +γ < .Then
{xn} converges strongly to x∗ ∈ F .

Proof Suppose that p ∈ F . Then from (.) and Lemma ., we have that

‖xn+ – p‖ = ( – αn)‖xn – p‖ + αn‖Tnyn – p‖ – αn( – αn)‖xn – Tnyn‖

≤ ( – αn)‖xn – p‖ + αn
(‖yn – p‖ + ‖yn – Tnyn‖

)
– αn( – αn)‖xn – Tnyn‖

= ( – αn)‖xn – p‖ + αn‖yn – p‖ + αn‖yn – Tnyn‖

– αn( – αn)‖xn – Tnyn‖, (.)

‖yn – p‖ = ( – βn)‖xn – p‖ + βn‖Tnzn – p‖ – βn( – βn)‖xn – Tnzn‖

≤ ( – βn)‖xn – p‖ + βn‖zn – p‖ + βn‖zn – Tnzn‖

– βn( – βn)‖xn – Tnzn‖, (.)

‖zn – p‖ = ( – γn)‖xn – p‖ + γn‖Tnxn – p‖ – γn( – γn)‖xn – Tnxn‖

≤ ( – γn)‖xn – p‖ + γn‖xn – p‖ + γn‖xn – Tnxn‖

– γn( – γn)‖xn – Tnxn‖

= ‖xn – p‖ + γ 
n ‖xn – Tnxn‖. (.)

In addition, using (.), we have that

‖zn – Tnzn‖ =
∥∥( – γn)(xn – Tnzn) + γn(Tnxn – Tnzn)

∥∥

= ( – γn)‖xn – Tnzn‖ + γn‖Tnxn – Tnzn‖

– γn( – γn)‖xn – Tnxn‖

≤ ( – γn)‖xn – Tnzn‖ + γnL‖xn – zn‖

– γn( – γn)‖xn – Tnxn‖

= ( – γn)‖xn – Tnzn‖ + γ 
n L

‖xn – Tnxn‖

– γn( – γn)‖xn – Tnxn‖

= ( – γn)‖xn – Tnzn‖ + γn
(
γ 
n L

 + γn – 
)‖xn – Tnxn‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/100
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Substituting (.) and (.) into (.), we obtain that

‖yn – p‖ ≤ ( – βn)‖xn – p‖ + βn
(‖xn – p‖ + γ 

n ‖xn – Tnxn‖
)

+ βn
[
( – γn)‖xn – Tnzn‖ + γn

(
γ 
n L

 + γn – 
)‖xn – Tnxn‖

]
– βn( – βn)‖xn – Tnzn‖

= ‖xn – p‖ + βnγn
(
γ 
n L

 + γn – 
)‖xn – Tnxn‖

+ βn(βn – γn)‖xn – Tnzn‖. (.)

Since

‖yn – Tnyn‖ = ‖( – βn)(xn – Tnyn) + βnTnzn – Tnyn‖

= ( – βn)‖xn – Tnyn‖ + βn‖Tnzn – Tnyn‖

– βn( – βn)‖xn – Tnzn‖

≤ ( – βn)‖xn – Tnyn‖ + βnL‖zn – yn‖

– βn( – βn)‖xn – Tnzn‖. (.)

‖zn – yn‖ =
∥∥( – γn)xn + γnTnxn – ( – βn)xn – βnTnzn

∥∥
= ‖βnxn – γnxn + γnTnxn – βnTnzn‖
=

∥∥(βn – γn)xn – (βn – γn)Tnxn + βn(Tnxn – Tnzn)
∥∥

≤ (γn – βn)‖xn – Tnxn‖ + βnL‖xn – zn‖
= (γn – βn)‖xn – Tnxn‖ + βnγnL‖xn – Tnxn‖
= (γn – βn + βnγnL)‖xn – Tnxn‖. (.)

Then, substituting (.) into (.), we obtain that

‖yn – Tnyn‖ ≤ ( – βn)‖xn – Tnyn‖ + βnL(γn – βn + βnγnL)‖xn – Tnxn‖

– βn( – βn)‖xn – Tnzn‖. (.)

Substituting (.) and (.) into (.), we obtain that

‖xn+ – p‖ ≤ ( – αn)‖xn – p‖ + αn
[‖xn – p‖

+ βnγn
(
γ 
n L

 + γn – 
)‖xn – Tnxn‖

+ βn(βn – γn)‖xn – Tnzn‖
]

+ αn
[
( – βn)‖xn – Tnyn‖ + βnL(γn – βn

+ βnγnL)  ‖xn – Tnxn‖ – βn( – βn)‖xn – Tnzn‖
]

– αn( – αn)‖xn – Tnyn‖

= ‖xn – p‖ + [
αnβnγn

(
γ 
n L

 + γn – 
)

+ αnβnL(γn – βn + βnγnL)
]‖xn – Tnxn‖

http://www.fixedpointtheoryandapplications.com/content/2013/1/100
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+ αn(αn – βn)‖xn – Tnyn‖

+ αnβn(βn – γn – )‖xn – Tnzn‖. (.)

Since from condition (iii), we have that

γ
(
γ L + γL + γ – 

)
+ γ L( + γL) < 

⇓
γn

(
γ 
n L + γnL + γn – 

)
+ L(γn + γ 

n L) < 

⇓
αnβnγn

(
γ 
n L + γn – 

)
+ αnβnL(γn – βn + βnγnL) < .

Again from condition (i), we have that αn – βn ≤  and βn – γn –  ≤ . So, inequality
(.) implies that

‖xn+ – p‖ ≤ ‖xn – p‖ – [
αnβnγn

(
 – γ 

n L
 – γn

)
– αnβnL(γn – βn + βnγnL)

]‖xn – Tnxn‖. (.)

Then

‖xn+ – p‖ ≤ ‖xn – p‖. (.)

It is obviously that limn→∞ ‖xn – p‖ exists, then {‖xn – p‖} is bounded. This implies that
{xn}, {Tnxn}, {zn}, {Tnzn}, {yn} and {Tnyn} are also bounded.
Furthermore, from (.), we have that

φ(p,xn) = φ(p,xn+) + φ(xn+,xn) + 〈xn+ – p,xn – xn+〉.

This implies that

〈xn+ – p,xn – xn+〉 + 

φ(xn+,xn) =



(
φ(p,xn) – φ(p,xn+)

)
. (.)

Moreover, since the interior of F is nonempty, there exists p∗ ∈ F and r >  such that
p∗ + rh ∈ F whenever ‖h‖ ≤ . Thus, from the fact that φ(x, y) = ‖x – y‖, and (.) and
(.), we get that

 ≤ 〈
xn+ –

(
p∗ + rh

)
,xn – xn+

〉
+


φ(xn+,xn)

=


(
φ
(
p∗ + rh,xn

)
– φ

(
p∗ + rh,xn+

))
. (.)

Then from (.) and (.), we obtain that

r〈h,xn – xn+〉 ≤ 〈
xn+ – p∗,xn – xn+

〉
+


φ(xn+,xn)

=


(
φ
(
p∗,xn

)
– φ

(
p∗,xn+

))
,

http://www.fixedpointtheoryandapplications.com/content/2013/1/100
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and hence

〈h,xn – xn+〉 ≤ 
r

(
φ
(
p∗,xn

)
– φ

(
p∗,xn+

))
.

Since h with ‖h‖ ≤  is arbitrary, we have

‖xn – xn+‖ ≤ 
r

(
φ
(
p∗,xn

)
– φ

(
p∗,xn+

))
.

So, if n >m, then we get that

‖xm – xn‖ = ‖xm – xm+ + xm+ – · · · – xn– + xn– – xn‖

≤
n–∑
i=m

‖xi – xi+‖

≤ 
r

n–∑
i=m

(
φ
(
p∗,xi

)
– φ

(
p∗,xi+

))

=

r

(
φ
(
p∗,xm

)
– φ

(
p∗,xn

))
.

But we know that {φ(p∗,xn)} converges. Therefore, we obtain that {xn} is a Cauchy se-
quence. Since C is closed subset of H , there exists x∗ ∈ C such that

xn → x∗. (.)

Furthermore, from (.) and conditions (i), (ii) and (iii), we get that

α[( – γ L – γ
)
– γL( + γL)

]∑
‖xn – Tnxn‖

≤
∑

αnβnγn
[(
 – γ 

n L
 – γn

)
– γnL( + γnL)

]‖xn – Tnxn‖

=
∑[

αnβnγn
(
 – γ 

n L
 – γn

)
– αnβnγ


n L

( + γnL)
]‖xn – Tnxn‖

≤
∑[

αnβnγn
(
 – γ 

n L
 – γn

)
– αnβnL(γn – βn + βnγnL)

]‖xn – Tnxn‖

≤ ‖xn+ – p‖ – ‖xn – p‖ < ∞,

from which it follows that

lim
n→ ‖xn – Tnxn‖ = . (.)

Since {Tn}∞n= are uniformly closed, then from (.) and (.), we obtain that x∗ ∈⋂∞
n= F(Tn) = F . The proof is complete. �

Theorem . Let C be a nonempty, closed and convex subset of a real Hilbert space H , let
Tn : C → C be a finite family of uniformly closed and uniformly Lipschitz pseudocontractive

http://www.fixedpointtheoryandapplications.com/content/2013/1/100


Cheng et al. Fixed Point Theory and Applications 2013, 2013:100 Page 11 of 14
http://www.fixedpointtheoryandapplications.com/content/2013/1/100

mappings with Lipschitzian constants Ln, n = , , . . . ,N . Assume that the interior of F :=⋂N
n= F(Tn) is nonempty. Let {xn} be a sequence generated from an arbitrary x ∈ C by the

following algorithm:

⎧⎪⎪⎨
⎪⎪⎩
zn = ( – γn)xn + γnTnxn,

yn = ( – βn)xn + βnTnzn,

xn+ = ( – αn)xn + αnTnyn,

(.)

where Tn := Tn(modN) and {αn}, {βn}, {γn} ⊂ (, ) satisfying the following conditions: (i) αn ≤
βn ≤ γn, ∀n ≥ ; (ii) lim infn∞ αn = α > ; (iii) supn≥ γn ≤ γ with γ L + γ L + γ L +
γL + γ <  for L :=max{Ln : n = , , . . . ,N}. Then {xn} converges strongly to x∗ ∈ F .

If in Theorem ., we consider a single Lipschitz pseudocontractive mapping, then we
may change the conditions of Theorem ..

Theorem . Let C be a nonempty, closed and convex subset of a real Hilbert space H ,
let T : C → C be a Lipschitz pseudocontractive mappings with Lipschitzian constants L.
Assume that the interior of F(T) is nonempty. Let {xn} be a sequence generated from an
arbitrary x ∈ C by the following algorithm:

⎧⎪⎪⎨
⎪⎪⎩
zn = ( – γn)xn + γnTxn,

yn = ( – βn)xn + βnTzn,

xn+ = ( – αn)xn + αnTyn,

(.)

where {αn}, {βn}, {γn} ⊂ (, ) satisfying the following conditions: (i) αn ≤ βn ≤ γn, ∀n ≥ ;
(ii)

∑
αnβnγn = ∞; (iii) supn≥ γn ≤ γ with γ L + γ L + γ L + γL + γ < . Then {xn}

converges strongly to x∗ ∈ F(T).

Proof Following the method of proof of Theorem ., we obtain that xn → x∗ ∈ C.
Furthermore, from (.) and conditions (i) and (ii), we obtain (.). From (.) and

conditions (iii) and (iv), we obtain that

[(
 – γ L – γ

)
– γL( + γL)

]∑
αnβnγn‖xn – Tnxn‖

≤
∑

αnβnγn
[(
 – γ 

n L
 – γn

)
– γnL( + γnL)

]‖xn – Tnxn‖

=
∑[

αnβnγn
(
 – γ 

n L
 – γn

)
– αnβnγ


n L

( + γnL)
]‖xn – Tnxn‖

≤
∑[

αnβnγn
(
 – γ 

n L
 – γn

)
– αnβnL(γn – βn + βnγnL)

]‖xn – Tnxn‖

≤ ‖xn+ – p‖ – ‖xn – p‖ < ∞,

from which it follows that

lim inf
n→∞ ‖xn – Txn‖ = ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/100
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and hence there exists a subsequence {xnk } of {xn} such that

lim
n→∞‖Txnk – xnk‖ = .

Thus, xnk → x∗ and the continuity of T imply that x∗ = Tx∗, and hence x∗ ∈ F(T). �

4 Applications
Theorem . Let H be a real Hilbert space, let {An}∞n= : H → H be a countable fam-
ily of uniformly Lipschitz monotone mappings with Lipschitzian constants Ln, let L :=
supn≥ Ln. And if ‖Anxn‖ → , xn → x, then x ∈ ⋂∞

n=N(An). Assume that the interior of
F :=

⋂∞
n=N(An) is nonempty. Let {xn} be a sequence generated from an arbitrary x ∈ C by

the following algorithm:

⎧⎪⎪⎨
⎪⎪⎩
zn = xn – γnAnxn,

yn = xn – βn(xn – zn) – βnAnzn,

xn+ = xn – αn(xn – yn) – αnAnyn,

(.)

where {αn}, {βn}, {γn} ⊂ (, ) satisfying the following conditions: (i) αn ≤ βn ≤ γn, ∀n ≥ ;
(ii) lim infn∞ αn = α > ; (iii) supn≥ γn ≤ γ with γ L + γ L + γ L + γL + γ < . Then
{xn} converges strongly to x∗ ∈ F .

Proof Suppose that Tnx := (I – An)x for n ≥ . Then we get that {Tn}n≥ is a countable
family of uniformly closed and uniformly Lipschitz pseudocontractive mappings with⋂∞

n= F(Tn) =
⋂∞

n=N(An) = ∅. Moreover, when An is replaced by I – Tn, Scheme (.) re-
duces to Scheme (.) and hence the conclusion follows from Theorem .. �

Corollary . Let H be a real Hilbert space, let An : H → H be a finite family of uni-
formly Lipschitz monotone mappings with Lipschitzian constants Ln, n = , , . . . ,N . And
if ‖Anxn‖ → , xn → x, then x ∈ ⋂N

n=N(An). Assume that the interior of F :=
⋂N

n=N(An)
is nonempty. Let {xn} be a sequence generated from an arbitrary x ∈ C by the following
algorithm:

⎧⎪⎪⎨
⎪⎪⎩
zn = xn – γnAnxn,

yn = xn – βn(xn – zn) – βnAnzn,

xn+ = xn – αn(xn – yn) – αnAnyn,

(.)

where An := An(modN) and {αn}, {βn}, {γn} ⊂ (, ) satisfying the following conditions: (i) αn ≤
βn ≤ γn, ∀n ≥ ; (ii) lim infn∞ αn = α > ; (iii) supn≥ γn ≤ γ with γ L + γ L + γ L +
γL + γ <  for L :=max{Ln : n = , , . . . ,N}. Then {xn} converges strongly to x∗ ∈ F .

Corollary . Let H be a real Hilbert space, let A :H →H be a Lipschitz monotone map-
pings with Lipschitzian constants L. Assume that the interior of N(A) is nonempty. Let {xn}
be a sequence generated from an arbitrary x ∈ C by the following algorithm:

⎧⎪⎪⎨
⎪⎪⎩
zn = xn – γnAxn,

yn = xn – βn(xn – zn) – βnAzn,

xn+ = xn – αn(xn – yn) – αnAyn,

(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/100
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where {αn}, {βn}, {γn} ⊂ (, ) satisfying the following conditions: (i) αn ≤ βn ≤ γn, ∀n ≥ ;
(ii)

∑
αnβnγn = ∞; (iii) supn≥ γn ≤ γ with γ L + γ L + γ L + γL + γ < . Then {xn}

converges strongly to x∗ ∈N(A).

Remark . In the paper [], Scheme (.) of Theorem . and Scheme (.) of Corol-
lary . are not correct, they are replaced by the following iterative algorithms, respec-
tively.

⎧⎨
⎩
yn = xn – βnAnxn,

xn+ = xn – αn(xn – yn) – αnAnyn,

and
⎧⎨
⎩
yn = xn – βnAxn,

xn+ = xn – αn(xn – yn) – αnAyn.
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