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Abstract
A new metric in the space clos(X) of all closed subsets of a metric space X is
proposed. This metric, unlike the generalized Hausdorff metric, takes finite values
only, and the convergence of a sequence of closed sets Hi , i = 1, 2, . . . , with respect to
this metric is equivalent to the convergence (in the sense of Hausdorff ) for any r ≥ 0
of the unions of Hi with a closed ‘exterior ball’ of radius r. Using this metric allows one
to investigate multi-valued maps that have images in clos(X) and are not continuous
in the Hausdorff metric. In the work, the necessary and sufficient conditions for a
multi-valued map to be continuous and Lipschitz with respect to the metric
presented are studied, a connection of these properties with their analogues in the
Hausdorff metric is derived, and a generalization of the Nadler fixed point theorem is
obtained.
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1 Introduction
Let N .= {, , , . . .}; Z .= {. . . , –,–, , , , . . .}; R+

.= [,∞). Given a metric space (X,�X),
we use the following notation: �(x,M) .= infy∈M �X(x, y) is the distance in X from a point
x to a set M; d(N ,M) .= supx∈N �(x,M) is the deviation in the sense of Hausdorff of a
set N from the set M; Sr(x)

.= {x ∈ X : �X(x,x) = r}, Or(x)
.= {x ∈ X : �X(x,x) ≤ r},

Oo
r (x)

.= {x ∈ X : �X(x,x) < r} are, respectively, a sphere, a closed and an open ball of
radius r >  centered at x in the space X; S(x) = O(x) = {x}; Oo

(x) = ∅; Oo
r (x)

.=
{x ∈ X : �X(x,x) ≥ r} is a closed ‘exterior ball’, i.e., the compliment to an open ball;
Oo

r (M) .=
⋃

x∈M{x ∈ X : �X(x,x) < r} is an r-neighborhood of M ⊂ X. By clbd(X) denote
the space of all nonempty closed bounded subsets of X. This space we endow with the
Hausdorff metric dist:

dist(A,B) =max
{
d(A,B);d(B,A)

}
, A,B ∈ clbd(X). ()

In this article, multi-valued maps having images in the space clos(X) of all nonempty
closed subsets of a given metric space X are investigated. The necessity of studying such
maps arises, for example, in the problems concerning asymptotic behavior of controlled
systems trajectories [, ]. Treating the space clos(X) in pair with the Hausdorff metric
dist (called, in this case, the generalized Hausdorff metric, meaning it may equal infinity)
does not lead to substantial results if, for instance, the corresponding maps have images
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that are infinitely distant from each other (such maps, obviously, are not continuous, and
the classical methods of analysis are not applicable here). As shown in [–], a way to
overcome this difficulty and make it possible to use the known methods and standard
techniques is to construct in the space clos(X) ametric satisfying the following conditions:
() the distance between any closed sets is finite;
() if a sequence of closed sets is convergent with respect to the Hausdorff metric, then

it is convergent with respect to the ‘new’ metric;
() the convergence of a sequence {Hi}∞i= ⊂ clos(X)means the convergence for any

r >  (with respect to the Hausdorff metric) of the sequence of bounded subsets
Hi

r ⊂Hi, Hi
r ⊂Or , such that

⋃
i Hi

r =Hi and Hi
r ⊂Hi

r as soon as r < r.
For the space of convex closed subsets of Rn, in [], a metric (called the Hausdorff-

Bebutov metric) satisfying ()-() was suggested. It allowed to investigate differential in-
clusions with convex unbounded right-hand sides. For studying multi-valued maps with
non-convex unbounded images in R

n, the Hausdorff-Bebutov metric turns out to be in-
efficient since, considered in the space clos(Rn), it does not meet requirements () and
(). Moreover, in the structure of the Hausdorff-Bebutov metric, the local compactness of
R

n is fundamental, so the definition of this metric itself cannot be used for an arbitrary
metric space X. In what follows, a different construction for a metric in the space clos(X)
is offered. It fulfills all the listed requirements and can be used in the case of arbitrary X.
Fix a point θ ∈ X and denote Oo

r
.= Oo

r (θ ), Or
.= Or(θ ), Sr

.= Sr(θ ), Oo
r
.= Oo

r (θ ). For every
r ≥ , define the operatorSr : clos(X) → clos(X) by the equality

SrH
.=H ∪Oo

r . ()

Next, for any sets F ,G ∈ clos(X), suppose

ρo(F ,G) .=
∣∣�(θ ,F) – �(θ ,G)

∣∣, ()

ρS(F ,G) .= sup
r>

min

{
dist(SrF ,SrG),


r

}
, ()

and

ρcl(F ,G)
.= ρo(F ,G) + ρS(F ,G). ()

The function ρcl takes finite values only and, as it will be shown later, satisfies all the axioms
of a metric. This metric first was introduced by the authors in [] for the space clos(Rn) of
all nonempty closed subsets of a finite dimensional space. In [], the metric ρcl was used
for studying the dynamical system of translations in the space of multi-valued maps with
images in clos(Rn).
In the work, we point out the benefits the metric ρcl gives when it comes to dealing

with continuous and Lipschitz multi-valued maps. We emphasize that a crucial role here
is played by the construction () used in the metric ρcl, i.e., associating to every set H ∈
clos(X) the setSrH ∈ clos(X), r ≥  (representing the union ofH with the closed ‘exterior
ball’ of radius r centered at θ ).a For a map F : X → clos(X), such an ‘extension’ of the
values F(x) allows, in particular, to obtain a fixed point theorem (which will be proved
in the last section of the paper) for multi-valued maps that in the Hausdorff metric may
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not be contracting or even continuous and to which the known fixed point principles (for
example, Nadler’s theorem) are not applicable. One can also use this idea for a map F :
X → clbd(X) that is not contracting or continuous. Inmany cases, after the corresponding
extension, the mapSrF : X → clos(X) gets these properties.

2 The space (clos(X),ρcl)
We start with studying the space (clos(X),ρcl).
Fix a point θ ∈ X and set R* .= supx∈X �X(θ ,x).We are interested, above all, in unbounded

metric spaces, i.e., in the situation when R* = ∞, but all the results obtained from now on
hold also in the case of R* < ∞. Set

P .=

⎧⎨
⎩
[,R*], if R* < ∞ and ∃x ∈ X : �X(θ ,x) = R*,

[,R*), otherwise,

and define the function D : P ×R+ →R+ in the following way:

D(p, r) .=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

, if r ≤ p,

dist(Oo
p,Oo

r ), if r > p, r ∈ P,

supx,u∈Oo
p
�X(x,u), if r > p, r /∈ P

(the latter occurs only if R* < ∞).
We will need the following properties of this function: for every p ∈ P, the function

D(p, ·) : R+ → R+ is non-decreasing; for every r ∈ R+, the function D(·, r) : P → R+ is non-
increasing.
Show that D(p, ·) is non-decreasing. Let p < r < r. If r, r ∈ P, then from Oo

r ⊂ Oo
r ⊂

Oo
p it follows that D(p, r) = dist(Oo

p,Oo
r ) ≤ dist(Oo

p,Oo
r ) = D(p, r). In the case when r ∈ P,

r /∈ P (this situation appears only for R* <∞), one gets

D(p, r) = dist
(
Oo

p,Oo
r

) ≤ sup
x∈Oo

p , u∈Oo
r

�X(x,u)≤ sup
x,u∈Oo

p

�X(x,u) =D(p, r).

Finally, if r, r /∈ P, R* <∞, then D(p, r) =D(p, r).
Let us illustrate the definition of the function D on some concrete metric spaces.

Example  For any linear normed spaceX with any choice of θ ∈ X, the functionD :R
+ →

R+ is given by D(p, r) = r – p, r > p.
If X = Z, �Z(n,m) = |n –m| ∀n,m ∈ Z, then no matter what point is chosen as θ ∈ Z, for

any r,p ∈R+, r > p, the value of D(p, r) is equal to the number of integers belonging to the
interval [p, r).
One gets the same values for D : R

+ → R+ if X = N, �N(n,m) = |n –m| ∀n,m ∈ N, and
θ = . If θ �= , the value D(p, r) coincides with the number of integers in the set [p, r) when
θ – ≥ r > p or r > p > θ –, and is equal to the number of integers in the set [, θ + r) when
r > θ –  ≥ p.
Next, consider X = [–, ], θ = , �X(x,u) = |x – u|. Then R* = , P = [, ], and for r > p,

the function D : P ×R+ → R+ is defined as follows:

http://www.fixedpointtheoryandapplications.com/content/2013/1/10
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() if  ≤ p≤ , then

D(p, r) =

⎧⎪⎪⎨
⎪⎪⎩
r – p, r ≤ ,

r + ,  < r ≤ ,

, r > ;

() if  ≤ p≤ , then

D(p, r) =

⎧⎨
⎩
r – p, r ≤ ,

 – p, r > .

For arbitrary closed F ,G ⊂ X and r ≥ , we determine now dist(SrF ,SrG). Next, we
show that this distance is finite and also give the properties of the function R+ � r →
dist(SrF ,SrG) ∈R+; these properties will be used in the sequel.

Lemma  Let F ,G ∈ clos(X) be given. Then dist(SrF ,SrG) < ∞ for every r ≥  and the
following statements hold true:
() the function R+ � r → dist(SrF ,SrG) ∈R+ is non-decreasing;
() for every r ≥ , the inequality

dist(SrF ,SrG) ≤ dist(F ,G) ()

and the relation

lim
r→∞dist(SrF ,SrG) = dist(F ,G) ()

hold;
() denoted r*

.=min{�(θ ,F),�(θ ,G)}, the inequality dist(SrF ,SrG) ≤ D(r*, r) holds for
each r ≥ ;

() denoted r* .=max{�(θ ,F),�(θ ,G)}, the inequality ρo(F ,G) ≤ dist(SrF ,SrG) holds for
each r ≥ r*.

Proof First of all, note that for any sets A,B,C ∈ clos(X), one has

dist(A∪C,B∪C) ≤ dist(A,B). ()

To show this inequality, we estimate the deviation d(A∪C,B∪C). Since

�(x,B∪C) ≤ �(x,B)≤ d(A,B)

for every x ∈ A and

�(x,B∪C) =  ≤ d(A,B)

for every x ∈ C, we get the inequality d(A∪C,B∪C)≤ d(A,B). Similarly, it can be checked
that d(B∪C,A∪C) ≤ d(A,B). So, () is proved.

http://www.fixedpointtheoryandapplications.com/content/2013/1/10
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From inequality (), it follows that dist(SrF ,SrG) < ∞ for every r ≥ . Indeed, this is
obvious if R* < ∞; in the case when R* = ∞, one hasSrF = (F ∩Or)∪Oo

r ,SrG = (G∩Or)∪
Oo

r and hence,

dist(SrF ,SrG) ≤ dist(F ∩Or ,G∩Or) <∞.

Using () one gets relation ()

dist(SrF ,SrG) = dist
(
F ∪Oo

r ,G∪Oo
r
) ≤ dist(F ,G).

Next, for r ≥ r,SrF =SrF ∪Oo
r ,SrG =SrG∪Oo

r hold. So, as a consequence of (),
the following holds:

dist(SrF ,SrG) ≤ dist(SrF ,SrG).

Thus, the function r → dist(SrF ,SrG) is non-decreasing.
Now, we prove equality (). If R* < ∞, thenSrF = F ,SrG =G for r > R*, so () is true.
Let R* = ∞. First, suppose that dist(F ,G) < ∞. Since the function r → dist(SrF ,SrG)

is non-decreasing and bounded, there exists α
.= limr→∞ dist(SrF ,SrG). Then for each r,

the inequality α ≥ dist(SrF ,SrG) takes place, and it follows that for any ε > , every x ∈ F ,
and r > �X(θ ,x) +α +ε, one has x ∈Oo

α+ε(SrG) and x /∈Oo
r–ε–α . Thus, taking into account

Oo
r–ε–α ⊇Oo

α+ε(Oo
r ), one gets x /∈Oo

α+ε(Oo
r ), i.e., x ∈Oo

α+ε(G). As above, for each point y ∈G,
y ∈ Oo

α+ε(F) holds. Hence, dist(F ,G) ≤ α + ε for any ε > , whichmeans that dist(F ,G)≤ α.
The inequality dist(F ,G)≥ α is easily obtained by passing to the limit in ().
Now, let dist(F ,G) = ∞. If () is not true, then there exists α

.= limr→∞ dist(SrF ,SrG) <
∞. So, arguing as before, one gets the inequality dist(F ,G)≤ α <∞, which contradicts the
initial assumption. Thus, equality () is proved.
In order to prove statement (), note that for every r ≤ r*, SrF =SrG = Oo

r holds and
hence dist(SrF ,SrG) = . If r > r*, r ∈ P, then, according to the inclusions

SrF ⊂Oo
r* , Oo

r ⊂SrG,

one gets

d(SrG,SrF) ≤ d
(
Oo

r ,Oo
r*

) ≤ D(r*, r).

Similarly, it follows that d(SrF ,SrG) ≤ D(r*, r). So, dist(SrF ,SrG) ≤ D(r*, r). For every
r /∈ P,SrG ⊂Oo

r* ,SrF ⊂Oo
r* holds and therefore,

dist(SrF ,SrG) ≤ sup
x,u∈Oo

r*

�X(x,u) =D(r*, r).

Property () is a consequence of the well-known estimate (see, e.g., [])

∣∣�(x,A) – �(x,B)
∣∣ ≤ dist(A,B), ∀x ∈ X, ∀A,B ∈ clos(X). ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/10
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Indeed, assuming A = SrF , B = SrG and taking into account that for every r ≥ r*,
ρo(F ,G) = ρo(SrF ,SrG) holds, one gets

ρo(F ,G) =
∣∣�(θ ,SrF) – �(θ ,SrG)

∣∣ ≤ dist(SrF ,SrG), ∀r ≥ r*. �

Theorem  Equality () defines a metric in the space clos(X). If X is a complete metric
space, then (clos(X),ρcl) is also complete.

Proof Show that ρcl satisfies all the axioms of a metric, i.e., that for any F ,G,H ∈ clos(X),
the following hold:
()  ≤ ρcl(F ,G) < ∞, and ρcl(F ,G) =  if and only if F =G;
() ρcl(F ,G) = ρcl(G,F);
() ρcl(F ,G)≤ ρcl(F ,H) + ρcl(H ,G).
It is obvious that ρcl(F ,G) ≥  and ρo(F ,G) < ∞ for any F ,G ∈ clos(X). According to

Lemma , one has

ρS(F ,G) ≤ sup
r>

min

{
D(r*, r),


r

}
≤max

{
sup
r∈[,]

D(r*, r), sup
r>


r

}

= max
{
D(r*, ), 

} ≤ max
{
D(, ), 

}
.

Therefore, ρcl(F ,G) < ∞. Next,

ρcl(F ,G) =  ⇔
⎧⎨
⎩

ρo(F ,G) = ,

dist(SrF ,SrG) =  ∀r > 

⇔ {
F ∩Oo

r =G∩Oo
r ∀r > 

} ⇔ F =G.

The symmetry of ρcl is straightforward; property () follows from the inequalities

ρo(F ,G) ≤ ρo(F ,H) + ρo(H ,G),

dist(SrF ,SrG) ≤ dist(SrF ,SrH) + dist(SrH ,SrG) ∀r ≥ .

Thus, (clos(X),ρcl) is a metric space.
Now, let X be complete; show that (clos(X),ρcl) is also a complete metric space.
Consider a fundamental sequence {Fi}∞i= ⊂ clos(X). For any ε > , there is a number

N(ε) such that for all i, j >N(ε), the following inequality takes place:

ρcl
(
Fi,Fj) = ∣∣�(

θ ,Fi) – �
(
θ ,Fj)∣∣ + sup

r>
min

{
dist

(
SrFi,SrFj), 

r

}
≤ ε. ()

From (), it follows that the number sequence {�(θ ,Fi)}∞i= is fundamental, so it is conver-
gent; denote its limit by r; obviously, r ≥ .
Take an arbitrary radius r > r and consider the sequence {SrFi}∞i= ⊂ clos(X). It follows

from () that for any ε ∈ (, /r) and all i, j >N(ε), the inequality dist(SrFi,SrFj) < ε takes
place. Show that for the sequence {SrFi ∩Or+}∞i= ⊂ clbd(X) and all i, j >N(ε), the similar
inequality holds:

dist
(
SrFi ∩Or+,SrFj ∩Or+

)
< ε. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/10
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Without loss of generality, assume ε < . Pick an arbitrary x ∈SrFi∩Or+. If x ∈Or+\Oo
r ,

then �(x,SrFj ∩ Or+) =  since Or+\Oo
r ⊂ SrFj ∩ Or+. In the case when x ∈ SrFi ∩ Or ,

there exists a point y ∈ SrFj satisfying the estimate �X(x, y) < ε. Held y ∈ Oo
r+, one gets

�X(x, y) ≥ , therefore y ∈ SrFj ∩Or+. So,

d
(
SrFi ∩Or+,SrFj ∩Or+

)
< ε, ∀i, j >N(ε).

Similarly, d(SrFj ∩Or+,SrFi ∩Or+) < ε and relation () is proved.
The sequence {SrFi ∩Or+}∞i= ⊂ clbd(X) is fundamental with respect to the metric dist

and since the space (clbd(X),dist) is complete (see []), this sequence converges to some
‘limit’ set Fr ∈ clbd(X). According to inequality (), the following holds:

dist
(
SrFi,SrFr

)
= dist

((
SrFi ∩Or+

) ∪Oo
r ,Fr ∪Oo

r
) ≤ dist

(
SrFi ∩Or+,Fr

)
,

and therefore SrFi → SrFr . Moreover, �(θ ,Fr) = �(θ ,SrFr) = r (this equality follows
from statement () of Lemma ).
For every r > r, the set Fr

.=SrFr ∩ Oo
r is not empty for �(θ ,SrFr) = r. Prove that for

any r̄ > r,Sr̄Fr̄ ∩Oo
r = Fr holds. Let x ∈Sr̄Fr̄ ∩Oo

r . Then there exists a sequence {xi}∞i=, xi ∈
Sr̄Fi ⊂SrFi, convergent to x. This means that x ∈ SrFr ; moreover, x ∈Oo

r . Conversely, let
x ∈SrFr ∩Oo

r , then x ∈ Fr , x /∈Oo
r , and hence there is a sequence {xi}∞i=, xi ∈SrFi, xi → x.

Starting with some index I , all the members of this sequence satisfy the condition xi /∈Oo
r ,

and therefore xi ∈ Fi ⊂Sr̄Fi ∀i > I . SinceSr̄Fi converges toSr̄Fr̄ , it follows that x ∈Sr̄Fr̄ .
So, x ∈Sr̄Fr̄ ∩Oo

p.
From what has been proved, one may conclude that as r increases, the sets Fr ‘expand’

in the following way: if r̄ ≥ r, then Fr =SrFr ∩Oo
r =Sr̄Fr̄ ∩Oo

r =Sr̄Fr̄ ∩Oo
r̄ ∩Oo

r = Fr̄ ∩Oo
r

(i.e., Fr is a subset of Fr̄ containing elements x such that �X(θ ,x) < r.) Define now the set
F .=

⋃
r>r Fr and show it is closed. Note that for every r, F ∩ Oo

r = Fr holds and the set
Fr ∪ Oo

r =SrF is closed. Consider a sequence {yi}∞i= ⊂ F convergent to y. This sequence
is bounded, so starting with some index i, the inclusions yi ∈ Oo

p, yi ∈ SpF , where p =
�X(θ , y) + , hold. Thus, since SpF is closed, it follows that y ∈ SpF ; on the other hand,
y /∈ Oo

r . So, y ∈ Fp ⊂ F and F is closed.
Finally, show that the sequence {Fi}∞i= converges to the set F with respect to the met-

ric ρcl. For an arbitrary ε > , put r̄(ε) = /ε. Since the sequence {Sr̄(ε)Fi}∞i= converges (in
the Hausdorff metric) to the set Sr̄(ε)Fr̄(ε) =Sr̄(ε)F , for every i, starting with some I , the
following inequalities hold:

dist
(
Sr̄(ε)Fi,Sr̄(ε)F

)
< ε/, ρo(Fi,F

)
< ε/. ()

According to Lemma , the function r → dist(SrFi,SrF) is non-decreasing. Hence,
from (), it follows that dist(SrFi,SrF) < ε/ for every r ≤ r̄(ε). Next, for r > r̄(ε),
one has /r < ε/. Thus, ρS(Fi,F) ≤ ε/ for all i > I , and therefore ρcl(Fi,F) < ε, i.e.,
limi→∞ ρcl(Fi,F) = . �

Remark  The function ρS : clos(X) × clos(X) → R+, given by (), also defines a metric
in the space clos(X), but for a complete metric space X, the space (clos(X),ρS), unlike

http://www.fixedpointtheoryandapplications.com/content/2013/1/10
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(clos(X),ρcl), may not be complete. For example, the sequence of the sets Fi .= {i} (each
consisting of a natural number) in the space (clos(R),ρS) is fundamental []:

∀j > i ρS
({i}, {j}) = √

i +  + i
,

yet there is no nonempty set F ∈ clos(R) such that

ρS
(
Fi,F

) → . ()

Let us show this. If such a set F ⊂ R does exist, then taking any of its points x, one gets
the following estimates: for every i≥ |x| +  and each r ∈ [|x|, i],

dist
(
SrFi,SrF

) ≥ r – |x|.

Thus, ρS(Fi,F)≥ /r̄, where r̄ is a solution of the equation /r = r – |x|. So, the inequality

ρS
(
Fi,F

) ≥ 

|x| +
√
x + 

holds, which contradicts relation ().

The Hausdorff distance between sets A,B ∈ clos(X) has a simple geometric interpreta-
tion:

dist(A,B) = inf
{
ε : ε > ,A⊂Oo

ε(B),B ⊂Oo
ε(A)

}
.

Regarding the metric ρcl, the analogue of the ε-neighborhood of a set A is given by

Oo
ε(A, cl)

.=
⋃

x∈Aε

{
x ∈ X : �X(x,x) < ε

}
, Aε = A∪Oo

/ε

(i.e., by the ε-neighborhood of the set Aε). This means that the ‘main part’ ρS of the dis-
tance ρcl can be defined by the equality

ρS(A,B) = inf
{
ε : ε > ,A⊂Oo

ε(B, cl),B ⊂Oo
ε(A, cl)

}
.

Let us now give a criterion for a sequence of closed sets to be convergent with respect
to the metric ρcl.

Lemma  Given F ,Fi ∈ clos(X), i = , , . . . , the convergence ρcl(Fi,F) →  implies �(θ ,
Fi)→ �(θ ,F) and dist(SrFi,SrF)→  for any r > .
Conversely, let {Fi}∞i= ⊂ clos(X). If there exist �

.= limi→∞ �(θ ,Fi) and r ≥  such that
for every r > r, the sequence {SrFi}∞i= converges in the metric dist to some set Fr ∈ clos(X),
then for any r, r̄ such that r̄ > r > r, Fr̄ ∩ Oo

r̄ ⊃ Fr ∩ Oo
r holds, and in the space clos(X)

the sequence {Fi}∞i= converges (with respect to ρcl) to the set F
.=
⋃

r>r (Fr ∩ Oo
r ) ∈ clos(X);

moreover, �(θ ,F) = �.

http://www.fixedpointtheoryandapplications.com/content/2013/1/10
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We omit the proof of this statement since it repeats that of the corresponding result for
the finite dimensional case [].
We conclude this section by proving a theorem on the connection between convergence

in the metric ρcl and convergence in the metric dist. Note that if a sequence {Fi}∞i= ⊂
clos(X) converges in the Hausdorff metric, then by statement () of Lemma , it converges
(to the same limit) in the metric ρS; moreover, as it will be shown later, in the metric ρcl.
The converse is not true. For example, in R the sequence of sets Fi .= {, i}, i = , , . . . ,
converges in the metric ρcl to the set F .= {}. On the other hand, for any i, j, one has
dist(Fi,Fj) = |i – j|, i.e., the sequence {Fi}∞i= is divergent in the Hausdorff metric.

Theorem  Let F ,Fi ∈ clos(X), i ∈N. Then the following statements hold:
() if dist(Fi,F)→ , then ρcl(Fi,F) → ;
() if ρcl(Fi,F) →  and there is a p >  such that Fi ⊂Op, i ∈ N, then F ∈ Op and

dist(Fi,F)→ .

Proof () Suppose dist(Fi,F) → , i → ∞. Then, for an arbitrary ε > , there is a number
I = I(ε) such that dist(Fi,F) < ε for every i > I . So, according to inequality (), one gets
|�(θ ,Fi) – �(θ ,F)| < ε, and from () it follows that the inequality dist(SrFi,SrF) < ε holds
for every r ≥ . Thus, by Lemma , ρcl(Fi,F) → .
() Now, let ρcl(Fi,F) → . Then from Lemma , it follows that dist(SrFi,SrF) →  for

every r > . Next, since for every i = , , . . . , Fi ⊂ Op holds, then F ⊂ Op. Indeed, if this
inclusion fails, then there exists an f ∈ F such that δ .= �(f ,Op) > , so one gets the estimate

dist
(
Sp+δF ,Sp+δFi) ≥ �

(
f ,Sp+δFi) = �

(
f ,Fi ∪Oo

p+δ
)

= min
{
�
(
f ,Fi),�(

f ,Oo
p+δ

)} ≥ min
{
�(f ,Op), δ

}
= δ

that contradicts the relation dist(SrF ,SrFi)→ . Hence F ⊂Op.
Let r ≥ p. Since Fi ⊂SrFi, for every i one has

d
(
SrFi,SrF

) ≥ d
(
Fi,SrF

)
= d

(
Fi,F ∪Oo

r
)
.

Next, for every f ∈ Fi, i ∈N, we have

�(f ,F)≤ p, �
(
f ,Oo

r
) ≥ p,

and therefore �(f ,F) ≤ �(f ,Oo
r ), i.e., �(f ,F) = �(f ,F ∪ Oo

r ). Thus, d(Fi,F ∪ Oo
r ) = d(Fi,F)

and

d
(
SrFi,SrF

) ≥ d
(
Fi,F

)
.

Similarly, d(SrF ,SrFi) ≥ d(F ,Fi). So, it is proved that

dist
(
SrFi,SrF

) ≥ dist
(
Fi,F

)
,

hence dist(Fi,F) → . �
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3 Continuousmulti-valuedmaps
Let T be a topological space. Recall that a map F : T → clos(X) is said to be continu-
ous at a point t ∈ T if for any ε > , one can find a neighborhood V (t) of t such that
dist(F(t),F(t)) < ε for every t ∈ V (t). This definition corresponds to endowing the space
clos(X) with the Hausdorff metric. In what follows, we call a map satisfying the listed re-
quirements continuous in the Hausdorff metric in order to distinguish it from the one
considered in the space (clos(X),ρcl).

Definition  Amap F : T → clos(X) is said to be continuous at a point t ∈ T in themetric
ρcl if for any ε > , there is a neighborhoodV (t) of t such that ρcl(F(t),F(t)) < ε for every
t ∈ V (t).
Since the space clbd(X) with the metric ρcl is a subspace of clos(X), one can also apply

the given definition to amap F : T → clbd(X), i.e., to amap having closed bounded images.
Following the standard terminology, the map F is called continuous on a set T ⊆ T in

the metric dist or metric ρcl if it is continuous in the corresponding metric at every point
of T.

Theorem 
() If F : T → clos(X) is continuous at a point t ∈ T in the Hausdorff metric, then it is

continuous at t in the metric ρcl.
() If F : T → clos(X) is continuous at a point t ∈ T in the metric ρcl and there exist a

number p >  and a neighborhood V (t) of t such that F(t)⊂Op for every t ∈ V (t),
then F is continuous at t in the Hausdorff metric.

Proof () Suppose F is continuous at some point t ∈ T in the Hausdorff metric and let
ε > . Then there is a neighborhood V (t) of t such that dist(F(t),F(t)) < ε/ for ev-
ery t ∈ V (t). So, for every t ∈ V (t), according to estimate (), one gets the inequality
ρo(F(t),F(t)) < ε/ and, according to (), the inequality ρS(F(t),F(t)) < ε/. Therefore,
ρcl(F(t),F(t)) < ε, t ∈ V (t).
() Now, let F : T → clos(X) be continuous at a point t in the metric ρcl. This means

that, for a positive ε < 
 (

√
p +  – p), there is a neighborhood U(t) of t such that, for

every t ∈U(t), the following inequality holds:

ρcl
(
F(t),F(t)

)
< ε. ()

Without loss of generality, assume that U(t) ⊂ V (t). From (), it follows that

dist
(
SrF(t),SrF(t)

)
< ε

for every r < /ε. Set r = p + ε. Then

r < p +
√
p +  – p


=
p +

√
p + 


=
√

p +  – p
=

ε
,

and hence

dist
(
SrF(t),SrF(t)

)
< ε.
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Taking into account the inclusions F(t),F(t)⊂Op, one gets

dist
(
F(t),Oo

r

) ≥ ε, dist
(
F(t),Oo

r

) ≥ ε.

From the estimates obtained, it follows that dist(F(t),F(t)) < ε. In fact,

ε > d
(
F(t)∪Oo

r ,F(t)∪Oo
r

) ≥ d
(
F(t),F(t)∪Oo

r

)
= d

(
F(t),F(t)

)
.

The last equality holds since for every f ∈ F(t), one has

�
(
f ,Oo

r

) ≥ ε, �
(
f ,F(t)∪Oo

r

)
< ε,

i.e., �(f ,F(t)∪Oo
r ) = �(f ,F(t)). Similarly, ε > d(F(t),F(t)).

Thus, the map F is continuous at a point t in the Hausdorff metric. �

So, the continuity of F : T → clos(X) in the Hausdorff metric implies its continuity in
the metric ρcl. The following example shows that the converse is not true.

Example  Consider the map F : [, ] → clos(R) given by F(t) .= {nt,n = , , , . . .}. The
map F is not only not continuous in the metric dist, but for any t, t ∈ [, ], t �= t, the
following holds:

dist
(
F(t),F(t)

)
= sup

n

{
n|t – t|

}
= ∞.

Show that themap F , nevertheless, is continuouswith respect to themetric ρcl in clos(R)
with θ = . For arbitrary t, t ∈ [, ] (assume for definiteness t < t), one has

ρo(F(t),F(t)) = t – t. ()

Evaluate ρS(F(t),F(t)). First of all,

dist
(
SrF(t),SrF(t)

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

, r ∈ [, t],

r – t, r ∈ (t, t],

n(t – t), r ∈ (nt, n(t + t)],n = , , , . . . ,

r – n+t, r ∈ (n(t + t), n+t],n = , , , . . . .

Then, for every r ≥ ,

dist
(
SrF(t),SrF(t)

) ≤ t – t
t

r, ()

here the equality is attained at the points r =  and r = nt, n = , , , . . . (see Figure ).
Since t ≥ , from () it follows that

dist
(
SrF(t),SrF(t)

) ≤ (t – t)r ∀r ≥ .
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Figure 1 The graphs of the functions f (r)
.
= dist(SrF(t1),SrF(t2)) and g(r)

.
= t2–t1

t2
r.

From this inequality, one gets

ρS
(
F(t),F(t)

) ≤ 
r̄
,

where r̄ satisfies /r̄ = (t – t)r̄. Therefore,

ρS
(
F(t),F(t)

) ≤ √
t – t. ()

So, due to relations () and (), F is continuous in the metric ρcl.

4 Lipschitz multi-valuedmaps
We consider now multi-valued maps defined on a metric space.
Let (�,��) be a metric space and F : � → clos(X). Let q ≥ . Recall that the map F is

said to be q-Lipschitz (or Lipschitz with a constant q) if for any ω,ω ∈ �, the following
holds:

dist
(
F(ω),F(ω)

) ≤ q��(ω,ω). ()

Naturally, this definition is applicable to a map F : � → clbd(X). In what follows, a map
satisfying inequality () will be called q-Lipschitz in the Hausdorff metric.
To give the definition of a Lipschitz map in the case when clos(X) is endowed with the

metric ρcl, note that this metric is given by a pair of functions ρo,ρS : clos(X)× clos(X) →
R+ defined by (), () (the second of which is a metric itself (see Remark )).

Definition  Let q ≥ . A map F : � → clos(X) is said to be q-Lipschitz in the metric ρS

if for any ω,ω ∈ �,

ρS
(
F(ω),F(ω)

) ≤ q��(ω,ω); ()

and q-Lipschitz in the metric ρcl if for any ω,ω ∈ X, inequality () and the inequality

ρo(F(ω),F(ω)
) ≤ q��(ω,ω) ()

hold.
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In the case of� = X and q < , amap F satisfying condition () is called contracting or q-
contracting (in the metric dist). Similarly, a map F : X → clos(X) will be called contracting
in the metric ρS implying it satisfies inequality () with a constant q < , and contracting
in the metric ρcl if it satisfies inequalities (), ().

In what follows, the conditions for a map F to be Lipschitz in the metrics dist, ρS, and
ρcl, as well as connections between these properties are derived.
We begin with the criteria of the q-Lipschitzness of F in the metrics dist and ρS.

Theorem 
() A map F :� → clos(X) is q-Lipschitz in the metric dist if and only if the map

SrF :� → clos(X) is q-Lipschitz in the metric dist for each r ≥ .
() A map F :� → clos(X) is q-Lipschitz in the metric ρS if and only if for every r > 

and any ω,ω ∈ X such that ��(ω,ω) ≤ (qr)–, the following holds:

dist
(
SrF(ω),SrF(ω)

) ≤ q��(ω,ω) ∀r ≤ r. ()

Proof Statement () is a direct consequence of the relations between dist(F(ω),F(ω)) and
dist(SrF(ω),SrF(ω)) obtained in paragraph () of Lemma : the necessity follows from
estimate () and sufficiency from equality ().
Prove statement (). Necessity. Let F be q-Lipschitz in the metric ρS, i.e.,

sup
r>

min

{
dist

(
SrF(ω),SrF(ω)

)
,

r

}
≤ q��(ω,ω) ∀ω,ω ∈ �.

It follows that if /r ≥ q��(ω,ω), then

dist
(
SrF(ω),SrF(ω)

) ≤ q��(ω,ω). ()

Therefore, inequality () takes place for all ω, ω such that ��(ω,ω) ≤ (qr)–. Since,
according to paragraph () of Lemma , the function r → dist(SrF(ω),SrF(ω)) does not
decrease for any ω, ω, inequality () remains valid for every r ≤ r.
Sufficiency. Take arbitrary ω,ω ∈ �, ω �= ω, and determine r̄ .= (q��(ω,ω))–. Then

using (), one gets

sup
r>

min

{
dist

(
SrF(ω),SrF(ω)

)
,

r

}
≤ max

{
sup
<r≤r̄

dist
(
SrF(ω),SrF(ω)

)
, sup
r>r̄

{/r}
}

≤ q��(ω,ω),

and thus ρS(F(ω),F(ω))≤ q��(ω,ω). �

Remark  A multi-valued map G : � → clos(X) is said to be (ε,q)-uniformly locally
Lipschitz (see, e.g., []) if for any ω,ω ∈ � such that ��(ω,ω) ≤ ε, the inequality
dist(G(ω),G(ω))≤ q��(ω,ω) holds. So, according toTheorem, amap F :� → clos(X)
is q-Lipschitz in the metric ρS if and only if for any ε > , the map SrF : � → clos(X) is
(ε,q)-uniformly locally Lipschitz for all r ≤ (qε)–.
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The following definition allows to consider an important class of metric spaces often
appearing in applications and to which the use of Theorem  (and the statements proved
further on) is of particular interest.

Definition  [] A metric space (�,��) is said to be convex if for any points μ,ν ∈ �,
μ �= ν , there exists a point ω ∈ � such that

��(μ,ν) = ��(μ,ω) + ��(ω,ν), ω �= μ,ω �= ν.

We will also need the following statement: if (�,��) is complete and convex, then

∀μ,ν ∈ � ∀a ∈ (
,��(μ,ν)

) ∃ω ∈ X ��(μ,ω) = a, ��(ω,ν) = ��(μ,ν) – a. ()

This property of convex metric spaces follows immediately from [, Theorems ., .].
If (�,��) is complete and convex, then paragraph () of Theorem  can be specified.

Corollary  Let � be a complete, convex metric space. Then a map F : � → clos(X) is
q-Lipschitz in the metric ρS if and only if inequality () holds for every r ≥  and any
ω,ω ∈ � (i.e., if and only if the map SrF : � → clos(X) is q-Lipschitz in the metric dist
for every r ≥ ).

Proof Necessity. For r =  and any ω,ω ∈ �, one has SF(ω) = SF(ω) = �, so
dist(SF(ω),SF(ω)) =  and () holds for all ω, ω.
Now, let r > . The map F is q-Lipschitz in the metric ρS, so according to Theorem ,

for all ω,ω ∈ �, the inequality ��(ω,ω) ≤ (qr)– implies relation (). Fix some ω,
ω satisfying ��(ω,ω) > (qr)– and show that () remains valid. By the property (),
there exists a finite set of points ω = ξ, ξ, . . . , ξn = ω such that ��(ξi, ξi+) ≤ (qr)–, i =
, . . . ,n – , and

��(ω,ω) = ��(ω, ξ) + ��(ξ, ξ) + · · · + ��(ξn–,ω).

So, one gets

dist
(
SrF(ω),SrF(ω)

)
≤ dist

(
SrF(ξ),SrF(ξ)

)
+ dist

(
SrF(ξ),SrF(ξ)

)
+ · · · + dist

(
SrF(ξn–),SrF(ξn)

)

≤
n–∑
i=

q��(ξi, ξi+) = q��(ω,ω).

The sufficiency part of the theorem follows directly from Theorem . �

Note that the hypotheses of completeness and convexity of � in Corollary  are crucial.
Consider some examples.

Example  Let X =
⋃

i∈ZXi, �X(x,x) = |x –x|, θ = , where X = [–; ], Xi = [i; i+],
X–i = [–i – ;–i], i ∈ N. The space X is complete and, obviously, not convex. Define the
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map F : X → clos(X) by

F(x) .=

⎧⎪⎪⎨
⎪⎪⎩

{–; }, x ∈ X,

{–; i + }, x ∈ Xi, i ∈N,

{–i – ; }, x ∈ X–i, i ∈ N.

()

Estimate ρS(F(x),F(x)) for arbitrary x,x ∈ X.
Evidently, if x,x ∈ Xi, i ∈ Z, then ρS(F(x),F(x)) = .
Let x ∈ Xi , x ∈ Xi , i, i = , , , . . . ; without loss of generality, assume that i < i.

Then dist(SrF(x),SrF(x)) =  for r ≤ i + . Next, if i +  < r ≤ i + , then

SrF(x) =
( ⋃
i∈Z:|i|≥i+

Xi

)
∪ {–, i + }, SrF(x) =

( ⋃
i∈Z:|i|≥i+

Xi

)
∪ {–};

therefore, dist(SrF(x),SrF(x)) = . Since for the same values of r, /r <  holds, one gets

ρS
(
F(x),F(x)

)
= sup

r>i+

{

r

}
=


i + 

<


.

On the other hand, �X(x,x) = |x – x| ≥ . Hence,

ρS
(
F(x),F(x)

)
<


�X(x,x). ()

In all the other cases, i.e., when x ∈ X–i , x ∈ X–i , i, i = , , , . . . , i �= i, or when
x ∈ X–i , x ∈ Xi , i, i = , , , . . . , i + i �= , doing the analogous calculations one also
gets estimation ().
So, the map F is contracting in the metric ρS with a constant q = /. Moreover, since

ρo(F(x),F(x)) =  for any x, x, the map F is contracting in the metric ρcl.
However, the map SrF : X → clos(X) is not contracting (in the metric dist) for r > .

Choosing, for example, x = , x = , for any r ∈ (, ], one gets

SrF(x) = {–, } ∪ [, ]∪ [–,–]∪ [, ]∪ [–,–]∪ · · · ,
SrF(x) = {–} ∪ [, ]∪ [–,–]∪ [, ]∪ [–,–]∪ · · · ,
dist

(
SrF(x),SrF(x)

)
=  = �X(x,x),

i.e., in this case, the Lipschitz constant q ≥ . For the same values x = , x =  and r = ,
the following hold:

SrF(x) = {–, ,–, } ∪ [, ]∪ [–,–]∪ · · · ,
SrF(x) = {–,–, } ∪ [, ]∪ [–,–]∪ · · · ,
dist

(
SrF(x),SrF(x)

)
=  =  · �X(x,x).

Note that the map considered does not have fixed points in X. This means that, for
example, in the Nadler theorem, one cannot replace the classical assumption of F be con-
tracting in the metric distwith the one of F be contracting in the metric ρS. Nevertheless,
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using the map SrF instead of the map F allows to weaken the known conditions of fixed
points existence. The corresponding result will be given in the next section.

Example  LetX =
⋃

i∈ZXi, �X(x,x) = |x –x|, θ = , whereX = (–.; .),Xi = (i; i+
.), X–i = (–i – .; –i), i ∈ N. This space is convex, but not complete. Define the map
F : X → clos(X) by ().
Like in Example , thismap is /-contracting in themetrics ρS and ρcl (the correspond-

ing arguments repeat those stated above), but for the map SrF , r = , and, for example,
x = ., x = ., one gets again

dist
(
SrF(x),SrF(x)

)
=  = �X(x,x).

The next theorem establishes a connection between the concepts of Lipschitzness con-
sidered in different metrics of the space clos(X).

Theorem 
() If a map F :� → clos(X) is q-Lipschitz in the Hausdorff metric, then it is q-Lipschitz

in the metric ρcl and all the more in the metric ρS.
() In the case when � is a complete and convex metric space, the concepts of

q-Lipschitzness of F :� → clos(X) in the metrics ρS, ρcl, and dist are equivalent.

We give a simple diagram illustrating this theorem:

dist ρcl ρS.

Here, a solid arrow means that the Lipschitzness of F in the first metric implies its Lips-
chitzness in the second metric; a dashed arrow corresponds to a relation between these
properties that takes place only if the metric space � is complete and convex.

Proof () The correctness of the implication dist → ρcl follows from statements () and
() of Lemma . Further, by Definition , the q-Lipschitzness of the map F in the metric
ρcl implies its q-Lipschitzness in the metric ρS.
() Now, let � be complete, convex and F : � → clos(X) be q-Lipschitz in the metric

ρS. Then, according to Corollary , the mapSrF is q-Lipschitz for every r ≥  and hence,
by statement () of Theorem , the map F is q-Lipschitz in the metric dist. Therefore, F is
q-Lipschitz in the metric ρcl (see paragraph () of the theorem). �

Let us show that the convexity of a metric space is essential for equivalence of the prop-
erties of q-Lipschitzness in the metrics dist, ρcl, ρS.
Note that the maps considered in Examples  and  are contracting (with a constant

q = /) in the metrics ρS and ρcl. With respect to the metric dist, they are only Lipschitz
with a constant q > . Give an example of a map that is contracting in the metric ρcl and
not Lipschitz in the metric dist.

Example  On the set N, define the metric �N(n,m) = |n – m| and choose θ = . Con-
sider F : N → clos(N) given by F(n) .= {, (n + )}. Let n,m ∈ N, n < m. Obviously,
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ρo(F(n),F(m)) = ; determine dist(SrF(n),SrF(m)) for different r ≥ . If r ≤ (n+ ), then

SrF(n) =SrF(m) =
{
(n + ), (n + ) + , (n + ) + , . . .

}
,

dist
(
SrF(n),SrF(m)

)
= .

For every r ∈ ((n + ), (n + ) + ], one has

SrF(n) =
{
(n + ), (n + ) + , (n + ) + , . . .

}
,

SrF(m) =
{
(n + ) + , (n + ) + , . . .

}
,

dist
(
SrF(n),SrF(m)

)
= .

Since, for the same values of r, /r <  holds, it follows that

ρS
(
F(n),F(m)

)
= sup

r>(n+)


r
=


(n + )

<


<



�N(n,m).

So, the map F is q-contracting, q = /, in the metric ρcl. On the other hand,

dist
(
F(n),F(m)

)
= (m + ) – (n + ) = (m + n + )�N(n,m) ∀n,m,

and therefore, there is no constant q for F to be q-Lipschitz in the Hausdorff metric.

Next, consider a map that is q-Lipschitz in the metric ρS and not q-Lipschitz in the
metric ρcl.

Example  Let F : N → clos(N) be given by F(n) .= {(n + )} (assume �N(n,m) = |n –m|
∀n,m ∈N, θ = ). Then, like in Example , for any n,m ∈ N (n <m), one has

ρS
(
F(n),F(m)

)
<



�N(n,m),

i.e., inequality () is valid with q = /. But

ρo(F(n),F(m)
)
= (m + ) – (n + ) = (m + n + )�N(n,m) ∀n,m,

and thus estimate () does not hold.

5 Fixed point theorems
In this section, we prove a generalization of the Nadler fixed point theorem for a multi-
valuedmap F : X → clos(X). The idea of the generalization consists in replacing the image
F(x) ∈ clos(X) by the set SrF(x) ∈ clos(X). As it has been mentioned already, this trans-
formation allows to reduce the distance between the images of a map and, in a number of
cases, to turn a multi-valued map that is not even continuous into a contracting one. And
if it can be proved that a fixed point of the ‘new’ map SrF : X → clos(X) does not belong
to Oo

r , then this point becomes a fixed one also for the initial map F .

Theorem  Let X be a complete metric space and F : X → clos(X). Let there exist r > 
and q ∈ [, ) such that:
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() the map SrF is q-contracting (in the metric dist), i.e.,

dist
(
SrF(x),SrF(x)

) ≤ q�X(x,x) ∀x,x ∈ X; ()

() there exists x ∈ X such that

�X(θ ,x) +
�(x,SrF(x))

 – q
< r. ()

Then there is a point x̄ ∈ X satisfying the inclusion x̄ ∈ F(x̄) and the estimate �X(θ , x̄) < r.

Proof From assumption (), by the Nadler theorem (see [, ]), it follows that for every
x ∈ X and any ε > , there is a fixed point x̄ of the mapSrF satisfying the inequality

�X(x, x̄) <
�(x,SrF(x)) + ε

 – q
. ()

Choose ε so that

�X(θ ,x) +
�(x,SrF(x)) + ε

 – q
< r. ()

Because of inequality (), such an ε does exist. Then, from estimates (), (), one gets

�X(θ , x̄) ≤ �X(θ ,x) + �X(x, x̄) ≤ �X(θ ,x) +
�(x,SrF(x)) + ε

 – q
< r.

So, x̄ ∈SrF(x̄) and x̄ /∈Oo
r , and it follows that x̄ is a fixed point of the map F . �

In the classical theorem of Nadler, if a map F : X → clos(X) is contracting (in the Haus-
dorff metric) with a constant q < / and with a fixed point x̄ ∈ X satisfying the condition
F(x̄) �= {x̄}, then this map has at least one more fixed point different from x̄ (see []). For
maps meeting the requirements of Theorem , the analogous statement may not be true.
In fact, it is easy to explain: arguing as in [, Theorem ..], take u ∈ SrF(x̄), u /∈ x̄, as
an initial point and, using the iteration procedure, find a fixed point ū of the map SrF .
Since q < /, it is easy to show that ū �= x̄. It may turn out, however, that ū ∈ Oo

r and
ū /∈ F(ū), i.e., the point ū is not a fixed point of the map F . This situation does not occur if
the element u ∈ F(x̄) satisfies condition () of Theorem . Thus, the following statement
holds.

Corollary  Let SrF be a contracting map with q < /, and let x̄ satisfying �X(θ , x̄) < r
be a fixed point of the map F . Then, if there is a point u ∈ F(x̄), u �= x̄, such that

�X(θ ,u) +
�X(u,F(u))

 – q
< r,

then F has at least one more fixed point ū �= x̄.
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Remark  An attempt to ‘make’ the map F a contracting one replacing it by the map
F ∩ Or : X → clbd(X) turns out to be far less efficient than using the map SrF . This
follows from the obvious estimate (see inequality ())

dist
(
SrF(x),SrF(x)

)
= dist

((
F(x)∩Or

) ∪Oo
r ,

(
F(x)∩Or

) ∪Oo
r

)
≤ dist

(
F(x)∩Or ,F(x)∩Or

)
.

Example  Consider the map F : R → clos(R) given by F(x) .= {ex+i–, i ∈ N} (assume
�R(x,x) = |x – x|, θ = ). We show first that this map is not q-Lipschitz (for no q)
and, moreover, at any point is neither upper semicontinuous nor lower semicontinu-
ous. More precisely, we prove that for any x,x ∈ R close enough, d(F(x),F(x)) = ∞,
d(F(x),F(x)) = ∞ hold.
Without loss of generality, assume x < x. In order to evaluate the deviation

d
(
F(x),F(x)

)
= sup

j
inf
i

∣∣ex+i– – ex+j–
∣∣, ()

prove that

 < ex+j– – ex+j– <
∣∣ex+i– – ex+j–

∣∣ ()

for any i, j ∈N, i �= j, and all x, x such that

x – x < ln

(
e
e + 

)
. ()

Consider two situations: i < j and i > j.
Let i < j, then x + i < x + ln( e

e+ ) + i < x + i +  ≤ x + j and hence,

 <
ex+j– – ex+j–

ex+j– – ex+i–
=

ex–x – 
 – ex–x–(j–i)

≤ ex–x – 
 – ex–x–

<
e
e+ – 
 – e

(e+)e
= .

So, inequality () is correct.
If i > j, then ex+i– > ex+j– > ex+j–, and inequality () holds as well.
Now, calculate the deviation () when x, x satisfy condition (). Due to inequality

(), one gets

d
(
F(x),F(x)

) ≥ sup
j

(
ex+j– – ex+j–

)
=

(
ex – ex

)
sup
j
ej– = ∞.

For evaluating the deviation d(F(x),F(x)), it can be shown in the same manner that if
 < x – x < ln( e+ ), then for any i, j, the inequality

 < ex+i– – ex+i– <
∣∣ex+i– – ex+j–

∣∣

holds and therefore,

d
(
F(x),F(x)

)
= sup

i
inf
j

∣∣ex+i– – ex+j–
∣∣ ≥ sup

i

(
ex+i– – ex+i–

)
= ∞.
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Figure 2 The graph of the mapSr0F.

Despite the fact that d(F(x),F(x)) = d(F(x),F(x)) = ∞ for any close enough x, x,
Theorem  can be applied to the map F . Put r = /, θ = , x =  and prove that relations
() and () are valid. To determine the setSrF(x), we will use equality (′) since in the
space R definitions () and (′) lead to the same values of ρS, ρcl (see the footnote on
page ), but the calculations by means of (′) are less ponderous.
First of all, note that the map SrF : R → clbd(R), SrF(x) = (F(x) ∩ Oo

r ) ∪ Sr , has a
countable family of continuous selections fi :R → (; /], i ∈N,

fi(x)
.=

⎧⎨
⎩
ex+i–, x ∈ (–∞;  – i – ln],

/, x ∈ ( – i – ln;+∞),

andSrF(x) =
⋃

i{fi(x)} (see Figure ). Therefore,

dist
(
SrF(x),SrF(x)

) ≤ sup
i

∣∣fi(x) – fi(x)
∣∣.

For arbitrary x,x ∈R and any i ∈N, fi(x) – fi(x) =
∫ x
x

gi(x)dx holds, where

gi(x)
.=

⎧⎨
⎩
ex+i–, x ∈ (–∞;  – i – ln],

, x ∈ ( – i – ln;+∞).

Since  ≤ gi(x)≤ /, the following estimate holds:

∣∣fi(x) – fi(x)
∣∣ ≤ 


|x – x| ∀x,x,

i.e., the mapSrF is contracting with a constant q = /.
Further, taking into account that x = θ = , one gets �(,SrF()) = �R(, f()) = e–,

�R(θ ,x) +
�(x,SrF(x))

 – q
= �

(
,SrF()

)
= e– <



= r,

so condition () of Theorem  is also satisfied. Thus, there exists a fixed point x̄ of the
map F such that |x̄| < / (it is easy to check that x̄ is the minimal solution of the equation
ex– = x).
In conclusion, note that in the example considered, replacing themap F :R → clos(R) by

the map Fr
.= F ∩ Or :R → clbd(R) does not allow to apply the Nadler theorem. Unlike

the contractive mapSrF :R → clbd(R), the map Fr is not defined on ( – ln;+∞) and
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Figure 3 The graph of the map Fr0 .

is not lower semicontinuous at points ui
.=  – i – ln, i ∈ N. Indeed, F(x) ∩ Or = ∅, x >

 – ln; for every i = , , . . . and any δ > , one has

d
(
Fr (ui),Fr (ui + δ)

) ≥ eui+i– – eui+δ+i– =


–
eδ–


,

and hence d(Fr (ui),Fr (ui + δ))→ 
 –


e �=  as δ →  +  (see Figure ).
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Endnote
a Note that in the case of linear normed X , the values of ρS and ρcl calculated by means of (4) and (5) do not change

if one defines the operatorSr : clos(X) → clos(X) by the equality

SrH
.
= (H∩ Oo

r ) ∪ Sr . (2′)

This very definition was used in [4] for X =R
n . Using (2′) for an arbitrary metric space does not seem possible since,

first of all, a sphere Sr may result in an empty set and as a consequence, the setSrH will be empty when �(θ ,H) > r.
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