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Abstract

In the article, we introduce a new concept of contraction and prove a fixed point
theorem which generalizes Banach contraction principle in a different way than in
the known results from the literature. The article includes an example which shows
the validity of our results, additionally there is delivered numerical data which
illustrates the provided example.
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1 Introduction
Throughout the article denoted by ℝ is the set of all real numbers, by ℝ+ is the set of

all positive real numbers and by N is the set of all natural numbers. (X, d), (X for

short), is a metric space with a metric d.

In the literature, there are plenty of extensions of the famous Banach contraction

principle [1], which states that every self-mapping T defined on a complete metric

space (X, d) satisfying

∀x,y∈X d(Tx,Ty) ≤ λd(x, y), where λ ∈ (0, 1), (1)

has a unique fixed point and for every x0 Î X a sequence {Tnx0}nÎN is convergent to

the fixed point. Some of the extensions weaken right side of inequality in the condition

(1) by replacing l with a mapping, see e.g. [2,3]. In other results, the underlying space

is more general, see e.g [4-7]. The Nadler’s paper [8] started the invatigations concern-

ing fixed point theory for set-valued contractions, see e.g. [9-20]. There are many theo-

rems regarding asymptotic contractions, see e.g. [21-23], contractions of Meir-Keeler

type [24], see e.g [19,23,25] and weak contractions, see e.g. [26-28]. There are also lots

of different types of fixed point theorems not mentioned above extending the Banach’s

result.

In the present article, using a mapping F: ℝ+ ® ℝ we introduce a new type of con-

traction called F-contraction and prove a new fixed point theorem concerning F-con-

traction. For the concrete mappings F, we obtain the contractions of the type known

from the literature, Banach contraction as well. The article includes the examples of F-

contractions and an example showing that the obtained extension is significant. Theo-

retical considerations that we support by computational data illustrate the nature of F-

contractions.
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2 The result
Definition 2.1 Let F: ℝ+ ® ℝ be a mapping satisfying:

(F1) F is strictly increasing, i.e. for all a, b Î ℝ+ such that a < b, F (a) < F (b);
(F2) For each sequence {an}nÎN of positive numbers limn®∞ an = 0 if and only if

limn®∞ F (an) = -∞;

(F3) There exists k Î (0, 1) such that lima®0+ akF(a) = 0.

A mapping T: X ® X is said to be an F-contraction if there exists τ >0 such that

∀x,y∈X (d(Tx,Ty) > 0 ⇒ τ + F(d(Tx,Ty)) ≤ F(d(x, y))). (2)

When we consider in (2) the different types of the mapping F then we obtain the

variety of contractions, some of them are of a type known in the literature. See the fol-

lowing examples:

Example 2.1 Let F : ℝ+ ® ℝ be given by the formula F (a) = ln a. It is clear that F
satisfies (F1)-(F3) ((F3) for any k Î (0, 1)). Each mapping T : X ® X satisfying (2) is an

F-contraction such that

d(Tx,Ty) ≤ e−τd(x, y), for all x, y ∈ X, Tx �= Ty. (3)

It is clear that for x, y Î X such that Tx = Ty the inequality d(Tx, Ty) ≤ e-τd(x, y)

also holds, i.e. T is a Banach contraction [1].

Example 2.2 If F(a) = ln a + a, a >0 then F satisfies (F1)-(F3) and the condition (2)

is of the form

d(Tx,Ty)
d(x, y)

ed(Tx,Ty)−d(x,y) ≤ e−τ , for all x, y ∈ X, Tx �= Ty. (4)

Example 2.3 Consider F(α) = −1/
√

α, a > 0. F satisfies (F1)-(F3) ((F3) for any k Î
(1/2, 1)). In this case, each F-contraction T satisfies

d(Tx,Ty) ≤ 1

(1 + τ
√
d(x, y))

2 d(x, y), for all x, y ∈ X, Tx �= Ty.

Here, we obtained a special case of nonlinear contraction of the type d(Tx, Ty) ≤ a(d
(x, y))d(x, y). For details see [2,3].

Example 2.4 Let F(a) = ln(a2 + a), a >0. Obviously F satisfies (F1)-(F3) and for F-

contraction T, the following condition holds:

d(Tx,Ty)(d(Tx,Ty) + 1)
d(x, y)(d(x, y) + 1)

≤ e−τ , for all x, y ∈ X, Tx �= Ty.

Let us observe that in Examples 2.1-2.4 the contractive conditions are satisfied for x,

y Î X, such that Tx = Ty.

Remark 2.1 From (F1) and (2) it is easy to conclude that every F-contraction T is a

contractive mapping, i.e.

d(Tx,Ty) < d(x, y), for all x, y ∈ X,Tx �= Ty.

Thus every F-contraction is a continuous mapping.

Remark 2.2 Let F1, F2 be the mappings satisfying (F1)-(F3). If F1(a) ≤ F2(a) for all a
>0 and a mapping G = F2 - F1 is nondecreasing then every F1-contraction T is F2-

contraction.
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Indeed, from Remark 2.1 we have G(d(Tx, Ty)) ≤ G(d(x, y)) for all x, y Î X, Tx ≠ Ty.

Thus, for all x, y Î X, Tx ≠ Ty we obtain

τ + F2(d(Tx,Ty)) = τ + F1(d(Tx,Ty)) + G(d(Tx,Ty))

≤ F1(d(x, y)) + G(d(x, y)) = F2(d(x, y)).

Now we state the main result of the article.

Theorem 2.1 Let (X, d) be a complete metric space and let T : X ® X be an F-con-

traction. Then T has a unique fixed point x* Î X and for every x0 Î X a sequence

{Tnx0}nÎN is convergent to x*.

Proof. First, let us observe that T has at most one fixed point. Indeed, if x∗
1, x

∗
2 ∈ X,

Tx∗
1 = x∗

1 �= x∗
2 = Tx∗

2, then we get

τ ≤ F(d(x∗
1, x

∗
2)) − F(d(Tx∗

1,Tx
∗
2)) = 0,

which is a contradiction.

In order to show that T has a fixed point let x0 Î X be arbitrary and fixed. We

define a sequence {xn}nÎN ⊂ X, xn+1 = Txn, n = 0, 1, .... Denote gn = d(xn+1, xn), n = 0,

1, ....

If there exists n0 Î N for which xn0+1 = xn0, then Txn0 = xn0 and the proof is finished.

Suppose now that xn+1 ≠ xn, for every n Î N. Then gn >0 for all n Î N and, using

(2), the following holds for every n Î N:

F(γn) ≤ F(γn−1) − τ ≤ F(γn−2) − 2τ ≤ . . . ≤ F(γ0) − nτ . (5)

From (5), we obtain limn®∞ F(gn) = -∞ that together with (F2) gives

lim
n→∞ γn = 0. (6)

From (F3) there exists k Î (0, 1) such that

lim
n→∞ γn

kF(γn) = 0. (7)

By (5), the following holds for all n Î N:

γn
kF(γn) − γn

kF(γ0) ≤ γn
k(F(γ0) − nτ ) − γn

kF(γ0) = −γn
knτ ≤ 0. (8)

Letting n ® ∞ in (8), and using (6) and (7), we obtain

lim
n→∞ nγnk = 0. (9)

Now, let us observe that from (9) there exists n1 Î N such that nγnk ≤ 1 for all n ≥

n1. Consequently we have

γn ≤ 1
n1/k

, for all n ≥ n1. (10)

In order to show that {xn}nÎN is a Cauchy sequence consider m, n Î N such that m

> n ≥ n1. From the definition of the metric and from (10) we

getd(xm, xn) ≤ γm−1 + γm−2 + · · · + γn <
∞∑

i=n
γi ≤

∞∑

i=n

1

i1/k
.

From the above and from the convergence of the series ∑∞
i=1 1/i

1
k we receive that

{xn}nÎN is a Cauchy sequence.
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From the completeness of X there exists x* Î X such that limn®∞ xn = x*. Finally,

the continuity of T yields

d(Tx∗, x∗) = lim
n→∞d(Txn, xn) = lim

n→∞d(xn+1, xn) = 0,

which completes the proof. □
Note that for the mappings F1(a) = ln(a), a >0, F2(a) = ln(a) + a, a >0, F1 < F2 and

a mapping F2 - F1 is strictly increasing. Hence, by Remark 2.2, we obtain that every

Banach contraction (3) satisfies the contraction condition (4). On the other side in

Example 2.5, we present a metric space and a mapping T which is not F1-contraction

(Banach contraction), but still is an F2-contraction. Consequently, Theorem 2.1 gives

the family of contractions which in general are not equivalent.

Example 2.5 Consider the sequence {Sn}nÎN as follows:

S1 = 1,

S2 = 1 + 2,

. . .

Sn = 1 + 2 + · · · + n =
n(n + 1)

2
,n ∈ N,

. . .

Let X = {Sn : n Î N} and d(x, y) = |x - y|, x, y Î X. Then (X, d) is a complete metric

space. Define the mapping T : X ® X by the formulae:

T(Sn) = Sn−1 for n > 1,

T(S1) = S1.

First, let us consider the mapping F1 defined in Example 2.1. The mapping T is not

the F1-contraction in this case (which actually means that T is not the Banach contrac-

tion). Indeed, we get

lim
n→∞

d(T(Sn),T(S1))
d(Sn, S1)

= lim
n→∞

Sn−1 − 1
Sn − 1

= 1.

On the other side taking F2 as in Example 2.2, we obtain that T is F2-contraction

with τ = 1. To see this, let us consider the following calculations:

First, observe that

∀m,n∈N [T(Sm) �= T(Sn) ⇔ ((m > 2 ∧ n = 1) ∨ (m > n > 1))].

For every m Î N, m >2 we have

d(T(Sm),T(S1))
d(Sm, S1)

ed(T(Sm),T(S1))−d(Sm,S1) =
Sm−1 − 1
Sm − 1

eSm−1−Sm

=
m2 − m − 2
m2 +m − 2

e−m < e−m < e−1.

For every m, n Î N, m > n >1 the following holds

d(T(Sm),T(Sn))
d(Sm, Sn)

ed(T(Sm),T(Sn))−d(Sm ,Sn) =
Sm−1 − Sn−1

Sm − Sn
eSn−Sn−1+Sm−1−Sm

=
m + n − 1
m + n + 1

en−m < en−m ≤ e−1.
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Clearly S1 is a fixed point of T. To see the computational data confirming the above

calculations the reader is referred to Table 1.
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