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Abstract

In this article, zero points of the sum of a maximal monotone operator and an
inverse-strongly monotone mapping, solutions of a monotone variational inequality,
and fixed points of a strict pseudocontraction are investigated. A hybrid projection
iterative algorithm is considered for analyzing the convergence of the iterative
sequences. Strong convergence theorems are established in the framework of real
Hilbert spaces without any compact assumptions. Some applications of the main
results are also provided.
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1. Introduction
The theory of monotone operators has emerged as an effective and powerful tool for

studying a wide class of unrelated problems arising in various branches of social, engi-

neering, and pure sciences in unified and general framework. Two notions related to

monotone operators have turned out to be very useful in the study of various problems

involving such operators. The first one, which is inspired by the notion of subdifferen-

tial of a convex function, is the concept of enlargement of a given operator; see [1-3]

and the references therein. It allows to make a quantitative analysis in different pro-

blems involving monotone operators, like for example variational inequalities, inclu-

sions, etc. The second notion is the one of generalized sum of two monotone

operators; see [4,5] and the references therein. In recent years, much attention has

been given to develop efficient numerical methods for treating zero point problems of

monotone operators and fixed point problems of mappings which are Lipschitz contin-

uous; see [6-28] and the references therein. The gradient-projection method is a

powerful tool for solving constrained convex optimization problems and has exten-

sively been studied; see [29-31] and the references therein. It has recently applied to

solve split feasibility problems which find applications in image reconstructions and

the intensity modulated radiation theory; see [32-35] and the reference therein.

In this article, zero points of the sums of a maximal monotone operator and an

inverse-strongly monotone mapping, solutions of a monotone variational inequality,
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and fixed points of a strict pseudocontraction are investigated based on a hybrid itera-

tive method.

The organization of this article is as follows. In Section 2, we provide some necessary

preliminaries. In Section 3, a hybrid iterative method is proposed and analyzed. Strong

convergence theorems for common elements in the zero point set of the sums of a

maximal monotone operator and an inverse-strongly monotone mapping, the solution

set of a monotone variational inequality, and the fixed point set of a strict pseudocon-

traction are established in the framework of real Hilbert spaces without any compact

assumptions. In Section 4, applications of the main results are discussed.

2. Preliminaries
In what follows, we always assume that H is a real Hilbert space with inner product 〈· ,

·〉 and norm || · ||. Let C be a nonempty, closed, and convex subset of H. Let S : C ®
C be a nonlinear mapping. F(S) stands for the fixed point set of S; that is, F(S):= {x Î
C : x = Tx}.

Recall that S is said to be nonexpansive iff

||Sx − Sy|| ≤ ||x − y||, ∀x, y ∈ C.

If C is a bounded, closed, and convex subset of H, then F(S) is not empty, closed,

and convex; see [36].

S is said to be �-strictly pseudocontractive iff there exists a constant � Î [0, 1) such

that

||Sx − Sy||2 ≤ ||x − y||2 + κ||x − Sx − y + Sy||2, ∀x, y ∈ C.

It is clear that the class of �-strictly pseudocontractive mappings includes the class of

non-

expansive mappings.

Let A : C ® H be a mapping. A is said to be monotone iff

〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈ C.

A is said to be inverse-strongly monotone iff there exists a constant a >0 such that

〈Ax − Ay, x − y〉 ≥ α||Ax − Ay||2, ∀x, y ∈ C.

For such a case, A is also said to be a-inverse-strongly monotone.

A is said to be Lipschitz continuous iff there exists a positive constant L such that

||Ax − Ay|| ≤ L||x − y||, ∀x, y ∈ C.

Recall that the classical variational inequality is to find an x Î C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (2:1)

It is known that x Î C is a solution to (2.1) if and only if x is a fixed point of the

mapping ProjC(I - rA), where r >0 is a constant, I stands for the identity mapping, and

ProjC stands for the metric projection from H onto C. If A is a-inverse-strongly mono-

tone and r Î (0, 2a], then the mapping ProjC(I - rA) is nonexpansive; see [37] for

more details. It follows that V I(C, A), where V I(C, A) stands for the solution set of

(2.1), is closed and convex.
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A set-valued mapping R : H ⇉ H is said to be monotone iff, for all x, y Î H, f Î Rx

and g Î Ry imply 〈x - y, f - g〉 >0. A monotone mapping R : H ⇉ H is maximal iff the

graph G(R) of R is not properly contained in the graph of any other monotone map-

ping. It is known that a monotone mapping R is maximal if and only if, for any (x, f)

Î H × H, 〈x - y, f - g〉 ≥ 0, for all (y, g) Î G(R) implies f Î Rx.

The class of monotone operators is one of the most important classes of operators.

Within the past several decades, many authors have been devoting to the studies on

the existence and convergence of zero points for maximal monotone operators; see

[38-45] and the references therein. For a maximal monotone operator M on H and r

>0, we may define the single-valued resolvent Jr : H ® D(M ), where D(M ) denotes

the domain of M. It is known that Jr is firmly nonexpansive and M -1(0) = F(Jr), where

F (Jr):= {x Î D(M ): x = Jrx}, and M -1(0): {x Î H : 0 Î Mx}.

In this article, zero points of the sums of a maximal monotone operator and an

inverse-strongly monotone mapping, solutions of a monotone variational inequality,

and fixed points of a strict pseudocontraction are investigated. A hybrid iterative algo-

rithm is considered for analyzing the convergence of iterative sequences. Strong con-

vergence theorems are established in the framework of real Hilbert spaces without any

compact assumptions.

In order to prove our main results, we also need the following definitions and

lemmas.

Lemma 2.1 [46]. Let C be a nonempty, closed, and convex subset of H, and S : C ®
C a �-strict pseudocontraction. Define a mapping Sax = bx + (1 - b)Sx for all x Î C. If

b Î [�, 1), then the mapping Sb is a nonexpansive mapping such that F (Sb) = F (S).

Lemma 2.2 [47]. Let C be a nonempty, closed, and convex subset of H. Let S : C ® C

be a nonexpansive mapping. Then the mapping I - S is demiclosed at zero, that is, if

{xn} is a sequence in C such that xn ⇀ x̄ and xn - Sxn ® 0, then x̄ ∈ F(S) .

Lemma 2.3. Let C be a nonempty, closed, and convex subset of H, B : C ® H a map-

ping, and M : H ⇉ H a maximal monotone operator. Then F(Jr(I - sB)) = (B + M)-1(0).

Proof. Notice that

p ∈ F(Jr(I − sB)) ⇔ p = Jr(I − sB)p ⇔ p − sBp ∈ p + sMp

⇔ 0 ∈ (B +M)−1(0) ⇔ p ∈ (B +M)−1(0).

This completes the proof.

Lemma 2.4 [48]. Let C be a nonempty, closed, and convex subset of H, A : C ® H a

Lipschitz monotone mapping, and NCx the normal cone to C at x Î C; that is, NCx =

{y Î H : 〈x - u, y〉, ∀u Î C}. Define

Wx =
{
Ax +NCx, x ∈ C,
∅ x 
∈ C.

Then W is maximal monotone and 0 Î Wx if and only if x Î V I(C, A).

3. Main results
Now, we are in a position to give our main results.

Theorem 3.1. Let C be a nonempty, closed, and convex subset of H. Let S : C ® C be

a �-strict pseudocontraction with a nonempty fixed point set, A : C ® H an a-inverse-
strongly monotone mapping, and B : C ® H a b-inverse-strongly monotone mapping.

Wu and Liu Fixed Point Theory and Applications 2012, 2012:90
http://www.fixedpointtheoryandapplications.com/content/2012/1/90

Page 3 of 15



Let M : H ⇉ H be a maximal monotone operator such that D(M) ⊂ C. Assume that

F := F(S) ∩ (B +M)−1(0) ∩ VI(C, A) is not empty. Let {xn} be a sequence generated by

the following iterative process:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 ∈ C,
C1 = C,
zn = ProjC(Jsn(xn − snBxn) − rnAJsn(xn − snBxn)),
yn = αnxn + (1 − αn)(βnzn + (1 − βn)Szn),
Cn+1 = {v ∈ Cn : ||yn − v|| ≤ ||xn − v||},
xn+1 = ProjCn+1

x1, n ≥ 0,

(3:1)

where Jsn = (I + snM)−1 , {rn} is a sequence in (0, 2a), {sn} is a sequence in (0, 2b), and
{an} and {bn} are sequences in (0, 1). Assume that the following restrictions are satisfied

(a) 0 ≤ an ≤ a <1, � ≤ bn ≤ b <1;

(b) 0 < r ≤ rn ≤ r’ <2a;
(c) 0 < s ≤ sn ≤ s’ <2b,

where a, b, r, r’, s, and s’ are real constants. Then the sequence {xn} converges strongly

to ProjFx1 .

Proof. First, we show that Cn is closed and convex for each n ≥ 1. From the assump-

tion, we see that C1 = C is closed and convex. Suppose that Cm is closed and convex

for some m ≥ 1. We show that Cm+1 is closed and convex for the same m. Let v1, v2 Î
Cm+1 and v = tv1 + (1 - t)v2, where t Î (0, 1). Notice that

||ym − v|| ≤ ||xm − v||

is equivalent to

||ym||2 − ||xm||2 − 2〈v, ym − xm〉 ≥ 0.

It is clearly to see that v Î Cm+1. This shows that Cn is closed and convex for each n

≥ 1. Put

vn = Jsn(xn − snBxn),

and

un = Snzn,

where Sn is defined by

Snx = βnx + (1 − βn)Sx, ∀x ∈ C.

We see from Lemma 2.1 that Sn is nonexpansive with F (Sn) = F (S). Since A is a-
inverse-strongly monotone, and B is b-inverse-strongly monotone, we see from the

restriction (b) that

||(x − rmAx) − (y − rmAy)||2 = ||x − y||2 − 2rm〈x − y,Ax − Ay〉 + r2mm||Ax − Ay||2
≤ ||x − y||2 − rm(2α − rm)||Ax − Ay||2
≤ ||x − y||2, ∀x, y ∈ C,

(3:2)
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and

||(I − smB)x − (I − smB)y||2 = ||x − y||2 − 2sm〈x − y,Bx − By〉 + s2m||Bx − By||2
≤ ||x − y||2 − sm(2β − sm)||Bx − By||2
≤ ||x − y||2, ∀x, y ∈ C.

(3:3)

Now, we show that F ⊂ Cn for each n ≥ 1. Notice that F ⊂ C = C1 . Suppose that

F ⊂ Cm for some m ≥ 1. For any p ∈ F ⊂ Cm , we see from (3.2), and (3.3) that

||ym − p|| ≤ αm||xm − p|| + (1 − αm)||um − p||
≤ αm||xm − p|| + (1 − αm)||zm − p||
≤ αm||xm − p|| + (1 − αm)||(vm − rmAvm) − (p − rmAp)||
≤ αm||xm − p|| + (1 − αm)||(xm − smBxm) − (p − smBp) ||
≤ αm||xm − p|| + (1 − αm)||xm − p||
= ||xm − p||.

(3:4)

This shows that p Î Cm+1. This proves that F ⊂ Cn . Note that xn = ProjCn
x1 . For

each p ∈ F ⊂ Cn , we have || x1 - xn || ≤ || x1 - p ||. Since B is inverse-strongly mono-

tone, we see from Lemma 2.3 that (B + M)-1(0) is closed, and convex. Since A is

Lipschitz continuous, we find that VI(C, A) is close, and convex. In view of Lemma

2.2, we obtain F(S) is closed, and convex. This proves that F is closed and convex. It

follows that

||x1 − xn|| ≤ ||x1 − ProjFx1||. (3:5)

This implies that {xn} is bounded. Since xn = ProjCn
x1 and

xn+1 = ProjCn+1
x1 ∈ Cn+1 ⊂ Cn , we have

0 ≤ 〈x1 − xn, xn − xn+1〉
= 〈x1 − xn, xn − x1 + x1 − xn+1〉
≤ −||x1 − xn||2 + ||x1 − xn|| ||x1 − xn+1||.

It follows that

||xn − x1|| ≤ ||xn+1 − x1||.

This proves that limn®∞ || xn - x1 || exists. Notice that

||xn − xn+1||2
= ||xn − x1||2 + 2〈xn − x1, x1 − xn+1〉 + ||x1 − xn+1||2
= ||xn − x1||2 − 2||xn − x1||2 + 2〈xn − x1, xn − xn+1〉 + ||x1 − xn+1||2
≤ ||x1 − xn+1||2 − ||xn − x1||2.

It follows that

lim
n→∞ ||xn − xn+1|| = 0. (3:6)

In view of xn+1 = ProjCn+1
x1 ∈ Cn+1 , we see that

||yn − xn+1|| ≤ ||xn − xn+1||.
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This implies that

||yn − xn|| ≤ ||yn − xn+1|| + ||xn − xn+1|| ≤ 2||xn − xn+1||.

We, therefore, obtain from (3.6) that

lim
n→∞ ||xn − yn|| = 0. (3:7)

On the other hand, we see from (3.3) that

||yn − p||2 ≤ αn||xn − p||2 + (1 − αn)||un − p||2
≤ αn||xn − p||2 + (1 − αn)||zn − p||2
≤ αn||xn − p||2 + (1 − αn)||vn − p||2
= αn||xn − p||2 + (1 − αn)||Jsn(xn − snBxn) − Jsn(p − snBp)||2
≤ ||xn − p||2 − (1 − αn)sn(2β − sn)||Bxn − Bp||2.

It follows that

(1 − αn)sn(2β − sn)||Bxn − Bp||2 ≤ ||xn − p||2 − ||yn − p||2
≤ ||xn − yn||(||xn − p|| + ||yn − p||).

In view of the restrictions (a), and (c), we find from (3.7) that

lim
n→∞ ||Bxn − Bp|| = 0. (3:8)

Since Jsn is firmly nonexpansive, we find that

||vn − p||2 = ||Jsn(xn − snBxn) − Jsn(p − snBp)||2
≤ 〈vn − p, (xn − snBxn) − (p − snBp)〉
=
1
2
(||vn − p||2 + ||(xn − snBxn) − (p − snBp)||2

−||(vn − p) − ((xn − snBxn) − (p − snBp))||2)
≤ 1

2
(||vn − p||2 + ||xn − p||2 − ||vn − xn + sn(Bxn − Bp)||2)

=
1
2
(||vn − p||2 + ||xn − p||2 − ||vn − xn||2 − s2n||Bxn − Bp||2

−2sn〈vn − xn, Bxn − Bp〉)
≤ 1

2
(||vn − p||2 + ||xn − p||2 − ||vn − xn||2 + 2sn||vn − xn|| ||Bxn − Bp||).

This finds that

||vn − p||2 ≤ ||xn − p||2 − ||vn − xn||2 + 2sn||vn − xn|| ||Bxn − Bp||. (3:9)

It follows from (3.1) that

||yn − p||2 ≤ αn||xn − p||2 + (1 − αn)||un − p||2
≤ ||xn − p||2 − (1 − αn)||vn − xn||2 + 2sn||vn − xn|| ||Bxn − Bp||,

which in turn implies that

(1 − αn)||vn − xn||2 ≤ ||xn − p||2 − ||yn − p||2 + 2sn||vn − xn|| ||Bxn − Bp||
≤ ||xn − yn||(||xn − p|| + ||yn − p||) + 2sn||vn − xn|| ||Bxn − Bp||.

Wu and Liu Fixed Point Theory and Applications 2012, 2012:90
http://www.fixedpointtheoryandapplications.com/content/2012/1/90

Page 6 of 15



In view of the restriction (a), we see from (3.7), and (3.8) that

lim
n→∞ ||vn − xn|| = 0. (3:10)

On the other hand, we see from (3.2) that

||yn − p||2 ≤ αn||xn − p||2 + (1 − αn)||un − p||2
≤ αn||xn − p||2 + (1 − αn)||(vn − rnAvn) − (p − rnAp)||2
≤ ||xn − p||2 − (1 − αn)rn(2α − rn)||Avn − Ap||2.

It follows that

(1 − αn)rn(2α − rn)||Avn − Ap||2 ≤ ||xn − p||2 − ||yn − p||2
≤ ||xn − yn||(||xn − p|| + ||yn − p||).

In view of the restrictions (a), and (b), we find from (3.7) that

lim
n→∞ ||Avn − Ap|| = 0. (3:11)

Since ProjC is firmly nonexpansive, we arrive at

||zn − p||2 = ||ProjC(vn − rnAvn) − ProjC(p − rnAp)||2
≤ 〈zn − p, (vn − rnAvn) − (p − rnAp)〉
=
1
2
(||zn − p||2 + ||(vn − rnAvn) − (p − rnAp)||2

− ||(zn − p) − ((vn − rnAvn) − (p − rnAp))||2)
≤ 1

2
(||zn − p||2 + ||xn − p||2 − ||zn − vn + rn(Avn − Ap)||2)

=
1
2
(||zn − p||2 + ||xn − p||2 − ||zn − vn||2 − r2n ||Avn − Ap||2

− 2rn〈zn − vn, Avn − rp〉)
≤ 1

2
(||zn − p||2 + ||xn − p||2 − ||zn − vn||2 + 2rn||zn − vn|| ||Avn − Ap||),

which finds that

||zn − p||2 ≤ ||xn − p||2 − ||zn − vn||2 + 2rn||zn − vn|| ||Avn − Ap||. (3:12)

This implies that

||yn − p||2 ≤ αn||xn − p||2 + (1 − αn)||un − p||2
≤ ||xn − p||2 − (1 − αn)||zn − vn||2 + 2rn||zn − vn|| ||Avn − Ap||,

It follows that

(1 − αn)||zn − vn||2 ≤ ||xn − p||2 − ||yn − p||2 + 2rn||zn − vn|| ||Axn − Ap||
≤ ||xn − yn||(||xn − p|| + ||yn − p||) + 2rn||zn − vn|| ||Axn − Ap||.

In view of the restriction (a), we see from (3.7), and (3.11) that

lim
n→∞ ||zn − vn|| = 0. (3:13)
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On the other hand, we have

||xn − yn|| = ||xn − αnxn − (1 − αn)Snzn|| = (1 − αn)||xn − Snzn||.

In view of (3.7), we see from the restriction (a) that

lim
n→∞ ||xn − Snzn|| = 0. (3:14)

Note that

||zn − xn|| ≤ ||zn − vn|| + ||vn − xn||.

It follows from (3.10) and (3.13) that

lim
n→∞ ||zn − xn|| = 0. (3:15)

In view of

||xn − Snxn|| ≤ ||Snxn − Snzn|| + ||Snzn − xn||
≤ ||xn − zn|| + ||Snzn − xn||,

we see from (3.14) and (3.15) that

lim
n→∞ ||xn − Snxn|| = 0. (3:16)

Note that

||Sxn − xn|| ≤ ||Sxn − Snxn|| + ||Snxn − xn||
≤ βn||Sxn − xn|| + ||Snxn − xn||,

which yields that

(1 − βn)||Sxn − xn|| ≤ ||Snxn − xn||.

In view of the restriction (b), we conclude from (3.16) that

lim
n→∞ ||Sxn − xn|| = 0. (3:17)

Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ q . In

view of Lemma 2.2, we obtain from (3.17) that q Î F(S). In view of (3.10), and (3.15),

we see that uni ⇀ q , and zni ⇀ q , respectively. Now, we are in a position to show that

q Î VI(C, A).

Define

Wx =
{
Ax +NCx, x ∈ C,
∅, x /∈ C.

Then W is maximal monotone. Let (x, y) Î G(W). Since y - Ax Î NCx and zn Î C,

we have

〈x − zn, y − Ax〉 ≥ 0.

On the other hand, we have from zn = ProjC(I - rnA1)vn that

〈x − zn, zn − (I − rnA)vn〉 ≥ 0
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and hence
〈
x − zn,

zn − vn
rn

+ Avn

〉
≥ 0.

It follows that

〈x − zni , y〉 ≥ 〈x − zni ,Ax〉

≥ 〈x − zni ,Ax〉 −
〈
x − zni ,

zni − vni
rni

+ Avni

〉

≥ 〈x − zni ,Ax − Azni〉 + 〈x − zni ,Azni − Avni 〉 −
〈
x − zni ,

zni − vni
rni

〉

≥ 〈x − zni ,Azni − Avni〉 −
〈
x − zni ,

zni − vni
rni

〉
.

In view of the restriction (b), we obtain from (3.13) that 〈x - q, y〉 ≥ 0. We have q Î
A-10 and hence q Î VI(C, A).

Next, we prove that q Î (B + M)-1(0). Notice that

xn − snBxn ∈ vn + snMvn;

that is,

xn − vn
sn

− Bxn ∈ Mvn. (3:18)

Let µ Î ν. Since M is monotone, we find from (3.18) that
〈
xn − vn

sn
− Bxn − μ, vn − ν

〉
≥ 0.

In view of the restriction (c), we see from (3.10) that

〈−Bq − μ, q − ν〉 ≥ 0.

This implies that -Bq Î Mq, that is, q Î (B + M)-1(0). This completes q ∈ F .

Assume that there exists another subsequence {xni} of {xn} weak converges weakly to

q′ ∈ F . We can easily conclude from Opial’s condition (see [49]) that q = q’.

Finally, we show that q = ProjFx1 and {xn} converges strongly to q. This completes

the proof of Theorem 3.1. In view of the weak lower semicontinuity of the norm, we

obtain from (3.5) that

||x1 − ProjFx1|| ≤ ||x1 − q|| ≤ lim inf
n→∞ ||x1 − xn||

≤ lim sup
n→∞

||x1 − xn|| ≤ ||x1 − ProjFx1||,

which yields that limn→∞||x1 − xn|| = ||x1 − ProjFx1|| = ||x1 − q|| . It follows that

{xn} converges strongly to ProjFx1 . This completes the proof.

We conclude from Theorem 3.1 the following results on nonexpansive mappings.

Corollary 3.2. Let C be a nonempty, closed, and convex subset of H. Let S : C ® C be

a nonexpansive mapping with a nonempty fixed point set, A : C ® H be an a-inverse-
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strongly monotone mapping, and B : C ® H be a b-inverse-strongly monotone mapping.

Let M : H ⇉ H be a maximal monotone operator such that D(M) ⊂ C. Assume that

F := F(S) ∩ (B +M)−1(0) ∩ VI(C,A)is not empty. Let {xn} be a sequence generated by

the following iterative process:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ C,

C1 = C,

zn = ProjC(Jsnxn − snBxn) − rnAJsn(xn − snBxn)),

yn = αnxn + (1 − αn)Szn,

Cn+1 = {v ∈ Cn : ||yn − v|| ≤ ||xn − v||},
xn+1 = ProjCn+1

x1, n ≥ 0,

where Jsn = (I + snM)−1 , {rn} is a sequence in (0, 2a), {sn} is a sequence in (0, 2b), and
{ an} is a sequence in (0, 1). Assume that the following restrictions are satisfied

(a) 0 ≤ an ≤ a <1;

(b) 0 < r ≤ rn ≤ r’ <2a;
(c) 0 < s ≤ sn ≤ s’ <2b,

where a, r, r’, s, and s’ are real constants. Then the sequence {xn} converges strongly to

ProjFx1 .

If A = 0, then Corollary 3.2 is reduced to the following.

Corollary 3.3. Let C be a nonempty, closed, and convex subset of H. Let S : C ® C be

a nonexpansive mapping with a nonempty fixed point set, and B : C ® H be a b-
inverse-strongly monotone mapping. Let M : H ⇉ H be a maximal monotone operator

such that D(M) ⊂ C. Assume that F := F(S) ∩ (B +M)−1(0)is not empty. Let {xn} be a

sequence generated by the following iterative process:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 ∈ C,

C1 = C,

yn = αnxn + (1 − αn)SJsn(xn − snBxn),

Cn+1 = {v ∈ Cn : ||yn − v|| ≤ ||xn − v||},
xn+1 = ProjCn+1

x1, n ≥ 0,

where Jsn = (I + snM)−1 {sn} is a sequence in (0, 2b), and {an} is a sequence in (0, 1).

Assume that the following restrictions are satisfied

(a) 0 ≤ an ≤ a <1;

(b) 0 < s ≤ sn ≤ s’ <2b,

where a, s, and s’ are real constants. Then the sequence {xn} converges strongly to

ProjFx1 .

If B = 0, then Corollary 3.2 is reduced to the following.

Corollary 3.4. Let C be a nonempty, closed, and convex subset of H. Let S : C ® C be

a nonexpansive mapping with a nonempty fixed point set, A : C ® H a a-inverse-
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strongly monotone mapping. Let M : H ⇉ H be a maximal monotone operator such that

D(M) ⊂ C. Assume that F := F(S) ∩ M−1(0) ∩ VI(C,A) is not empty. Let {xn} be a

sequence generated by the following iterative process:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ C,

C1 = C,

zn = ProjC(Jsnxn − rnAJsn xn)),

yn = αnxn + (1 − αn)Szn,

Cn+1 = {v ∈ Cn : ||yn − v|| ≤ ||xn − v||},
xn+1 = ProjCn+1

x1, n ≥ 0,

where Jsn = (I + snM)−1 ,{rn} is a sequence in (0, 2a), {sn} is a sequence in (0, +∞), and

{an} is a sequence in (0, 1). Assume that the following restrictions are satisfied

(a) 0 ≤ an ≤ a <1;

(b) 0 < r ≤ rn ≤ r’ <2a;
(c) 0 < s ≤ sn <∞,

where a, r, r’, and s are real constants. Then the sequence {xn} converges strongly to

ProjFx1 .

Let f : H ® (-∞, +∞] be a proper convex lower semicontinuous function. Then the

subdifferential ∂ of f is defined as follows

∂f (x) = {y ∈ H : f (z) ≥ f (x) + 〈z − x, y〉, z ∈ H}, ∀x ∈ H.

From Rockafellar [50], we know that ∂f is maximal monotone. It is not hard to verify

that 0 Î ∂ f (x) if and only if f (x) = miny∈Hf (y) .
Let IC be the indicator function of C, i.e.,

IC(x) =
{
0, x ∈ C,
+∞,x 
∈ C.

Since IC is a proper lower semicontinuous convex function on H, we see that the

subdifferential ∂IC of IC is a maximal monotone operator. It is clearly that Jsx = ProjCx,

∀x Î H. Notice that (B + ∂IC)
- 1(0) = V I(C, B). Indeed,

x ∈ (B + ∂IC)−1(0) ⇔ 0 ∈ Bx + ∂ICx

⇔ −BX ∈ ∂ICx

⇔ 〈Bx, y − x〉 ≥ 0

⇔ x ∈ VI(C, B).

In view of Theorem 3.1, we have the following.

Corollary 3.5. Let C be a nonempty, closed, and convex subset of H. Let S : C ® C be

aa � -strict pseudocontraction with a nonempty fixed point set, A : C ® H be an a-
inverse-strongly monotone mapping, and B : C ® H be a b-inverse-strongly monotone

mapping. Assume hat F := F(S) ∩ VI(C, B) ∩ VI(C, A)is not empty. Let {xn} be a

sequence generated by he following iterative process:
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 ∈ C,
C1 = C,
zn = ProjC(ProjC(xn − snBxn) − rnAProjC(xn − snBxn)),
yn = αnxn + (1 − αn)(βnzn + (1 − βn)Szn),
Cn+1 = {v ∈ Cn : ‖ yn − v ‖ ≤ ‖ xn − v ‖},
xn+1 = ProjCn + 1

x1, n ≥ 0,

where {rn} is a sequence in (0, 2a), {sn} is a sequence in (0, 2b), and {an} and {bn} are
sequences in (0, 1). Assume that the following restrictions are satisfied

(a) 0 ≤ an ≤ a <1, � ≤ bn ≤ b <1;

(b) 0 < r ≤ rn ≤ r’ <2a;
(c) 0 <s ≤ sn ≤ s’ <2b,

where a, b, r, r’, s, and s’ are real constants. Then the sequence {xn} converges strongly

to Pr ojFx1.

4. Applications
Let F be a bifunction of C × C into ℝ, where ℝ denotes the set of real numbers. Recall

the following equilibrium problem in the terminology of Blum and Oettli [51] (see also

Fan [52]).

Find x ∈ C such that F(x, y) ≥ 0, ∀y ∈ C. (4:1)

To study the equilibrium problem (4.1), we may assume that F satisfies the following

conditions:

(A1) F(x, x) = 0 for all x Î C;

(A2) F is monotone, i.e., F(x, y) + F(y, x) = 0 for all x, y Î C;

(A3) for each x, y, z Î C,

lim sup
t↓0

F(tz + (1 − t)x, y) ≤ F(x, y);

(A4) for each xÎC,y↦F(x,y) is convex and lower semi-continuous.

Putting F(x, y) = 〈Ax, y - x〉 for every x, y Î C, we see that the equilibrium problem

(4.1) is reduced to the variational inequality (2.1).

The following lemma can be found in [51,53].

Lemma 4.1. Let C be a nonempty, closed, and convex subset of H and F:CxC®ℝ a

bifunction satisfying (A1)-(A4). Then, for any s >0 and x Î H, there exists z Î C such

that

F(z, y) +
1
s
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Further, define

Tsx =
{
z ∈ C : F(z, y) +

1
s
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
(4:2)

for all s >0 and × Î H. Then, the following hold:

(a) Ts is single-valued;
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(b) Ts is firmly nonexpansive; that is,

∥∥Tsx − Tsy
∥∥2 ≤ 〈Tsx − Tsy, x − y〉, ∀x, y ∈ H;

(c) F(Ts) = EP (F );

(d) EP(F) is closed and convex.

Lemma 4.2 [8]. Let C be a nonempty, closed, and convex subset of H, F a bifunction

from C×C to ℝ which satisfies (A1)-(A4), and AF a multivalued mapping of H into

itself defined by

AFX =
{ {z ∈ H : F(x, y) ≥ 〈y − x, z〉, ∀y ∈ C}, x ∈ C,

∅, x 
∈ C.
(4:3)

Then AF is a maximal monotone operator with the domain D(AF ) ⊂ C,

EP(F) = A−1
F (0) , where FP(F) stands for the solution set of (4.1), and

Tsx = (I + sAF)−1x, ∀x ∈ H, r > 0,

where Ts is defined as in (4.2).

In this section, we consider the problem of approximating a solution of the equili-

brium problem.

Theorem 4.3. Let C be a nonempty, closed, and convex subset of H. Let S : C ® C be

a �-strict pseudocontraction with a nonempty fixed point set, and F:C×C®ℝ a bifunc-

tion satisfying (A1)-(A4). Assume that F := F(S) ∩ EP(F) is not empty. Let {xn} be a

sequence generated by the following iterative process:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 ∈ C,
C1 = C,
yn = αnxn + (1 − αn)(βn(I + snAF)

−1xn + (1 − βn)S(I + snAF)
−1xn),

Cn+1 = {v ∈ Cn : ‖ yn − v ‖ ≤ ‖ xn − v ‖},
xn+1 = ProjCn+1

x1, n ≥ 0,

where AF is defined by (4.3), {sn} is a positive sequence, and {an} and {bn} are
sequences in (0, 1). Assume that the following restrictions are satisfied

(a) 0 ≤ an ≤ a <1, � ≤ bn ≤ b <1;

(b) 0 < s ≤ sn ≤ s’ < ∞,

where a, b, s, and s’ are real constants. Then the sequence {xn} converges strongly to

ProjFx1 .
Proof. Putting A = B = 0, we immediately conclude from Lemmas 4.1 and 4.2 the

desired conclusion.
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