RESEARCH Open Access

Convergence theorem of κ -strictly pseudo-contractive mapping and a modification of generalized equilibrium problems

Atid Kangtunyakarn

Correspondence: beawrock@hotmail.com Department of Mathematics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Abstract

The purpose of this article, we first introduce strong convergence theorem of κ -strictly pseudo-contractive mapping without assumption of the mapping $S = \kappa l + (1 - \kappa)T$. Then, we prove strong convergence of proposed iterative scheme for finding a common element of the set of fixed points of κ -strictly pseudo-contractive mapping and the set of solution of a modification of generalized equilibrium problem. Moreover, by using our main result and a new lemma in the last section we obtain strong convergence theorem for finding a common element of the set of fixed points of κ -strictly pseudo-contractive mapping and two sets of solutions of variational inequalities.

Keywords: nonexpansive mappinga, strictly pseudo-contractive mapping, generalized equilibrium problem, inverse-strongly monotone, variational inequality problem

1 Introduction

Throughout this article, we assume that H is a real Hilbert space and C is a nonempty subset of H. A mapping T of C into itself is nonlinear mapping. A point x is called a fixed point of T if Tx = x. We use F(T) to denote the set of fixed point of T. Recalled the following definitions;

Definition 1.1. The mapping T is said to be nonexpansive if

$$||Tx - Ty|| < ||x - y||, \quad \forall x, y \in H$$

Definition 1.2. The mapping T is said to be strictly pseudo-contractive [1] with the coefficient $\kappa \in [0, 1)$ if

$$||Tx - Ty||^2 \le ||x - y||^2 + \kappa ||(I - T)x - (I - T)y||^2 \quad \forall x, y \in H.$$
(1.1)

For such case, T is also said to be a κ -strictly pseudo contractive mapping.

The class of κ -strictly pseudo-contractive mapping strictly includes the class of non-expansive mapping.

Let $A: C \to H$. The *variational inequality problem* is to find a point $u \in C$ such that

$$\langle Au, v - u \rangle > 0 \tag{1.2}$$

for all $\nu \in C$.

The variational inequality has emerged as a fascinating and interesting branch of mathematical and engineering sciences with a wide range of applications in industry, finance, economics, social, ecology, regional, pure and applied sciences (see, e.g. [2-5]).

A mapping A of C into H is called α -inverse strongly monotone; see [6], if there exists a positive real number α such that

$$\langle x - y, Ax - Ay \rangle \ge \alpha ||Ax - Ay||^2$$

for all $x, y \in C$.

Let $F:C\times C\to \mathbb{R}$ be a bifunction. The equilibrium problem for F is to determine its equilibrium points, i.e. the set

$$EP(F) = \{x \in C : F(x, y) \ge 0, \quad \forall y \in C\}. \tag{1.3}$$

From (1.2) and (1.3), we have the following generalized equilibrium problem, i.e.

Find
$$z \in C$$
 such that $F(z, y) + \langle Az, y - z \rangle \ge 0$, $\forall y \in C$. (1.4)

The set of such $z \in C$ is denoted by EP(F, A), i.e.,

$$EP(F, A) = \{z \in C : F(z, y) + \langle Az, y - z \rangle \ge 0, \forall y \in C\}$$

In the case of $A \equiv 0$, EP(F, A) is denoted by EP(F). In the case of $F \equiv 0$, EP(F, A) is also denoted by VI(C, A).

Numerous problems in physics, optimization and economics reduce to find a solution of EP(F) (see, for example [7-9]). Recently, many authors considered the iterative scheme for finding a common element of the set of solution of equilibrium problem and the set of solutions of fixed point problem (see, for example [10-14]). In 2005, Combettes and Hirstoaga [8] introduced an iterative scheme for finding the best approximation to the initial data when EP(F) is nonempty and they also proved the strong convergence theorem.

In 2007, Takahashi and Takahashi [11] introduced viscosity approximation method in framework of a real Hilbert space H. They defined the iterative sequence $\{x_n\}$ and $\{u_n\}$ as follows:

$$\begin{cases} x_1 \in H, \text{ arbitrarily;} \\ F(u_n, \gamma) + \frac{1}{r_n} \langle \gamma - u_n, u_n - x_n \rangle \ge 0, \quad \forall \gamma \in C, \\ x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) T u_n, \quad \forall n \in \mathbb{N}, \end{cases}$$

$$(1.5)$$

where $f: H \to H$ is a contraction mapping with constant $\alpha \in (0, 1)$ and $\{\alpha_n\} \subset [0, 1]$, $\{r_n\} \subset (0, \infty)$. They proved under some suitable conditions on the sequence $\{\alpha_n\}$, $\{r_n\}$ and bifunction F that $\{x_n\}$, $\{u_n\}$ strongly converge to $z \in F(T) \cap EP(F)$, where $z = P_{F(T)} \cap EP(F) \cap EP(F)$.

Recently, in 2008, Takahashia and Takahashi [14] introduced a general iterative method for finding a common element of EP (F, A) and F(T). They defined $\{x_n\}$ in the following way:

$$\begin{cases} u, x_1 \in C, \text{ arbitrarily;} \\ F(z_n, \gamma) + \langle Ax_n, \gamma - z_n \rangle + \frac{1}{\lambda_n} \langle \gamma - z_n, z_n - x_n \rangle \ge 0, & \forall \gamma \in C, \\ x_{n+1} = \beta_n x_n + (1 - \beta_n) T(a_n u + (1 - a_n) z_n), & \forall n \in \mathbb{N}, \end{cases}$$

$$(1.6)$$

where A be an α -inverse strongly monotone mapping of C into H with positive real number α and $\{a_n\} \in [0, 1], \{\beta_n\} \subset [0, 1], \{\lambda_n\} \subset [0, 2\alpha],$ and proved strong convergence of the scheme (1.6) to $z \in \bigcap_{i=1}^N F(T_i) \cap EP(F, A)$, where $z = P_{\bigcap_{i=1}^N F(T_i) \cap EP} u$ in the framework of a Hilbert space, under some suitable conditions on $\{a_n\}$, $\{\beta_n\}$, $\{\lambda_n\}$ and bifunction F.

In 2009, Inchan [15] proved the following theorem:

Theorem 1.1. Let H be a Hilbert space, C be a nonempty closed convex subset of H such that $C \pm C \subseteq C$, and let $T: C \to H$ be a κ -strictly pseudo-contractive mapping with a fixed point for some $0 \le \kappa < 1$. Let A be a strongly positive bounded linear operator on C with coefficient $\bar{\gamma}$ and $f: C \to C$ be a contraction with the contractive constant

$$(0 < \alpha < 1)$$
 such that $0 < \gamma < \frac{\bar{\gamma}}{\alpha}$. Let $\{x_n\}$ be the sequence generated by

$$\begin{cases} x_1 \in C, \\ x_{n+1} = \alpha_n \gamma f(x_n) + \beta_n x_n + ((1 - \beta_n)I - \alpha_n A) P_C S x_n, \end{cases}$$

where $S: C \to H$ is a mapping defined by

$$Sx = \kappa x + (1 - \kappa)Tx \tag{1.7}$$

If the control sequence $\{\alpha_n\}$, $\{\beta_n\} \subset (0, 1)$ satisfying

(i)
$$\lim_{n\to\infty} \alpha_n = 0$$
 and $\lim_{n\to\infty} \beta_n = 0$,

$$(ii) \sum_{n=1}^{\infty} \alpha_n = \infty,$$

(iii)
$$\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$$
, $\sum_{n=1}^{\infty} |\beta_{n+1} - \beta_n| < \infty$.

Then $\{x_n\}$ converges strongly to a fixed point q of T, which solves the following solution of variational inequality;

$$\langle (A - \gamma f)q, q - x \rangle \leq 0, \quad \forall x \in F(T).$$

In 2010, Jung [16] proved the following theorem:

Theorem 1.2. Let H be a Hilbert space, C be a nonempty closed convex subset of H such that $C \pm C \subseteq C$, and let $T: C \to H$ be a κ -strictly pseudo-contractive mapping with $F(T) \neq \emptyset$ for some $0 \leq \kappa < 1$. Let A be a strongly positive bounded linear operator on C with coefficient $\bar{\gamma}$ and $f: C \to C$ be a contraction with the contractive coefficient $0 < \alpha < 1$ such that $0 < \gamma < \frac{\bar{\gamma}}{\alpha}$. Let $\{\alpha_n\}$ and $\{\beta_n\} \subseteq (0, 1)$ be sequences which satisfy the following conditions:

$$(C1)\lim_{n\to\infty}\alpha_n=0,$$

$$(C2)\sum_{n=0}^{\infty}\alpha_n=\infty,$$

(B)
$$0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < a \text{ for some a constant } a \in (0, 1).$$

Let $\{x_n\}$ be a sequence in C generated by

$$\begin{cases} x_0 = x \in C, \\ \gamma_n = \beta_n x_n + (1 - \beta_n) P_C S x_n \\ x_{n+1} = \alpha_n \gamma f(x_n) + (I - \alpha_n A) \gamma_n, & n \ge 0, \end{cases}$$

where $S: C \to H$ is a mapping defined by

$$Sx = \kappa x + (1 - \kappa)Tx \tag{1.8}$$

Then $\{x_n\}$ converges strongly to a fixed point q of T, which solves the following solution of variational inequality;

$$\langle (A - \gamma f)q, q - x \rangle \leq 0, \quad \forall x \in F(T).$$

Question A. How can we prove strong convergence theorem of κ -strictly pseudocontractive mapping without assumption of the mapping $S = \kappa I + (1 - \kappa)T$ in Theorems 1.1 and 1.2?

Let $A, B: C \to H$ be two mappings. By modification of (1.2), we have

$$VI(C, aA + (1 - a)B) = \{x \in C : \langle y - x, (aA + (1 - a)B)x \rangle \ge 0, \\ \forall y \in C, \quad a \in (0, 1)\}.$$
 (1.9)

From (1.4) and (1.9), we have

$$EP(F, (aA + (1 - a)B)) = \{z \in C : F(z, y) + ((aA + (1 - a)B)z, y - z) \ge 0, \forall y \in C \text{ and } a \in (0, 1)\}.$$

In this article, we prove strong convergence theorem to answer question A and to approximate a common element of the set of fixed points of κ -strictly pseudo-contractive mapping and the set of solution of a modification of generalized equilibrium problem. Moreover, by using our main result and a new lemma in the last section we obtain strong convergence theorem for finding a common element of the set of fixed points of κ -strictly pseudo-contractive mapping and two sets of solutions of variational inequalities.

2 Preliminaries

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H, let P_C be the metric projection of H onto C i.e., for $x \in H$, $P_C x$ satisfies the property

$$||x - P_C x|| = \min_{y \in C} ||x - y||.$$

The following characterizes the projection P_C .

Lemma 2.1. [17] Given $x \in H$ and $y \in C$. Then $P_C x = y$ if and only if there holds the inequality

$$\langle x - y, y - z \rangle \ge 0 \quad \forall z \in C.$$

Lemma 2.2. [18]Let $\{s_n\}$ be a sequence of nonnegative real number satisfying

$$s_{n+1} = (1 - \alpha_n)s_n + \alpha_n\beta_n, \quad \forall n \geq 0$$

where $\{\alpha_n\}$, $\{\beta_n\}$ satisfy the conditions

(1)
$$\{\alpha_n\} \subset [0,1], \quad \sum_{n=1}^{\infty} \alpha_n = \infty;$$

(2)
$$\limsup_{n\to\infty} \beta_n \leq 0 \text{ or } \sum_{n=1}^{\infty} |\alpha_n \beta_n| < \infty.$$

Then $\lim_{n\to\infty} s_n = 0$.

Lemma 2.3. [17] Let H be a Hibert space, let C be a nonempty closed convex subset of H and let A be a mapping of C into H. Let $u \in C$. Then for $\lambda > 0$,

$$u = P_C(I - \lambda A)u \Leftrightarrow u \in VI(C, A),$$

where P_C is the metric projection of H onto C.

Lemma 2.4. [19]Let $\{x_n\}$ and $\{z_n\}$ be bounded sequences in a Banach space X and let $\{\beta_n\}$ be a sequence in [0,1] with $0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1$. Suppose

$$x_{n+1} = \beta_n x_n + (1 - \beta_n) z_n$$

for all $n \ge 0$ and

$$\limsup_{n\to\infty} (||z_{n+1}-z_n||-||x_{n+1}-x_n||) \le 0.$$

Then $\lim_{n\to\infty} ||x_n - z_n|| = 0$.

Lemma 2.5. [20]Let E be a uniformly convex Banach space, C be a nonempty closed convex subset of E and S: $C \to C$ be a nonexpansive mapping. Then, I - S is demiclosed at zero.

For solving the equilibrium problem for a bifunction $F:C\times C\to \mathbb{R}$, let us assume that F satisfies the following conditions:

- (A1) $F(x, x) = 0 \ \forall x \in C$;
- (A2) *F* is monotone, i.e. $F(x, y) + F(y, x) \le 0$, $\forall x, y \in C$;
- $(A3) \ \forall x, y, z \in C$

 $\lim_{t\to 0+} F(tz + (1 - t)x, y) \le F(x, y);$

(A4) $\forall x \in C$, $y \alpha F(x, y)$ is convex and lower semicontinuous.

The following lemma appears implicitly in [7].

Lemma 2.6. [7] Let C be a nonempty closed convex subset of H, and let F be a bifunction of $C \times C$ into \mathbb{R} satisfying (A1)-(A4). Let r > 0 and $x \in H$. Then, there exists $z \in C$ such that

$$F(z,\gamma)+\frac{1}{r}\langle\gamma-z,z-x\rangle\geq0,$$

for all $x \in C$.

Lemma 2.7. [8] Assume that $F: C \times C \to \mathbb{R}$ satisfies (A1)-(A4). For r > 0 and $x \in H$, define a mapping $T_r: H \to C$ as follows:

$$T_r(x) = \left\{ z \in C : F(z, \gamma) + \frac{1}{r} \langle \gamma - z, z - x \rangle \ge 0, \quad \forall \gamma \in C \right\}.$$

for all $z \in H$. Then, the following hold:

- (1) T_r is single-valued;
- (2) T_r is firmly nonexpansive i.e.

$$||T_r(x)-T_r(y)||^2 \leq \langle T_r(x)-T_r(y),\, x-y\rangle \ \forall x,\,y\in\ H;$$

- (3) $F(T_v) = EP(F)$;
- (4) EP(F) is closed and convex.

Remark 2.8. If C is nonempty closed convex subset of H and $T: C \to C$ is κ -strictly pseudocontractive mapping with $F(T) \neq \emptyset$. Then F(T) = VI(C, (I - T)). To show this, put A = I - T. Let $z \in VI(C, (I - T))$ and $z^* \in F(T)$. Since $z \in VI(C, (I - T))$, $\langle y - z, (I - T)z \rangle \geq 0$, $\forall y \in C$. Since $T: C \to C$ is κ -strictly pseudocontractive mapping, we have

$$||Tz - Tz^*||^2 = ||(I - A)z - (I - A)z^*||^2 = ||z - z^* - (Az - Az^*)||^2$$

$$= ||z - z^*||^2 - 2\langle z - z^*, Az - Az^*\rangle + ||Az - Az^*||^2$$

$$= ||z - z^*||^2 - 2\langle z - z^*, (I - T)z\rangle + ||(I - T)z||^2$$

$$\leq ||z - z^*||^2 + \kappa ||(I - T)z||^2.$$

It implies that

$$(1-\kappa)||(I-T)z||^2 \leq 2\langle z-z^*, (I-T)z\rangle \leq 0.$$

Then, we have z = Tz, therefore $z \in F(T)$. Hence $VI(C, (I - T)) \subseteq F(T)$. It is easy to see that $F(T) \subseteq VI(C, (I - T))$.

Remark 2.9. A = I - T is $\frac{1-\kappa}{2}$ inverse strongly monotone mapping. To show this, let $x, y \in C$, we have

$$||Tx - Ty||^{2} = ||(I - A)x - (I - A)y||^{2} = ||x - y - (Ax - Ay)||^{2}$$

$$= ||x - y||^{2} - 2\langle x - y, Ax - Ay \rangle + ||Ax - Ay||^{2}$$

$$\leq ||x - y||^{2} + \kappa ||(I - T)x - (I - T)y||^{2}.$$

$$= ||x - y||^{2} + \kappa ||Ax - Ay||^{2}.$$

Then, we have

$$\langle x - y, Ax - Ay \rangle \ge \frac{1 - \kappa}{2} ||Ax - Ay||^2.$$

3 Main result

Theorem 3.1. Let C be a closed convex subset of Hilbert space H and let $F:C\times C\to \mathbb{R}$ be a bifunction satisfying (A_1) - (A_4) , let A, $B:C\to H$ be α and β -inverse strongly monotone, respectively. Let $T:C\to C$ be κ -strictly pseudo contractive mapping with $\mathbb{F}=F(T)\cap EP\left(F,aA+(1-a)B\right)\neq\emptyset$ for all $a\in(0,1)$. Let $\{x_n\}$ and $\{u_n\}$ be the sequences generated by $x_1,u\in C$ and

$$\begin{cases} F(u_n, \gamma) + \langle (aA + (1-a)B)x_n, \gamma - u_n \rangle + \frac{1}{r_n} \langle \gamma - u_n, u_n - x_n \rangle \ge 0, & \forall \gamma \in C, \\ x_{n+1} = \alpha_n u + \beta_n x_n + \gamma_n P_C(I - \lambda(I - T))u_n, & \forall n \ge 1, \end{cases}$$
(3.1)

where $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\} \subset [0, 1]$, $\lambda \in (0, 1 - \kappa)$, $\alpha_n + \beta_n + \gamma_n = 1$, $\forall n \in \mathbb{N}$ and $\{r_n\} \subset [0, 2\gamma]$, $\gamma = \min\{\alpha, \beta\}$ satisfy;

(i)
$$\sum_{n=1}^{\infty} \alpha_n = \infty$$
, $\lim_{n\to\infty} \alpha_n = 0$;

(ii)
$$0 < c \le \beta_n \le d < 1$$
, $0 < e \le r_n \le f < 2\gamma$;

(iii)
$$\lim_{n\to\infty}|r_{n+1}-r_n|=0.$$

Then $\{x_n\}$ converges strongly to $z_0 = P_{\mathbb{F}}u$.

Proof. We divide the proof into seven steps.

Step 1. For every $a \in (0, 1)$, we prove that aA + (1 - a)B is γ -inverse strongly monotone mapping. Put D = aA + (1 - a)B. For $x, y \in C$, we have

$$\langle Dx - Dy, x - y \rangle = \langle aAx + (1 - a)Bx - aAy - (1 - a)By, x - y \rangle$$

$$= \langle a(Ax - Ay) + (1 - a) (Bx - By), x - y \rangle$$

$$= a\langle Ax - Ay, x - y \rangle + (1 - a) \langle Bx - By, x - y \rangle$$

$$\geq a\alpha ||Ax - Ay||^{2} + (1 - a)\beta ||Bx - By||^{2}$$

$$\geq \gamma (a||Ax - Ay||^{2} + (1 - a)||Bx - By||^{2})$$

$$\geq \gamma ||a(Ax - Ay) + (1 - a) (Bx - By)||^{2}$$

$$= \gamma ||aAx + (1 - a)Bx - aAy - (1 - a)By||^{2}$$

$$= \gamma ||Dx - Dy||^{2}$$
(3.2)

Step 2. We show that $I - r_n D$ is a nonexpansive mapping for every $n \in \mathbb{N}$ and so is P_C $(I - \lambda(I - T))$. For every $n \in \mathbb{N}$, let $x, y \in C$. From step 1, we have

$$||(I - r_n D)x - (I - r_n D)y||^2 = ||x - y - r_n (Dx - Dy)||^2$$

$$= ||x - y||^2 - 2r_n \langle x - y, Dx - Dy \rangle + r_n^2 ||Dx - Dy||^2$$

$$\leq ||x - y||^2 - 2r_n \gamma ||Dx - Dy||^2 + r_n^2 ||Dx - Dy||^2$$

$$= ||x - y||^2 + r_n (r_n - 2\gamma) ||Dx - Dy||^2$$

$$\leq ||x - y||^2.$$
(3.3)

Then $I - r_n D$ is a nonexpansive mapping.

Putting E = I - T, from Remark 2.9, we have E is η -inverse strong monotone mapping, where $\eta = \frac{1-\kappa}{2}$. By using the same method as (3.3), we have $I - \lambda E$ is nonexpansive mapping. Then, we have $P_C(I - \lambda(I - T))$ is a nonexpansive mapping.

Step 3. We prove that the sequence $\{x_n\}$ is bounded. From $\mathbb{F} \neq \emptyset$ and (3.1), we have $u_n = T_{r_n}(I - r_n D)x_n$, $\forall n \in \mathbb{N}$. Let $z \in \mathbb{F}$. From Remark 2.8 and Lemma 2.3, we have $z = P_C(I - \lambda E)z$, where E = I - T. Since $z \in EP(F, D)$, we have $F(z, y) + \langle y - z, Dz \rangle \ge 0 \ \forall y \in C$, so we have

$$F(z, y) + \frac{1}{r_n} \langle y - z, z - z + r_n Dz \rangle \ge 0, \quad \forall n \in \mathbb{N} \text{ and } y \in C.$$

From Lemma 2.7, we have $z = T_{r_n}(I - r_n D)z$, $\forall n \in \mathbb{N}$. By nonexpansiveness of $T_{r_n}(I - r_n D)$, we have

$$\begin{aligned} ||x_{n+1} - z|| &= ||\alpha_n(u - z) + \beta_n(x_n - z) + \gamma_n(P_C(I - \lambda E)u_n - z)|| \\ &\leq \alpha_n ||u - z|| + \beta_n ||x_n - z|| + \gamma_n ||P_C(I - \lambda E)u_n - z|| \\ &\leq \alpha_n ||u - z|| + \beta_n ||x_n - z|| + \gamma_n ||T_{r_n}(I - r_n D)x_n - z|| \\ &\leq \alpha_n ||u - z|| + (1 - \alpha_n)||x_n - z|| \\ &\leq \max\{||x_n - z||, ||u - z||\}. \end{aligned}$$

By induction we can prove that $\{x_n\}$ is bounded and so are $\{u_n\}$, $\{P_C(I - \lambda E)u_n\}$. **Step 4**. We will show that

$$\lim_{n \to \infty} ||x_{n+1} - x_n|| = 0. \tag{3.4}$$

Let
$$p_n = \frac{x_{n+1} - \beta_n x_n}{1 - \beta_n}$$
, we have $x_{n+1} = (1 - \beta_n) p_n + \beta_n x_n$. (3.5)

From (3.5), we have

$$\begin{aligned} ||\rho_{n+1} - \rho_{n}|| &= \left\| \frac{x_{n+2} - \beta_{n+1} x_{n+1}}{1 - \beta_{n+1}} - \frac{x_{n+1} - \beta_{n} x_{n}}{1 - \beta_{n}} \right\| \\ &= \left\| \frac{\alpha_{n+1} u + \gamma_{n+1} P_{C}(I - \lambda E) u_{n+1}}{1 - \beta_{n+1}} - \frac{\alpha_{n} u + \gamma_{n} P_{C}(I - \lambda E) u_{n}}{1 - \beta_{n}} \right\| \\ &= \left\| \left(\frac{\alpha_{n+1}}{1 - \beta_{n+1}} - \frac{\alpha_{n}}{1 - \beta_{n}} \right) u + \frac{\gamma_{n+1}}{1 - \beta_{n+1}} \left(P_{C}(I - \lambda E) u_{n+1} - P_{C}(I - \lambda E) u_{n} \right) \right\| \\ &+ \left(\frac{\gamma_{n+1}}{1 - \beta_{n+1}} - \frac{\gamma_{n}}{1 - \beta_{n}} \right) P_{C}(I - \lambda E) u_{n} \right\| \\ &\leq \left| \frac{\alpha_{n+1}}{1 - \beta_{n+1}} - \frac{\alpha_{n}}{1 - \beta_{n}} \right| ||u|| + \frac{\gamma_{n+1}}{1 - \beta_{n+1}} ||u_{n+1} - u_{n}|| \\ &+ \left| \frac{\gamma_{n+1}}{1 - \beta_{n+1}} - \frac{\gamma_{n}}{1 - \beta_{n}} \right| ||P_{C}(I - \lambda E) u_{n}|| \\ &= \left| \frac{\alpha_{n+1}}{1 - \beta_{n+1}} - \frac{\alpha_{n}}{1 - \beta_{n}} \right| ||u|| + \frac{\gamma_{n+1}}{1 - \beta_{n+1}} ||u_{n+1} - u_{n}|| \\ &+ \left| \frac{1 - \beta_{n+1} - \alpha_{n+1}}{1 - \beta_{n+1}} - \frac{1 - \beta_{n} - \alpha_{n}}{1 - \beta_{n}} \right| ||P_{C}(I - \lambda E) u_{n}|| \\ &= \left| \frac{\alpha_{n+1}}{1 - \beta_{n+1}} - \frac{\alpha_{n}}{1 - \beta_{n}} \right| ||P_{C}(I - \lambda E) u_{n}|| \\ &+ \left| \frac{\alpha_{n+1}}{1 - \beta_{n+1}} - \frac{\alpha_{n}}{1 - \beta_{n}} \right| (||u|| + ||P_{C}(I - \lambda E) u_{n}||) \\ &= \left| \frac{\alpha_{n+1}}{1 - \beta_{n+1}} - \frac{\alpha_{n}}{1 - \beta_{n}} \right| (||u|| + ||P_{C}(I - \lambda E) u_{n}||) \\ &+ \frac{\gamma_{n+1}}{1 - \beta_{n+1}} ||u_{n+1} - u_{n}||. \end{aligned}$$

Putting $v_n = x_n - r_n D x_n$, we have $u_n = T_{r_n} (x_n - r_n D x_n) = T_{r_n} v_n$. From definition of u_n , we have

$$F(u_n, \gamma) + \frac{1}{r_n} \langle \gamma - u_n, u_n - v_n \rangle \ge 0, \quad \forall \gamma \in C,$$
(3.7)

and

$$F(u_{n+1}, \gamma) + \frac{1}{r_{n+1}} \langle \gamma - u_{n+1}, u_{n+1} - v_{n+1} \rangle \ge 0, \quad \forall \gamma \in C.$$
 (3.8)

Putting $y = u_{n+1}$ in (3.7) and $y = u_n$ in (3.8), we have

$$F(u_n, u_{n+1}) + \frac{1}{r_n} \langle u_{n+1} - u_n, u_n - v_n \rangle \ge 0, \tag{3.9}$$

and

$$F(u_{n+1}, u_n) + \frac{1}{r_{n+1}} \langle u_n - u_{n+1}, u_{n+1} - v_{n+1} \rangle \ge 0.$$
 (3.10)

Summing up (3.9) and (3.10) and using (A2), we have

$$0 \leq \frac{1}{r_{n}} \langle u_{n+1} - u_{n}, u_{n} - v_{n} \rangle + \frac{1}{r_{n+1}} \langle u_{n} - u_{n+1}, u_{n+1} - v_{n+1} \rangle$$

$$= \left\langle u_{n+1} - u_{n}, \frac{u_{n} - v_{n}}{r_{n}} \right\rangle + \left\langle u_{n} - u_{n+1}, \frac{u_{n+1} - v_{n+1}}{r_{n+1}} \right\rangle$$

$$= \left\langle u_{n+1} - u_{n}, \frac{u_{n} - v_{n}}{r_{n}} - \frac{u_{n+1} - v_{n+1}}{r_{n+1}} \right\rangle.$$

It implies that

$$0 \le \left\langle u_{n+1} - u_n, \ u_n - v_n - \frac{r_n}{r_{n+1}} (u_{n+1} - v_{n+1}) \right\rangle$$

$$= \left\langle u_{n+1} - u_n, \ u_n - u_{n+1} + u_{n+1} - v_n - \frac{r_n}{r_{n+1}} (u_{n+1} - v_{n+1}) \right\rangle.$$

It implies that

$$\begin{aligned} ||u_{n+1} - u_n||^2 &\leq \left\langle u_{n+1} - u_n, \ u_{n+1} - v_n - \frac{r_n}{r_{n+1}} (u_{n+1} - v_{n+1}) \right\rangle \\ &= \left\langle u_{n+1} - u_n, \ u_{n+1} - v_{n+1} + v_{n+1} - v_n - \frac{r_n}{r_{n+1}} (u_{n+1} - v_{n+1}) \right\rangle \\ &= \left\langle u_{n+1} - u_n, \ v_{n+1} - v_n + \left(1 - \frac{r_n}{r_{n+1}}\right) (u_{n+1} - v_{n+1}) \right\rangle \\ &\leq ||u_{n+1} - u_n|| \left(||v_{n+1} - v_n|| + \frac{1}{r_{n+1}} ||r_{n+1} - r_n|| ||u_{n+1} - v_{n+1}|| \right). \end{aligned}$$

It follows that

$$||u_{n+1} - u_n|| \le ||v_{n+1} - v_n|| + \frac{1}{e} |r_{n+1} - r_n| ||u_{n+1} - v_{n+1}||.$$
(3.11)

Since $v_n = x_n - r_n Dx_n$, we have

$$||v_{n+1} - v_n|| = ||x_{n+1} - r_{n+1}Dx_{n+1} - x_n + r_nDx_n||$$

$$= ||(I - r_{n+1}D)x_{n+1} - (I - r_{n+1}D)x_n + (I - r_{n+1}D)x_n - (I - r_nD)x_n||$$

$$\leq ||(I - r_{n+1}D)x_{n+1} - (I - r_{n+1}D)x_n||$$

$$+ ||(r_n - r_{n+1})Dx_n||$$

$$\leq ||x_{n+1} - x_n|| + |r_n - r_{n+1}| ||Dx_n||.$$
(3.12)

Substitute (3.12) into (3.11), we have

$$||u_{n+1} - u_n|| \le ||v_{n+1} - v_n|| + \frac{1}{e} |r_{n+1} - r_n| ||u_{n+1} - v_{n+1}||$$

$$\le ||x_{n+1} - x_n|| + |r_n - r_{n+1}| ||Dx_n||$$

$$+ \frac{1}{e} |r_{n+1} - r_n| ||u_{n+1} - v_{n+1}||$$

$$\le ||x_{n+1} - x_n|| + |r_n - r_{n+1}|L + \frac{1}{e} |r_{n+1} - r_n|L,$$
(3.13)

where $L=\max_{n\in\mathbb{N}}\{||Dx_n||, ||u_n-v_n||\}$. Substitute (3.13) into (3.6), we have

$$||p_{n+1} - p_n|| \le \left| \frac{\alpha_{n+1}}{1 - \beta_{n+1}} - \frac{\alpha_n}{1 - \beta_n} \right| (||u|| + ||P_C(I - \lambda E)u_n||) + \frac{\gamma_{n+1}}{1 - \beta_{n+1}} ||u_{n+1} - u_n|| \le \left| \frac{\alpha_{n+1}}{1 - \beta_{n+1}} - \frac{\alpha_n}{1 - \beta_n} \right| (||u|| + ||P_C(I - \lambda E)u_n||) + ||x_{n+1} - x_n|| + |r_n - r_{n+1}|L + \frac{1}{a}|r_{n+1} - r_n|L,$$
(3.14)

From conditions (i), (iii) and (3.14), we have

$$\limsup_{n \to \infty} \left(||p_{n+1} - p_n|| - ||x_{n+1} - x_n|| \right) \le 0. \tag{3.15}$$

From Lemma 2.4, (3.15) and (3.5), we have

$$\lim_{n \to \infty} ||p_n - x_n|| = 0. {3.16}$$

From (3.5), we have

$$x_{n+1} - x_n = (1 - \beta_n)(p_n - x_n). \tag{3.17}$$

From (3.16), (3.17) and condition (ii), we have

$$\lim_{n \to \infty} ||x_{n+1} - x_n|| = 0. ag{3.18}$$

Since

$$x_{n+1} - x_n = \alpha_n(u - x_n) + \gamma_n(P_C(I - \lambda(I - T))u_n - x_n),$$

from conditions (i), (ii) and (3.18), we have

$$\lim_{n \to \infty} ||P_C(I - \lambda E)u_n - x_n|| = 0, \tag{3.19}$$

where E = I - T.

Step 5. We will show that

$$\lim_{n \to \infty} ||u_n - x_n|| = 0. {(3.20)}$$

Since $u_n = T_{r_n}(x_n - r_n Dx_n)$, we have

$$||u_{n}-z||^{2} = ||T_{r_{n}}(x_{n}-r_{n}Dx_{n})-T_{r_{n}}(I-r_{n}D)z||^{2}$$

$$\leq \langle (I-r_{n}D)x_{n}-(I-r_{n}D)z, u_{n}-z\rangle$$

$$= \frac{1}{2} (||(I-r_{n}D)x_{n}-(I-r_{n}D)z||^{2} + ||u_{n}-z||^{2}$$

$$-||(I-r_{n}D)x_{n}-(I-r_{n}D)z-u_{n}+z||^{2})$$

$$\leq \frac{1}{2} (||x_{n}-z||^{2} + ||u_{n}-z||^{2} - ||(x_{n}-u_{n})-r_{n}(Dx_{n}-Dz)||^{2})$$

$$\leq \frac{1}{2} (||x_{n}-z||^{2} + ||u_{n}-z||^{2} - ||x_{n}-u_{n}||^{2} - r_{n}^{2}||Dx_{n}-Dz||^{2}$$

$$+2r_{n}\langle x_{n}-u_{n}, Dx_{n}-Dz\rangle),$$

it implies that

$$||u_n - z||^2 \le ||x_n - z||^2 - ||x_n - u_n||^2 - r_n^2 ||Dx_n - Dz||^2 + 2r_n \langle x_n - u_n, Dx_n - Dz \rangle.$$
 (3.21)

By nonexpansiveness of T_{r_n} and using the same method as (3.3), we have

$$||u_{n}-z||^{2} = ||T_{r_{n}}(I-r_{n}D)x_{n}-T_{r_{n}}(I-r_{n}D)z||^{2}$$

$$\leq ||(I-r_{n}D)x_{n}-(I-r_{n}D)z||^{2}$$

$$\leq ||x_{n}-z||^{2} + r_{n}(r_{n}-2\gamma)||Dx_{n}-Dz||^{2}$$

$$= ||x_{n}-z||^{2} - r_{n}(2\gamma-r_{n})||Dx_{n}-Dz||^{2}.$$
(3.22)

By nonexpansiveness of $P_C(I - \lambda E)$ and (3.22), we have

$$||x_{n+1} - z||^{2} = ||\alpha_{n}(u - z) + \beta_{n}(x_{n} - z) + \gamma_{n}(P_{C}(I - \lambda E)u_{n} - z)||^{2}$$

$$\leq \alpha_{n}||u - z||^{2} + \beta_{n}||x_{n} - z||^{2} + \gamma_{n}||u_{n} - z||^{2}$$

$$\leq \alpha_{n}||u - z||^{2} + \beta_{n}||x_{n} - z||^{2} + \gamma_{n}(||x_{n} - z||^{2})$$

$$- r_{n}(2\gamma - r_{n})||Dx_{n} - Dz||^{2})$$

$$\leq \alpha_{n}||u - z||^{2} + ||x_{n} - z||^{2} - r_{n}\gamma_{n}(2\gamma - r_{n})||Dx_{n} - Dz||^{2},$$
(3.23)

it implies that

$$r_{n}\gamma_{n}(2\gamma - r_{n})||Dx_{n} - Dz||^{2} \leq \alpha_{n}||u - z||^{2} + ||x_{n} - z||^{2} - ||x_{n+1} - z||^{2}$$

$$\leq \alpha_{n}||u - z||^{2} + (||x_{n} - z||)$$

$$+ ||x_{n+1} - z||)||x_{n+1} - x_{n}||.$$
(3.24)

From (3.18), (3.24), conditions (i) and (ii), we have

$$\lim_{n \to \infty} ||Dx_n - Dz|| = 0 \tag{3.25}$$

From (3.23) and (3.21). we have

$$\begin{aligned} ||x_{n+1} - z||^2 &\leq ||\alpha_n(u - z) + \beta_n(x_n - z) + \gamma_n(P_C(I - \lambda E)u_n - z)||^2 \\ &\leq \alpha_n ||u - z||^2 + \beta_n ||x_n - z||^2 + \gamma_n ||u_n - z||^2 \\ &\leq \alpha_n ||u - z||^2 + \beta_n ||x_n - z||^2 + \gamma_n \left(||x_n - z||^2 - ||x_n - u_n||^2 \right. \\ &- r_n^2 ||Dx_n - Dz||^2 + 2r_n \langle x_n - u_n, Dx_n - Dz \rangle \right) \\ &\leq \alpha_n ||u - z||^2 + \beta_n ||x_n - z||^2 + \gamma_n ||x_n - z||^2 - \gamma_n ||x_n - u_n||^2 \\ &+ 2r_n \gamma_n ||x_n - u_n|| \; ||Dx_n - Dz|| \\ &\leq \alpha_n ||u - z||^2 + ||x_n - z||^2 - \gamma_n ||x_n - u_n||^2 + 2r_n \gamma_n ||x_n - u_n|| \; ||Dx_n - Dz||, \end{aligned}$$

which implies that

$$\begin{aligned} \gamma_{n}||x_{n}-u_{n}||^{2} &\leq \alpha_{n}||u-z||^{2} + ||x_{n}-z||^{2} - ||x_{n+1}-z||^{2} + 2r_{n}\gamma_{n}||x_{n}-u_{n}|| \ ||Dx_{n}-Dz|| \\ &\leq \alpha_{n}||u-z||^{2} + \left(||x_{n}-z|| + ||x_{n+1}-z||\right)||x_{n+1}-x_{n}|| \\ &+ 2r_{n}\gamma_{n}||x_{n}-u_{n}|| \ ||Dx_{n}-Dz||, \end{aligned}$$

from condition (i), (3.25) and (3.18), we have

$$\lim_{n\to\infty}||x_n-u_n||=0.$$

Step 6. We prove that

$$\limsup_{n \to \infty} \langle u - z_0, x_n - z_0 \rangle \le 0, \tag{3.26}$$

where $z_0 = P_{\mathbb{F}}u$. To show this equality, take a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that

$$\limsup_{n \to \infty} \langle u - z_0, x_n - z_0 \rangle = \lim_{k \to \infty} \langle u - z_0, x_{n_k} - z_0 \rangle, \tag{3.27}$$

Without loss of generality, we may assume that $x_{n_k} \rightharpoonup \omega$ as $k \to \infty$ where $\omega \in C$. We first show $\omega \in EP(F, D)$, where D = aA + (1 - a)B, $\forall a \in [0,1]$. From (3.20), we have $u_{n_k} \rightharpoonup \omega$ as $k \to \infty$. Since $u_n = T_{r_n}(x_n - r_nDx_n)$, we obtain

$$F(u_n, \gamma) + \langle Dx_n, \gamma - u_n \rangle + \frac{1}{r_n} \langle \gamma - u_n, u_n - x_n \rangle \ge 0, \quad \forall \gamma \in C.$$

From (A2), we have $\langle Dx_n, \gamma - u_n \rangle + \frac{1}{r_n} \langle \gamma - u_n, u_n - x_n \rangle \ge F(\gamma, u_n)$. Then

$$\langle Dx_{n_k}, \gamma - u_{n_k} \rangle + \frac{1}{r_{n_k}} \langle \gamma - u_{n_k}, u_{n_k} - x_{n_k} \rangle \ge F(\gamma, u_{n_k}), \quad \forall \gamma \in C.$$
(3.28)

Put $z_t = ty + (1 - t)\omega$ for all $t \in (0, 1]$ and $y \in C$. Then, we have $z_t \in C$. So, from (3.28) we have

$$\begin{aligned} \langle z_{t} - u_{n_{k}}, Dz_{t} \rangle &\geq \langle z_{t} - u_{n_{k}}, Dz_{t} \rangle - \langle z_{t} - u_{n_{k}}, Dx_{n_{k}} \rangle - \left\langle z_{t} - u_{n_{k}}, \frac{u_{n_{k}} - x_{n_{k}}}{r_{n_{k}}} \right\rangle + F(z_{t}, u_{n_{k}}) \\ &= \langle z_{t} - u_{n_{k}}, Dz_{t} - Du_{n_{k}} \rangle + \langle z_{t} - u_{n_{k}}, Du_{n_{k}} - Dx_{n_{k}} \rangle \\ &- \left\langle z_{t} - u_{n_{k}}, \frac{u_{n_{k}} - x_{n_{k}}}{r_{n_{k}}} \right\rangle + F(z_{t}, u_{n_{k}}). \end{aligned}$$

Since $||u_{n_k} - x_{n_k}|| \to 0$, we have $||Du_{n_k} - Dx_{n_k}|| \to 0$. Further, from monotonicity of D, we have $\langle z_t - u_{n_k}, Dz_t - Du_{n_k} \rangle \ge 0$. So, from (A4) we have

$$\langle z_t - \omega, Dz_t \rangle \ge F(z_t, \ \omega) \text{ as } k \to \infty.$$
 (3.29)

From (A1), (A4) and (3.29), we also have

$$0 = F(z_t, z_t) \le tF(z_t, \gamma) + (1 - t)F(z_t, \omega)$$

$$\le tF(z_t, \gamma) + (1 - t)\langle z_t - \omega, Dz_t \rangle$$

$$= tF(z_t, \gamma) + (1 - t)t\langle \gamma - \omega, Dz_t \rangle,$$

hence

$$0 \le F(z_t, y) + (1 - t)\langle y - \omega, Dz_t \rangle.$$

Letting $t \to 0$, we have

$$0 < F(\omega, \gamma) + \langle \gamma - \omega, D\omega \rangle \quad \forall \gamma \in C. \tag{3.30}$$

Therefore $\omega \in EP(F, D)$, where D = aA + (1 - a)B, $\forall a \in [0,1]$. Since

$$||P_C(I - \lambda E)u_n - u_n|| \le |||P_C(I - \lambda E)u_n - x_n|| || + ||x_n - u_n||,$$

where E = I - T from (3.19) and (3.20), we have

$$\lim_{n \to 0} ||P_C(I - \lambda E)u_n - u_n|| = 0.$$
(3.31)

Since $u_{n_k} \to \omega$ as $k \to \omega$, (3.31) and Lemma 2.5, we have $\omega \in F(P_C(I - \lambda E))$. From Lemma 2.3 and Remark 2.8, we have $\omega \in F(T)$. Therefore $\omega \in \mathbb{F}$. Since $x_{n_k} \to \omega$ as $k \to \infty$ and $\omega \in \mathbb{F}$, we have

$$\limsup_{n\to\infty}\langle u-z_0,x_n-z_0\rangle=\lim_{n\to\infty}\langle u-z_0,x_{n_k}-z_0\rangle=\langle u-z_0,\omega-z_0\rangle\leq 0.$$

Step 7. Finally, we show that $\{x_n\}$ converses strongly to $z_0 = P_{\mathbb{F}}u$. From definition of x_n , we have

$$\begin{aligned} ||x_{n+1} - z_0||^2 &= ||\alpha_n(u - z_0) + \beta_n(x_n - z_0) + \gamma_n(P_C(I - \lambda(I - T))u_n - z_0)||^2 \\ &\leq ||\beta_n(x_n - z_0) + \gamma_n(P_C(I - \lambda(I - T))u_n - z_0)||^2 + 2\alpha_n\langle u - z_0, \ x_{n+1} - z_0\rangle \\ &\leq \beta_n||x_n - z_0||^2 + \gamma_n||P_C(I - \lambda(I - T))u_n - z_0||^2 + 2\alpha_n\langle u - z_0, \ x_{n+1} - z_0\rangle \\ &\leq \beta_n||x_n - z_0||^2 + \gamma_n||T_{r_n}(I - r_nD)x_n - z_0||^2 + 2\alpha_n\langle u - z_0, \ x_{n+1} - z_0\rangle \\ &\leq (1 - \alpha_n)||x_n - z_0||^2 + 2\alpha_n\langle u - z_0, \ x_{n+1} - z_0\rangle \end{aligned}$$

From (3.26) and Lemma 2.2, we have $\{x_n\}$ converses strongly to $z_0 = P_{\mathbb{F}}u$. This completes the prove. \square

4 Applications

To prove strong convergence theorem in this section, we needed the following lemma.

Lemma 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let A, B : $C \to H$ be α and β -inverse strongly monotone mappings, respectively, with α , $\beta > 0$ and $VI(C, A) \cap VI(C, B) \neq \emptyset$. Then

$$VI(C, aA + (1 - a)B) = VI(C, A) \cap VI(C, B), \forall a \in (0, 1).$$
 (4.1)

Furthermore if $0 < \gamma < 2\eta$, where $\eta = \min\{\alpha, \beta\}$, we have $I - \gamma(aA + (1 - a)B)$ is a non-expansive mapping.

Proof. It is easy to see that $VI(C, A) \cap VI(C, B) \subseteq VI(C, aA + (1 - a)B)$. Next, we will show that $VI(C, aA + (1 - a)B) \subseteq VI(C, A) \cap VI(C, B)$. Let $x_0 \in VI(C, aA + (1 - a)B)$ and $x^* \in VI(C, A) \cap VI(C, B)$. Then, we have

$$\langle y - x^*, Ax^* \rangle > 0, \quad \forall y \in C$$

and

$$\langle y - x^*, Bx^* \rangle > 0, \quad \forall y \in C.$$

For every $a \in (0, 1)$, we have

$$\langle y - x^*, aAx^* \rangle > 0, \quad \forall y \in C, \tag{4.2}$$

and

$$\langle \gamma - x^*, (1 - a)Bx^* \rangle \ge 0, \quad \forall \gamma \in C.$$
 (4.3)

By monotonicity of A, B and x^* , $x_0 \in C$, we have

$$\langle x^* - x_0, aAx_0 \rangle = \langle x^* - x_0, aAx_0 + (1 - a)Bx_0 - (1 - a)Bx_0 \rangle$$

$$= \langle x^* - x_0, aAx_0 + (1 - a)Bx_0 \rangle - \langle x^* - x_0, (1 - a)Bx_0 \rangle$$

$$\geq (1 - a)\langle x_0 - x^*, Bx_0 \rangle$$

$$= (1 - a)(\langle x_0 - x^*, Bx_0 - Bx^* \rangle + \langle x_0 - x^*, Bx^* \rangle)$$

$$> 0.$$
(4.4)

It implies that

$$\langle x^* - x_0, Ax_0 \rangle \ge 0. \tag{4.5}$$

By monotonicity of A, $x^* \in VI(C, A)$ and (4.5), we have

$$\begin{split} 0 &\leq \langle x^* - x_0, \ Ax_0 \rangle \\ &= \langle x^* - x_0, \ Ax_0 - Ax^* + Ax^* \rangle \\ &= \langle x^* - x_0, \ Ax_0 - Ax^* \rangle + \langle x^* - x_0, \ Ax^* \rangle \\ &\leq -\alpha ||Ax^* - Ax_0||^2 + \langle x^* - x_0, \ Ax^* \rangle \\ &\leq -\alpha ||Ax^* - Ax_0||^2, \end{split}$$

it implies that

$$Ax^* = Ax_0. (4.6)$$

For every $y \in C$, from (4.5), (4.6) and $x^* \in VI(C, A)$, we have

$$\langle y - x_0, Ax_0 \rangle = \langle y - x^*, Ax_0 \rangle + \langle x^* - x_0, Ax_0 \rangle$$

 $\geq \langle y - x^*, Ax^* \rangle \geq 0.$

Then, we have

$$x_0 \in VI(C, A). \tag{4.7}$$

From (4.4), we have

$$(1-a)\langle x^* - x_0, Bx_0 \rangle \ge a\langle x_0 - x^*, Ax_0 \rangle$$

$$= a(\langle x_0 - x^*, Ax_0 - Ax^* \rangle + \langle x_0 - x^*, Ax^* \rangle)$$

$$> 0.$$
(4.8)

It implies that

$$\langle x^* - x_0, Bx_0 \rangle > 0. \tag{4.9}$$

By monotonicity of B, $x^* \in VI(C, B)$ and (4.9), we have

$$0 \leq \langle x^* - x_0, Bx_0 \rangle$$
= $\langle x^* - x_0, Bx_0 - Bx^* + Bx^* \rangle$
= $\langle x^* - x_0, Bx_0 - Bx^* \rangle + \langle x^* - x_0, Bx^* \rangle$
 $\leq -\beta ||Bx^* - Bx_0||^2 + \langle x^* - x_0, Bx^* \rangle$
 $\leq -\beta ||Bx^* - Bx_0||^2$,

it implies that

$$Bx^* = Bx_0. (4.10)$$

For every $y \in C$, from (4.9), (4.10) and $x^* \in VI(C, B)$, we have

$$\langle \gamma - x_0, Bx_0 \rangle = \langle \gamma - x^*, Bx_0 \rangle + \langle x^* - x_0, Bx_0 \rangle$$

 $\geq \langle \gamma - x^*, Bx^* \rangle \geq 0.$

Then, we have

$$x_0 \in VI(C, B). \tag{4.11}$$

By (4.7) and (4.11), we have $x_0 \in VI(C, A) \cap VI(C, B)$. Hence, we have

$$VI(C, aA + (1-a)B) \subseteq VI(C, A) \cap VI(C, B).$$

Next, we will show that $I - \gamma(aA + (1 - a)B)$ is a nonexpansive mapping. To show this let $x, y \in C$, then we have

$$\| (I - \gamma (aA + (1 - a)B)) x - (I - \gamma (aA + (1 - a)B)) \gamma \|^{2}$$

$$= \| x - \gamma - \gamma ((aA + (1 - a)B) x - (aA + (1 - a)B)\gamma) \|^{2}$$

$$= \| x - \gamma - \gamma (a(Ax - A\gamma) + (1 - a)(Bx - B\gamma)) \|^{2}$$

$$= \| |x - \gamma||^{2} - 2\gamma \langle a (Ax - A\gamma) + (1 - a)(Bx - B\gamma), x - \gamma \rangle$$

$$+ \gamma^{2} \| |a(Ax - A\gamma) + (1 - a)(Bx - B\gamma) \|^{2}$$

$$\leq \| |x - \gamma||^{2} - 2\gamma a \langle Ax - A\gamma, x - \gamma \rangle - 2\gamma (1 - a) \langle Bx - B\gamma, x - \gamma \rangle$$

$$+ a\gamma^{2} \| |Ax - A\gamma||^{2} + (1 - a)\gamma^{2} \| Bx - B\gamma \|^{2}$$

$$\leq \| |x - \gamma||^{2} - 2\gamma a\alpha \| |Ax - A\gamma||^{2} - 2\gamma (1 - a)\beta \| |Bx - B\gamma||^{2}$$

$$\leq \| |x - \gamma||^{2} - 2\gamma a\alpha \| |Ax - A\gamma||^{2} + (1 - a)\gamma^{2} \| |Bx - B\gamma||^{2}$$

$$= \| |x - \gamma||^{2} + a\gamma (\gamma - 2\alpha) \| |Ax - A\gamma||^{2} + (1 - a)\gamma (\gamma - 2\beta) \| |Bx - B\gamma||^{2}$$

$$\leq \| |x - \gamma||^{2}.$$

Theorem 4.2. Let C be a closed convex subset of Hilbert space H and let A, $B: C \to H$ be α and β -inverse strongly monotone, respectively. Let T be κ -strictly pseudo contractive mapping with $\mathbb{F} = F(T) \cap VI(C,A) \cap VI(C,B) \neq \emptyset$. Let $\{x_n\}$ be the sequence generated by x_1 , $u \in C$ and

$$x_{n+1} = \alpha_n u + \beta_n x_n + \gamma_n P_C(I - \lambda(I - T)) P_C(I - r_n (aA + (1 - a)B)) x_n, \quad \forall n \ge 14.13$$

where $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\} \subset [0, 1]$, $a \in (0, 1)$, $\lambda \in (0, 1 - \kappa)$, $\alpha_n + \beta_n + \gamma_n = 1$, $\forall n \in \mathbb{N}$ and $\{r_n\} \subset [0, 2\gamma]$, $\gamma = \min\{\alpha, \beta\}$ satisfy;

(i)
$$\sum_{n=1}^{\infty} \alpha_n = \infty, \quad \lim_{n \to \infty} \alpha_n = 0;$$

(ii)
$$0 < c \le \beta_n \le d < 1$$
, $0 < e \le r_n \le f < 2\gamma$;

$$(iii) \lim_{n\to\infty} |r_{n+1}-r_n| = 0.$$

Then $\{x_n\}$ converges strongly to $z_0 = P_{\mathbb{F}}u$.

Proof. From 3.1 putting $F \equiv 0$ in Theorem 3.1, we have

$$\langle y - u_n, u_n - (I - r_n D)x_n \rangle \ge 0, \quad \forall y \in C,$$

where D = aA + (1 - a)B, $\forall a \in [0,1]$ It implies that

$$u_n = P_C(I - r_n D)x_n$$
.

Then, we have (4.13). From Theorem 3.1 and Lemma 4.1, we can conclude the desired conclusion. \Box

Theorem 4.3. Let C be a closed convex subset of Hilbert space H and let $F: C \times C \to \mathbb{R}$ be a bifunction satisfying (A_1) - (A_4) , let $A: C \to H$ be α -inverse strongly monotone. Let $T: C \to C$ be κ -strictly pseudo contractive mapping with $\mathbb{F} = F(T) \cap EP(F, A) \neq \emptyset$. Let $\{x_n\}$ and $\{u_n\}$ be the sequences generated by $x_1, u \in C$ and

$$\begin{cases}
F(u_n, \gamma) + \langle Ax_n, \gamma - u_n \rangle + \frac{1}{r_n} \langle \gamma - u_n, u_n - x_n \rangle \ge 0, & \forall \gamma \in C, \\
x_{n+1} = \alpha_n u + \beta_n x_n + \gamma_n P_C(I - \lambda(I - T)) u_n, & \forall n \ge 1,
\end{cases}$$
(4.14)

where $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\} \subset [0, 1]$, $\lambda \in (0, 1 - \kappa)$, $\alpha_n + \beta_n + \gamma_n = 1$, $\forall n \in \mathbb{N}$ and $\{r_n\} \subset [0, 2\gamma]$, $\gamma = \min\{\alpha, \beta\}$ satisfy;

(i)
$$\sum_{n=1}^{\infty} \alpha_n = \infty$$
, $\lim_{n \to \infty} \alpha_n = 0$;

(ii)
$$0 < c \le \beta_n \le d < 1$$
, $0 < e \le r_n \le f < 2\gamma$;

(iii)
$$\lim_{n\to\infty}|r_{n+1}-r_n|=0.$$

Then $\{x_n\}$ converges strongly to $z_0 = P_{\mathbb{F}}u$.

Proof. From Theorem 3.1, putting $A \equiv B$, we can conclude the desired conclusion. \Box

Acknowledgements

This research was supported by the Research Administration Division of King Mongkut's Institute of Technology Ladkrabang.

Competing interests

The authors declare that they have no competing interests.

Received: 15 January 2012 Accepted: 23 May 2012 Published: 23 May 2012

References

- Browder, FE, Petryshyn, WV: Construction of fixed points of nonlinear mappings in Hilbert space. J Math Anal Appl. 20, 197–228 (1967). doi:10.1016/0022-247X(67)90085-6
- Chang, SS, Joseph Lee, HW, Chan, CK: A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Anal. 70, 3307–3319 (2009). doi:10.1016/j. na.2008.04.035
- Nadezhkina, N, Takahashi, W: Weak convergence theorem by an extragradientmethod for nonexpansive mappings and monotone mappings. J Optim Theory Appl. 128, 191–201 (2006). doi:10.1007/s10957-005-7564-z
- Yao, JC, Chadli, O: Pseudomonotone complementarity problems and variational in-equalities. pp. 501–558. Handbook of generalized convexity and monotonicity, Springer, Netherlands (2005)
- Yao, Y, Yao, JC: On modified iterative method for nonexpansive mappings and mono-tone mappings. Appl Math Comput. 186(2):1551–1558 (2007). doi:10.1016/j.amc.2006.08.062
- liduka, H, Takahashi, W: Weak convergence theorem by Ces'aro means for nonexpansive mappings and inverse-strongly monotone mappings. J Nonlinear Convex Anal. 7105–113 (2006)
- Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math Stud. 63, 123–145 (1994)
- 8. Combettes, PL, Hirstoaga, A: Equilibrium programming in Hilbert spaces. J Nonlinear Convex Anal. 6, 117–136 (2005)
- Moudafi, A: Weak convergence theorems for nonexpansive mappings and equilibrium problems. J Nonlinear Convex Anal. 9, 37–43 (2008)
- Kangtunyakarn, A, Suantai, S: Hybrid iterative scheme for generalized equilibrium problems and fixed point problems of finite family of nonexpansive mappings. Nonlinear Anal Hybrid Syst. 3, 296–309 (2009). doi:10.1016/j.nahs.2009.01.012
- 11. Takahashi, S, Takahashi, W: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J Math Anal Appl. 331, 506–515 (2007). doi:10.1016/j.jmaa.2006.08.036
- Kangtunyakarn, A: Strong convergence theorem for a generalized equilibrium problem and system of variational inequalities problem and infinite family of strict pseudo-contractions. Fixed Point Theory Appl. 2011(23):1–16 (2011)
- Tada, A, Takahashi, W: Strong convergence theorem for an equilibrium problem and a nonexpansive mapping. J Optim Theory Appl. 133, 359–370 (2007). doi:10.1007/s10957-007-9187-z
- Takahashia, S, Takahashi, W: Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space. Nonlinear Anal. 69, 1025–1033 (2008). doi:10.1016/j.na.2008.02.042
- Inchan, I: Strong convergence theorems for a new iterative method of κ-strictly pseudo-contractive mappings in Hilbert spaces. Comput Math Appl. 58, 1397–1407 (2009). doi:10.1016/j.camwa.2009.07.034
- Jung, JS: Strong convergence of iterative methods for κ-strictly pseudo-contractive map-pings in Hilbert spaces. Appl Math Comput. 215, 3746–3753 (2010). doi:10.1016/j.amc.2009.11.015
- 17. Takahashi, W: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

- Xu, HK: An iterative approach to quadratic optimization. J Optim Theory Appl. 116(3):659–678 (2003). doi:10.1023/ A:1023073621589
- 19. Suzuki, T: Strong convergence of Krasnoselskii and Manns type sequences for one-parameter nonexpansive semigroups without Bochner integrals. J Math Anal Appl. 305(1):227–239 (2005). doi:10.1016/j.jmaa.2004.11.017
- 20. Browder, FE: Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proc Sympos Pure Math. 18, 78–81 (1976)

doi:10.1186/1687-1812-2012-89

Cite this article as: Kangtunyakarn: Convergence theorem of κ -strictly pseudo-contractive mapping and a modification of generalized equilibrium problems. Fixed Point Theory and Applications 2012 2012:89.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com