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Abstract

The purpose of this article, we first introduce strong convergence theorem of
k-strictly pseudo-contractive mapping without assumption of the mapping S = &/ +
(1 - k)T. Then, we prove strong convergence of proposed iterative scheme for
finding a common element of the set of fixed points of k-strictly pseudo-contractive
mapping and the set of solution of a modification of generalized equilibrium
problem. Moreover, by using our main result and a new lemma in the last section
we obtain strong convergence theorem for finding a common element of the set of
fixed points of k-strictly pseudo-contractive mapping and two sets of solutions of
variational inequalities.

Keywords: nonexpansive mappinga, strictly pseudo-contractive mapping, general-
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1 Introduction
Throughout this article, we assume that H is a real Hilbert space and C is a nonempty
subset of H. A mapping T of C into itself is nonlinear mapping. A point x is called a
fixed point of T if Tx = x. We use F(T) to denote the set of fixed point of 7. Recalled
the following definitions;

Definition 1.1. The mapping T is said to be nonexpansive if

Tx =Tyl < llx—=yIl. VYx,yeH
Definition 1.2. The mapping T is said to be strictly pseudo-contractive [1]with the
coefficient k € [0, 1) if
ITx = T|I* < llx = ylI> + &I = T)x — (I =TI Vxy € H, (L1)
For such case, T is also said to be a k-strictly pseudo contractive mapping.
The class of k-strictly pseudo-contractive mapping strictly includes the class of non-

expansive mapping.

Let A : C — H. The variational inequality problem is to find a point u € C such that
(Au,v—u) >0 (1.2)
forall ve C.
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The variational inequality has emerged as a fascinating and interesting branch of
mathematical and engineering sciences with a wide range of applications in industry,
finance, economics, social, ecology, regional, pure and applied sciences (see, e.g. [2-5]).

A mapping A of C into H is called a-inverse strongly monotone; see [6], if there exists
a positive real number o such that

(x —y, Ax — Ay) > a|Ax — Ay||?

forall x, ye C.
Let F:CxC—R be a bifunction. The equilibrium problem for F is to determine its
equilibrium points, i.e. the set

EP(F)={xe C:F(x,y) >0, VyeC} (1.3)
From (1.2) and (1.3), we have the following generalized equilibrium problem, i.e.

Find z € C such that F(z,y) + (Az,y —z) > 0, VyeC. (1.4)

The set of such z € C is denoted by EP (F, A), i.e.,
EP(F,A)={z€ C:F(z,y) +(Az, y—2) >0, Vye(C}

In the case of A =0, EP (F, A) is denoted by EP(F). In the case of F =0, EP(F, A) is
also denoted by VI(C, A).

Numerous problems in physics, optimization and economics reduce to find a solu-
tion of EP(F) (see, for example [7-9]). Recently, many authors considered the iterative
scheme for finding a common element of the set of solution of equilibrium problem
and the set of solutions of fixed point problem (see, for example [10-14]). In 2005,
Combettes and Hirstoaga [8] introduced an iterative scheme for finding the best
approximation to the initial data when EP(F) is nonempty and they also proved the
strong convergence theorem.

In 2007, Takahashi and Takahashi [11] introduced viscosity approximation method
in framework of a real Hilbert space H. They defined the iterative sequence {x,} and
{u,} as follows:

x1 € H, arbitrarily;
F(tt,y) + | (Y = tn g — %) =0, ¥y €C, (1.5)
Xne1 = Auf (0n) + (1 — o) Tu,, VneN,

where f: H — H is a contraction mapping with constant & € (0, 1) and {a,,} < [0,1],

{r,} € (0, ). They proved under some suitable conditions on the sequence {a,}, {r,}
and bifunction F that {x,}, {,} strongly converge to z € F(T) n EP(F), where z = Prp

n epEf2).

Recently, in 2008, Takahashia and Takahashi [14] introduced a general iterative
method for finding a common element of EP (F, A) and F(T). They defined {x,} in the
following way:

u,x1 € C, arbitrarily;
F(z‘ﬂ' )’) + (Axm)’ - Zn> + )Lln ()’ — Zn,Zn — xn) Z 0/ V)’ € C/ (16)
Xns1 = BnXn + (1 — Bn)T(anu + (1 —ay)z,), VYVneN,

Page 2 of 17



Kangtunyakarn Fixed Point Theory and Applications 2012, 2012:89
http://www fixedpointtheoryandapplications.com/content/2012/1/89

where A be an a-inverse strongly monotone mapping of C into H with positive real
number o and {a,} € [0, 1], {B,} < [0, 1], {4,} < [0, 2¢2], and proved strong conver-
gence of the scheme (1.6) to z € NN, F(T;) N EP(F, A), where Z = Pny p(r)neptt in the
framework of a Hilbert space, under some suitable conditions on {a,}, {8,}, {A,} and
bifunction F.

In 2009, Inchan [15] proved the following theorem:

Theorem 1.1. Let H be a Hilbert space, C be a nonempty closed convex subset of H
such that C + C € C, and let T : C — H be a k-strictly pseudo-contractive mapping
with a fixed point for some 0 < k <1. Let A be a strongly positive bounded linear opera-
tor on C with coefficient y and f: C — C be a contraction with the contractive constant

(0 < a<l)such that 0 < y < Z. Let {x,} be the sequence generated by
x1 € C,
Xne1 = Y f(xn) + Buxn + ((1 — Bu) — awA) PcSxn,
where S : C — H is a mapping defined by
Sx=kx+ (1 —«)Tx (1.7)
If the control sequence {o,}, {B,} < (0, 1) satisfying

(1) lim o =0and lim B, =0,
n—0o0 n—o00
[o.¢]
(i) ) oty =00,
n=1

o0 o0
(i) ) lower — el <00, Y 1Bu1 — Bul < oo.
n=1 n=1
Then {x,,; converges strongly to a fixed point q of T, which solves the following solution
of variational inequality;

(A=vf)g,qg—x) <0, VxeF(T).

In 2010, Jung [16] proved the following theorem:

Theorem 1.2. Let H be a Hilbert space, C be a nonempty closed convex subset of H
such that C + C € C, and let T : C — H be a k-strictly pseudo-contractive mapping
with F(T) = & for some 0 < k <1. Let A be a strongly positive bounded linear operator
on C with coefficient y and f: C — C be a contraction with the contractive coefficient 0

< o<l suchthat0 <y < V. Let {a,} and {B,} < (0, 1) be sequences which satisfy the
o
following conditions:

(C1) lim o, =0,
n—-oo

o0
(C2)) an =00,
n=0

(B) 0 < liminf B, < limsup B, < a for some a constant a € (0, 1).
n—oo

n—oo
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Let {x,} be a sequence in C generated by

xo=x€C,
Vn = Buxy + (1 - ,Bn)PCS-xn
Xns1 = AV f(%n) + (I — @pA)yn, n =0,

where S : C — H is a'mapping defined by
Sx=kx+(1—«)Ix (1.8)

Then {x,} converges strongly to a fixed point q of T, which solves the following solution
of variational inequality;

(A=vf)a.q—x) <0, VxeF(T).

Question A. How can we prove strong convergence theorem of k-strictly pseudo-
contractive mapping without assumption of the mapping S = kI + (1 - k)T in Theo-
rems 1.1 and 1.2?

Let A, B : C — H be two mappings. By modification of (1.2), we have

VI(C,aA+(1—a)B)={xeC:(y—x (aA+(1—a)B)x) >0,
vyeC, ac(0,1)}.

From (1.4) and (1.9), we have

EP(F,(aA+ (1 —a)B)) ={z€ C:F(z,y) + ((aA+ (1 —a)B)z,y — z) > 0,
Vye Canda € (0, 1)}.

In this article, we prove strong convergence theorem to answer question A and to
approximate a common element of the set of fixed points of x-strictly pseudo-contrac-
tive mapping and the set of solution of a modification of generalized equilibrium pro-
blem. Moreover, by using our main result and a new lemma in the last section we
obtain strong convergence theorem for finding a common element of the set of fixed
points of x-strictly pseudo-contractive mapping and two sets of solutions of variational

inequalities.

2 Preliminaries
Let H be a real Hilbert space and let C be a nonempty closed convex subset of H, let
Pc be the metric projection of H onto C i.e., for x € H, Pcx satisfies the property

[lx — Pcx|| = min [|x —yl|.
yeC
The following characterizes the projection Pc.

Lemma 2.1. [17]Given x € H and y € C. Then Pcx = y if and only if there holds the
inequality

(x—y,y—2)>0 VzeC.
Lemma 2.2. [18]Let {s,} be a sequence of nonnegative real number satisfying

Sne1 = (1 —on)sp + 0By, Yn >0
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where {a,}, {B,} satisfy the conditions

(1) {an} C0,1], Zan = 00;
n=1

o0
(2) limsupB, <O0or Z lotn Bl < 00.

n—00
n=1

Then lim,,_,.. s, = 0.
Lemma 2.3. [17]Let H be a Hibert space, let C be a nonempty closed convex subset of
H and let A be a mapping of C into H. Let u € C. Then for A >0,

u="Pc(l—1A)u < ueVI(CA),

where Pc is the metric projection of H onto C.
Lemma 2.4. [19]Let {x,} and {z,} be bounded sequences in a Banach space X and let
{B,} be a sequence in [0,1] with 0 <lim inf,_,., B,, < lim sup,_,.. B, <1. Suppose

Xne1 = Budn + (1 — Bn)zn
forall n >0 and

lim sup(|lzne1 — zull — |11 — xall) < 0.
n—o0

Then lim,,_,.. ||%, - z,4|| = 0.

Lemma 2.5. [20]Let E be a uniformly convex Banach space, C be a nonempty closed
convex subset of E and S : C — C be a nonexpansive mapping. Then, I - S is demi-
closed at zero.

For solving the equilibrium problem for a bifunction F:CxC—R, let us assume that F
satisfies the following conditions:

(A1) F(x,x) =0 Vx e C;

(A2) F is monotone, i.e. F(x, y) + F(y, x) <0, Vx, y e C;

(A3) Vx, 9, ze C,

lim, ,o, F(tz + (1 - t)x, y) < F(x, y);

(A4) Vx € C, y a F(x, y) is convex and lower semicontinuous.

The following lemma appears implicitly in [7].

Lemma 2.6. [7]Let C be a nonempty closed convex subset of H, and let F be a bifunction
of C x Cinto R satisfying (A1)-(A4). Let r >0 and x € H. Then, there exists z€ C such that

1
F(z,y)+ (y—zz—x)>0,
T

forall x e C.
Lemma 2.7. [8]Assume that F:CxC—R satisfies (A1)-(A4). For r >0 and x € H,
define a mapping T, : H — C as follows:

1
Tr(x) = {zeC:F(z,y)+ T(y—z,z—x) >0, VyeC}.

for all ze H. Then, the following hold:

(1) T, is single-valued;

(2) T, is firmly nonexpansive i.e.

[| T (%) - T,»)||> < (TAx) - Ty), x - y) Vx, y € H;
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(3) K(T,) = EP(F);
(4) EP(F) is closed and convex.
Remark 2.8. If C is nonempty closed convex subset of H and T: C — C is k-strictly

pseudocontractive mapping with F(7) = &. Then F(T) = VI(C, (I - T)). To show this,
put A=1-T. Letze VI(C, (I-T)) and z* € F(T). Since ze VI(C, (I - T)),{y -z (I -
T)z) 2 0, Vy € C. Since T: C — C is k-strictly pseudocontractive mapping, we have
1Tz = T2 = [|(1 = A)e — (I = A2 | = ||z — 2* — (Az — AZ")||?
= |le — 21> — 2(z — 2, Az — AZ") +||Az — Az*||?
= |lz=2"1? = 2(z—2", (I=T)z) +||(I—T)z|?

< llz—2"11> + «||(I - T)zl|.
It implies that
(1 —)||(I-=T)zl|*> <2(z—z", (I - T)z) <O.

Then, we have z = T%, therefore z € F(T). Hence VI(C, (I - T)) € F(T). It is easy to
see that F(T) € VI(C, (I - T)).
Remark 2.9. A =1-T'is 15“- inverse strongly monotone mapping. To show this, let

x, y € C, we have
ITx = TyI* = [I(I = A)x — (1= Ayl = llx —y — (Ax — Ap)|P?
= |lx—ylI> — 2{x—y, Ax — Ay) +[|Ax — Ay|?
< llx =yl +xl|(I = T)x — (I = T)ylI.
= |lx — yII? + «||Ax — Ayl

Then, we have

K
(c—pAx—Ay) = llAx — AylI%.

3 Main result
Theorem 3.1. Let C be a closed convex subset of Hilbert space H and let F:CxC—R be

a bifunction satisfying (A1)-(A4), let A, B : C — H be o and B-inverse strongly mono-
tone, respectively. Let T : C — C be k-strictly pseudo contractive mapping with
F =F(T)NEP (F, aA + (1 — a)B) # Wfor all a € (0, 1). Let {x,} and {u,} be the sequences

generated by x1, u € C and

F(un, ) + (@A + (1 — a)B)xp,y — tn) + ' (y =ttty —x,) 2 0, Vy€C,
Xne1 = Ol + BuXn + YnPc(I — X(I — T))u,, VYn>1,

(3.1)

where {a}, (B}, (7} € 10,11, A€ (0,1 - k), &, + By + ¥, = 1, VreN and {r,} < [0,
291, v = min{e, B} satisfy;

n—oo

o0
(i) > an=o00, lim a, =0;
n=1

({{)0<c<Pu<d<l1l O<e<r=<f<2y;

(iii) lim |ry — 1] = 0.
n—oo
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Then {x,} converges strongly to zg = Pyu.
Proof. We divide the proof into seven steps.
Step 1. For every a € (0, 1), we prove that aA + (1 - a)B is y-inverse strongly mono-
tone mapping. Put D = gA + (1 - a)B. For x, y € C, we have
(Dx — Dy,x —y) = (aAx + (1 — a)Bx — aAy — (1 — a)By,x — y)
= (a(Ax — Ay) + (1 —a) (Bx— By),x—y)
=a(Ax — Ay, x —y)+ (1 —a) (Bx—By,x—y)
> aa||Ax — Ay||> + (1 — a)B||Bx — Byl|?
> y(allAx — Ay|I* + (1 - a)|[Bx = Byl|*)
> ylla(Ax — Ay) + (1 — a) (Bx — By)|I*
= y|laAx + (1 — a)Bx — aAy — (1 — a)By||?
= y||Dx — Dyl|?

Step 2. We show that / - r,D is a nonexpansive mapping for every ne N and so is Pc
(I - A - T)). For every ne N, let x, y € C. From step 1, we have
I(I = raD)x — (I = uD)y||* = |Ix — y — ra(Dx — Dy)||?
= [lx —y|I> = 2ru({x —y, Dx— Dy) +17||Dx — Dy||?

< llx = yII> = 2ryy[IDx — Dy||* + 1;||Dx — Dyl|® (3.3)
= |lx — yII> + 1u(ra — 2y)||1Dx — Dyl|?
< |lx=yl*

Then I - r,,D is a nonexpansive mapping.
Putting E = [ - T, from Remark 2.9, we have E is n-inverse strong monotone map-

1-—
ping, where 5 = ) “, By using the same method as (3.3), we have I - AE is nonexpan-

sive mapping. Then, we have P(I - A(I - T)) is a nonexpansive mapping.

Step 3. We prove that the sequence {x,} is bounded. From F # ¢ and (3.1), we have
uy =Ty, (I — 1aD)xy, Vne N. Let z € F. From Remark 2.8 and Lemma 2.3, we have z =
Pc(I - AE)z, where E = I - T. Since z € EP(F, D), we have F(z,y) + (y -z, Dz) 20 Vy

C, so we have

1
F(z,y)+ (y—zz—z+1,Dz) >0, VneNandyeC.
T;

n

From Lemma 2.7, we have z=T, (I — D)z, Vne N. By nonexpansiveness of
T, (I — r,D), we have

[|%n41 — 2| = ||an(u - Z) + ,Bn(xn _Z) + )’n(PCU - }\E)un - Z)||
anllu — 2| + Bnllxn — 2l + yulIPc(I — AE)un — z||

IA

IA

anl|u — 2| + Bullxn — 2l + yul| Ty, (I = raD)xn — 2|

anllu —z|[+ (1 —an)llx, —zl|

IAIA

max{||x, —zll, [lu—z|l}.

By induction we can prove that {x,} is bounded and so are {u,}, {Pc(I - AE)u,}.
Step 4. We will show that

lim [1Xne1 — xull = 0. (34')
n—oo
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Xnse1 — BuX
Let p, = n+11 5" " we have
- n

Xn+l = (1 - ﬂn)pn + BnXn.

From (3.5), we have

[1Pne1 = Pull =

1- /371+1
_ ( I N )u
1-— ﬂn+1 1- ,Bn

1- ﬁn+l B 1- /3"
s N
1- ﬂn+1 1- ﬂn
Vn+1 _ Yn
1- ,Bn+1 1-— ﬂn

Unil Qn

= - [ul
1- ﬁn+1 1-— ,Bn

1— Bni1 — a1 1
+ —
1- ﬂn+l

_ Ons1 On lul
1- ﬂn+1 1- ,Bn
Une1 On
1- lgn+1 1- ISn
Oyl op
= - [ul
1- :8n+1 1- ﬂn (

Yn+1 ” . ||
+ Uns Unll.
1 ,3n+1

IA

[ul]

+

Xne2 — ,3n+1xn+1 _ Xn+1 — ﬂnxn
1-— ﬂn+1 1-— ﬂn
Ape1U + Yne1Po(I — AE)Ups1 _opu yuPc(I — AE)uy

+ ( Yo v ) Pc(l — AE)u,

—Bn—an

1_l3n

Vn+l

+ (Pc(I = AE)uner — Po(I — AE)uy)

1- IBTH-I

4 Vn+l ||u u ||
n+l — Un
1- ﬁn+1

[IPc(I = AE)uy||

Yn+1

[[tns1 — unl|
I_IBrH-l

| +

[IPc(I = AE)uy||

1- Ign
Yn+1

| +
l_ﬂm-l

[[tne1 — unl|

[IPc(I = AE)uy||

| +11Pc(I — AE)unll)

(3.5)

(3.6)

Putting v, = x,, - r,Dx,, we have u, = T;, (xn — 1,Dxy,) = Ty, vn. From definition of u,,

we have

1

F(un' Y) + (Y — Uy, uy —
n

and
1
F(un+11 Y) + —<)’ — Up+1, Un+1
Th+l

Putting y = u,,,1 in (3.7) and y = u,, in

1
F(un/ un+1) + r <un+1 — Up, Up

n

and

vn) 2 OI

Vy e C,
— ) >0, VyeC.
(3.8), we have

1
F(un+1/ un) + ——(Up — Ups1, Uns1 — Vps1) = 0.

Tn+1

(3.7)

(3.8)

(3.9

(3.10)
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Summing up (3.9) and (3.10) and using (A2), we have

1 1
0= (Ups1 — Up, Uy — V) + (Up — Ups1, Upel — Vne1)
n Tn+1
Up — U Un+1 — Un+1
= \Un+1 — Uy, +\Un — Uns1,
Tn Tn+l
Up — Up Un+el — Unsl
= \Up+1 — Un, - .
Tn Tnel

It implies that

o
A

Tn
< <un+1 —Un Un =V — (Une1 — Vn+1)>
n+1

Tn
=\Up+1 — Up, Up — Upyl + Upye1 — Uy — . (un+1 - Vn+1) .
n+1

It implies that

T
" (un+1 - Vn+l)>
1

2
||un+1 - un” = <un+1 — Un, Up+1 — Un —
n+

Tn
=\Un+1 — Uns, Upsl — Unsl +VUnyl — Uy — (un+l - Vn+1)

Tnel
Tn
={Ups1 — Up, Vpe1 — U+ (1 — (un+l — Vn+1)
Tn+l
=< tne1r — ugl| (||Un+1 — vl + [Tne1 — Tul Hper — 1/n+1||) .
n+1
It follows that
1
Nuper — tnll < |[Vne1 — vnll + e [Tne1 — Tul N1 — vpar |l (3.11)
Since v, = x,, - r,Dx,, we have
vner — vall = [1%ne1 — Tre1 DXpsr — X + 17Dy ||

= ||U - Tn+1D)xn+1 - (I - Tn+1D)xn
+ (I = rye1D)xy — (I — 1,D) x|

(3.12)
< ||U - Tn+1D)xn+1 - (I - Tn+1D)xn||
+ ||(Tn - Tn+1)Dxn||
< |x%ne1 — Xnll + 17 — Tnea| [|Dxnll.
Substitute (3.12) into (3.11), we have
1
Huner — Unll < [[Vns1 — vpl| + e|rn+1 — Tl Htne1 — Vnsll
< |1%ne1 — Xnll + 10 — Tner | [|Dx ]
(3.13)

1
+ e [Tne1 — Tul Htner — vpaa |

IA

1
[1%p41 — Xnll + [T — Tne1 L + e [The1 — TnlL,
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where L=max,,c n{||Dx,||, ||44,-V,||}- Substitute (3.13) into (3.6), we have

Upel O
— < — u Pc(I — AE)u
owa =l = | 28—l PG = 2E)un)
. f"; lttnr = |
el (3.14)
Unel (o471
< - [lull + [IPc(I — AE)up]|
1_:3n+1 1_,371( ( )n)
1
+ [Xne1 — Xpl| + |10 — Tt L + e [Tne1 — TulL,
From conditions (i), (iii) and (3.14), we have
lim sup (||pn+1 = Pall — %041 _xn”) <0. (3.15)
n—oo
From Lemma 2.4, (3.15) and (3.5), we have
lim |[|p, — x| = 0. (3.16)
n—0o0

From (3.5), we have

Xne1 — Xn = (1 — Bu)(Pn — Xn). (3.17)
From (3.16), (3.17) and condition (ii), we have

Jim [Pner — x|l = 0. (3.18)
Since

Xns1 — Xn = (U — Xn) + Yn(Pc(I = A(I = T))un — xn),
from conditions (i), (ii) and (3.18), we have

Tim |[Pe(l = AE)un — %] =0, (3.19)

where E=1-T.
Step 5. We will show that

lim [|uy — x4|] = 0. (3.20)
n—oo
Since uy, = Ty, (xn — 1,Dxy), we have

[l — Z||2 = T, (xn — TaDxn) — Tr, (I — TnD)Z”z

< {(I—mD)xn — (I — D)z, up —2)
- ; (I(T = raD)xy — (I — D)zl + llun — zlI?
—I(I = uD)xy — (I — 1aD)z — uy +zl|%)
< (o =2+l = 21 = (5o — ) = 1o (D52~ D)I?)
< ; (% = 2lI% + llun — 21> = [l%0 — unl|> — 51 Dx, — Dz||?

+21(Xp — Uy, Dx, — Dz)),
it implies that

lun — 21> < 1160 — 2% =[x — unl > — 1311D%y — Dzl|* + 27 (x — tn, Dxn — D2). (3.21)
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By nonexpansiveness of T, and using the same method as (3.3), we have

lun — zl1> = ||Ty, (I = 1aD)xy — Ty, (I — ruD)zl|?
< |(I = rD)xy — (I — rnD)z||2
< lxn — 2> + 1a(rn — 2y)||Dx, — Dz||?

[l — Z||2 - Tn(z)’ - Tn)”Dxn - DZ||2-
By nonexpansiveness of Pc(I - AE) and (3.22), we have

[|%n41 _Z”2 = |lan(u — 2) + Bu(xn — 2) + yu(Pc(I — AE)uy — Z)”z

< anllu—2l* + Bullxn — 2|1> + yullun — 2l
< anllu—2l* + Bullxn — 2l1> + ya(llxn — 2l
— 1a(2y —1)lIDxy, — Dzl|?)
< ayllu — Z||2 + ||xn _Z”2 - TnVn(?‘V - rn)“Dxn - DZHZI

it implies that
Tn¥n(2y — 1) [IDxn — Dz||* < anllu — 2l|* + |y — 2l|* — [|xpe1 — 2I]?
< ayllu—2z||* + (|lx, — 2|
+ | ner — 2l [1Xne1 — %al]-
From (3.18), (3.24), conditions (i) and (ii), we have

lim ||Dx, — Dz|| =0
n—oo

From (3.23) and (3.21). we have

2
[1%n+1 _Z”2 < lotn(u — 2) + Bu(xn — 2) + yu(Pc(I — AE)un — 2)||
2 2 2
< anllu —z[|” + Bullxn — 2l1° + vallun — ||
2 2 2 2
< apllu —z||” + Bullxy — zl| +)’n(||xn_z|| — [lxn — unl|

—12||Dxy — Dz||* + 21y (xy — iy, Dx, — Dz))

A

2 2 2 2
< anllu—2z||° + Ballxn — 2||7 + Yallxn — 2l1° — Vallxn —

+ 21 ¥allxn — unl| ||Dxn — Dz||

IA

which implies that

2
YullXn — unl|

< ayllu *ZHZ + (”xn —z|| + X1 7Z||)||xn+1 — Xnl|

+ 210 Ynl|xn — unll [1Dxy — Dzl|,
from condition (i), (3.25) and (3.18), we have
lim [[x, — uu|| =0.
11— 00
Step 6. We prove that

lim sup(u — zg, x, — 20) < 0,
n—00

2 2 2
anllu —z||” + [lxn — 2|17 = VallXn — uall® + 210 ¥allxn — tnl| [|Dxn — Dz||,

2 2
San||u_z||2+||xn_z|| — [|%ns1 — 2|17 + 210 ¥allxn — gl [|Dxy — Dz||

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

where zg = Ppu. To show this equality, take a subsequence {xy,} of {x,} such that

lim sup(u — zg, X, — 2zo) = lim (u — 2o, Xn, — 20),
n—o00 — 00

(3.27)
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Without loss of generality, we may assume that Xn, — @ as k — o where w € C. We
first show w € EP(F, D), where D = aA + (1 - a)B, Ya € [0,1]. From (3.20), we have
Up, = @ as k —> oo. Since Uy, = Ty, (X, — raDxy), we obtain

1
F(un, y) + (Dxp, y — tp) + . (y —up, up—xn) >0, VyeC.

n

From (A2), we have (Dxy, y — uy) + ,ln (Y — tn, up — %) > F(y, up). Then

1
(D‘xnh'y - u”h) + r (Y — Upyr Uny, — ‘xnh) = F(V' unh)’ Vy e C. (3-28)

N
Putz, =ty + (1 - o for all te (0, 1] and y € C. Then, we have z, € C. So, from
(3.28) we have
Uny, — Xn,
(z¢ — un,, Dzy) > (z; — U, Dz;) — (2t — Uy, DXyy) — (20 — Uy, +F(z;, uy,)
Ny
= (g — up,, Dz; — Duy,) + (2, — uy,, Duy, — Dxy,)

Un, — Xn,
— <zt —Up, + F(zi, uy,).
N

Since ||un, — xn, || — O, we have |[Duy, — Dxy,|| — 0. Further, from monotonicity of
D, we have (z; — uy,, Dz; — Duyp,) > 0. So, from (A4) we have

(z¢ — w, Dzy) > F(z;, w) ask — oo. (3.29)
From (A1), (A4) and (3.29), we also have

0= F(z:, zt) < tF(z¢, y) + (1 — t)F(2z, w)
tF(z;, y) + (1 — t)(z — @, Dz;)
tF(z;, y) + (1 — t)t{y — o, Dz),

IA

hence

0 <F(z, y)+ (1 —t){y — w, Dz).
Letting t — 0, we have

0 < F(w,y)+{y— o, Dw) VyeC. (3.30)
Therefore w € EP(F, D), where D = aA + (1 - a)B, Va € [0,1]. Since

[IPc(I = AE)un — unll < [ IPc(I = AE)un — Xnl| || + [xn — uall,
where E = I - T from (3.19) and (3.20), we have

lim [|Pc(l = AE)u, = ]| = 0. (331)
Since Un, = ® as k - w, (3.31) and Lemma 2.5, we have w € F(P-(I - AE)). From

Lemma 2.3 and Remark 2.8, we have w € F(T). Therefore w € F. Since Xn, = ® as k
— o and @ € F, we have

lim sup(u — zo, xn — z0) = lim (u — 2o, Xy, — 20) = (U — 2o, @ — 29) < 0.
N— 00 n—oo
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Step 7. Finally, we show that {x,} converses strongly to zg = Ppu. From definition of

X, we have

[|%ne1 — z0||2 = [lota(u — 2z0) + Bu(xn — 20) + Yu(Pc(I — A(I = T))u, — Z0)||2
180 (%0 — 20) + yn(Pc(I = AMI — T))uy — 20)||? + 200 (U — 20, Xpe1 — Z0)
Bullxn — zol1> + yullPc(I — A(I — T))un — 2ol + 20t (u — 2o, Xps1 — Z0)

IAIA

IA

2 2
Bullxn — zol|” + yull Ty, (I — 1aD)Xn — 201~ + 200 (U — Zo, Xne1 — Z0)

IA

(1 — an)llxn = 2olI* + 20 (1 — 20, Xns1 — 20)
From (3.26) and Lemma 2.2, we have {x,} converses strongly to zo = Ppu. This com-

pletes the prove. O

4 Applications

To prove strong convergence theorem in this section, we needed the following lemma.
Lemma 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H and

let A, B: C — H be o and B-inverse strongly monotone mappings, respectively, with o,

B >0 and VI(C, A) n VI(C, B) # &. Then

VI(C, aA + (1 —a)B) = VI(C, A)(\VI(C, B), Ya € (0,1). (4.1)

Furthermore if 0 < y <2n, where n = min{c, B}, we have I - faA + (1 - a)B) is a non-
expansive mapping.

Proof. 1t is easy to see that VI(C, A) n VI(C, B) € VI(C, aA + (1 - a)B). Next, we will
show that VI(C, aA + (1 - a)B) € VI(C, A) n VI(C, B). Let xo € VI(C, aA + (1 - a)B)
and x* € VI(C, A) n VI(C, B). Then, we have

(y —«*, Ax*) >0, VyeC,
and

(y —x* Bx*) >0, VyeC.
For every a € (0, 1), we have

{y —x*,aAx*) >0, VyeC, (4.2)
and

(y—x*, (1 —a)Bx*) >0, VyeC. (4.3)
By monotonicity of A, B and x*, x5 € C, we have

(x* — x0, aAxg) = (x* — xo, aAxo + (1 — a)Bxp — (1 — a)Bxo)
= (x* —x9, aAxo + (1 — a)Bxo) — (x* — xo, (1 — a)Bxo)

> (1 —a){xo —x", Bxo) (4.4)
= (1 —a) ({xo —x*, Bxg — Bx*) + (xo — x*, Bx"))
> 0.

It implies that

(x* — x0, Axg) > 0. (4.5)
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By monotonicity of A, x* € VI(C, A) and (4.5), we have
0 < (x* —xo, Axo)

(x* — x9, Axg — AX™ + Ax™)

= (x* —x9, Axg — Ax™) + (x* — xg, Ax™)

< —al|Ax* — Axgl]® + (x* —xo, Ax*)

< —a|lAx* — Axoll?,

it implies that
Ax* = Axy.
For every y € C, from (4.5), (4.6) and x* € VI(C, A), we have
(y — X0, Axo) = (y — x%, Axo) + (x* — xo, Axo)
> (y—x*, Ax*) > 0.
Then, we have
xo € VI(C, A).
From (4.4), we have

(1 —a){x* —xo, Bxo) > alxo —x*, Axo)
= a((xo — x*, Axg — Ax*) + (xo — x*, Ax*))
> 0.

It implies that
(x* — xo0, Bxo) > 0.
By monotonicity of B, x* € VI(C, B) and (4.9), we have

0 < {(x* —xo, Bxo)

= (x* — xo, Bxo — Bx" + Bx")

{(x* — x0, Bxg — Bx™) + (x* — x9, Bx™)
< —B||Bx* — Bxo||* + (x* — x0, Bx*)

< —BIIBx* — Bxol*,
it implies that
Bx* = Bxg.

For every y € C, from (4.9), (4.10) and x* € VI(C, B), we have

(y — x*, Bxg) + (x* — xo, Bxo)
{y —x*, Bx*) > 0.

{y — x0, Bxo)

v

Then, we have

xo € VI(C, B).

By (4.7) and (4.11), we have xy € VI(C, A) n VI(C, B). Hence, we have

VI (C, aA+ (1 —a)B) C VI(C, A)(|VI(C, B).

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)
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Next, we will show that I - faA + (1 - a)B) is a nonexpansive mapping. To show this
let x, y € C, then we have

|(1—y(aA+ (1 —a)B))x— (I—y(aA + (1 —a)B))y|’
=|x—y—v((@aA+ (1 —a)B)x— (aA+ (1 —a)B)y)”2
[x—y— v (a(Ax — Ay) + (1 —a)(Bx—By))H2

lx—ylI* = 2y (a (Ax— Ay) + (1 —a) (Bx—By), x—7y)
+y2||a(Ax—Ay)+(1 —a) (Bx—By)||2

llx = yII? = 2ya{Ax — Ay, x —y) = 2y(1 — a) (Bx — By, x—) (4.12)
+ay?||Ax — Ayl|> + (1 —a)y?|| Bx — Byl|?

|lx — ylI* — 2yaal|Ax — Ay||* — 2y (1 — a)B||Bx — By||?
+ay?||Ax — Ay||> + (1 — a)y?||Bx — By||?
llx = yI1* + ay (v — 2a)||Ax — Ay||> + (1 — a)y (v — 28)||Bx — By||?
|lx — y11%.

IA

IA

]

Theorem 4.2. Let C be a closed convex subset of Hilbert space H and let A, B: C —
H be o and B-inverse strongly monotone, respectively. Let T be k-strictly pseudo con-
tractive mapping with F = F(T) N VI (C,A) N VI(C,B) # 0. Let {x,} be the sequence gen-
erated by x1, u € C and

Xpe1 = Ol + BuXy + YuPc(I — A(I — T))Pc(I — r(aA + (1 — a)B))x,, Vn > (4.13)

where {OC,,}, {ﬁ”}’ {%’1} < [0’ 1]’ ae (07 1)7 /l € (O’ 1- li)’ oy + ﬁn + V= 1; Vne N and
{r,} € [0, 29}, y = min{e, B} satisfy;

o0
(1) E o, =00, lima, =0;
1 n— 00
n=

(i)0<c<B,<d<1,0<e<r, <f<2y;

(iii) lim |rye — 14| = 0.
n—oo

Then {x,} converges strongly to zg = Pyu.
Proof. From 3.1 putting F = 0 in Theorem 3.1, we have

(y —tn, g — (I —1,D)x,) >0, VyeC,
where D = aA + (1 - a)B, Va € [0,1] It implies that
up = Pc(I — ryD)xy.

Then, we have (4.13). From Theorem 3.1 and Lemma 4.1, we can conclude the
desired conclusion. B

Theorem 4.3. Let C be a closed convex subset of Hilbert space H and let F.CxC—R
be a bifunction satisfying (A1)-(As), let A : C — H be a-inverse strongly monotone. Let
T: C — C be k-strictly pseudo contractive mapping with F = F(T) N EP(F,A) # 0. Let
{x,) and {u,} be the sequences generated by x1, u € C and
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1
F(un, y) + (Axn, y — un) + " V= tns tn —xa) 20, Vy€C, (4.14)

Xpe1 = Al + BuXy + YnPc(I — M(I — T))u,, VYn=>1,

where {0}, {B8,}, (v} €10,1,2 e (0,1 - k), @, + B, + ¥, = 1, VneN and {r,} < [0,

271, y = min{e, B} satisfy;

oo
(i) Zan = 00, nli)rgoan =0;
n=1

({{)0<c<Pp<d<1l,0<e<r,<f<2y;

(iii) lim |ryy — 1| = 0.
n—oo

Then {x,} converges strongly to zo = Pyu.
Proof. From Theorem 3.1, putting A = B, we can conclude the desired conclusion. O
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