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1. Introduction and preliminaries
Banach’s contraction principle is one of the pivotal results of analysis. It is widely con-

sidered as the source of metric fixed point theory. Also, its significance lies in its vast

applicability in a number of branches of mathematics. The existence of a fixed point, a

common fixed point and a couple fixed point for some kinds of contraction type map-

pings in cone metric spaces, partially ordered metric spaces and fuzzy metric spaces

has been considered recently by some authors [1-28] and, by using fixed point theo-

rems, some of them have given some applications to matrix equations, ordinary diffier-

ential equations, and integral equations are presented.

Let S denotes the class of the functions b : [0, ∞) ® [0, 1) which satisfies the condi-

tion b(tn) ® 1 implies tn ® 0.

The following generalization of Banach’s contraction principle is due to Geraghty

[13].

Theorem 1.1. Let (X, d) be a complete metric space and f : X ® X be a mapping

such that there exists b Î S such that, for all x, y Î X,

d
(
f (x), f (y)

) ≤ β
(
d(x, y)

)
d(x, y).

Then f has a unique fixed point z Î X and, for any choice of the initial point x0 Î X,

the sequence {xn} defined xn = f (xn-1 for each n ≥ 1 converges to the point z.

Very recently, Amini-Harandi and Emami [3] proved the following existence

theorem:

Theorem 1.2. Let (X, ≤) be a partially ordered set and suppose that there exists a

metric d in X such that (X, d) is a complete metric space. Let f : X ® X be an increas-

ing mapping such that there exists x0 Î X with x0 ≤ f (x0). Suppose that there exists b
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Î S such that

d
(
f (x), f (y)

) ≤ β
(
d(x, y)

)
d(x, y)

for all x, y Î X with x ≥ y. Assume that either f is continuous or X is such that

if an increasing sequence {xn} converges to x, then xn ≤ x for each n ≥ 1.

Besides, if

for all x, y Î X, there exists z Î X which is comparable to x and y.

Then f has a unique fixed point in X.

In this article, we give a generalization of Theorem 1.2 in the context of partially

ordered complete metric spaces. Moreover, by using our result, we show the existence

of solution for the following initial-value problem:{
ut(x, t) = uxx(x, t) + F(x, t, u, ux), − ∞ < x < ∞, 0 < t ≤ T,

u(x, 0) = ϕ (x) , −∞ < x < ∞,

where we assume that � is continuously differentiable and �, �’ are bounded and F :

ℝ × I × ℝ × ℝ ® ℝ with F (x, t, u, ux) is a continuous function.

2. The main results
We begin with the following auxiliary lemma which is useful to prove some fixed point

theorems in various spaces (see [25]):

Lemma 2.1. Let (X, d) be a metric space and {xn} be a sequence in X such that {d(xn

+1, xn)} is decreasing and

lim
n→∞ d (xn+1, xn) = 0.

If {x2n} is not a Cauchy sequence, then there exist ε >0 and two sequences {mk}, {nk} of

positive integers such that the following four sequences tend to ε as k ® ∞:

{d(x2mk , x2nk)}, {d(x2mk , x2nk+1)}, {d(x2mk−1, x2nk)}, {d(x2mk−1,x2nk+1)}.

Let Ψ denotes the class of the functions ψ : [0, ∞) ® [0, ∞) which satisfies the fol-

lowing conditions:

(a) ψ is nondecreasing;

(b) ψ is sub-additive, that is, ψ(s + t) ≤ ψ(s) + ψ(t);

(c) ψ is continuous;

(d) ψ(t) = 0 ⇔ t = 0.

We are now ready to state and prove our main theorem.

Theorem 2.2. Let (X, ≤) be a partially ordered set and suppose that there exists a

metric d in X such that (X, d) is a complete metric space. Let f : X ® X be a nonde-

creasing mapping such that there exists x0 Î X with x0 ≤ f (x0). Suppose that there exist

b Î S and ψ Î Ψ such that

ψ
(
d
(
f (x) , f

(
y
))) ≤ β

(
ψ

(
d
(
x, y

)))
ψ

(
d
(
x, y

))
(2:1)

for all x, y Î X with x ≥ y. Assume that either f is continuous or X is such that

if an increasing sequence {xn} converges to x, then xn ≤ x for each n ≥ 1. (2:2)

Then f has a fixed point.
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Proof. Since x0 ≤ f (x0) and f is a nondecreasing function, we obtain, by induction,

that

x0 ≤ f (x0) ≤ f 2 (x0) ≤ f 3 (x0) ≤ · · · ≤ f n (x0) ≤ f n+1 (x0) ≤ · · · .

Put xn : = fn(x0) for each n ≥ 1. Since xn ≤ xn+1 for each n ≥ 1, by (2.1), we have

ψ (d (xn+1, xn+2)) = ψ
(
d
(
f n+1 (x0) , f n+2 (x0)

))
≤ β (ψ (d (xn, xn+1))) ψ (d (xn, xn+1))

≤ ψ (d (xn, xn+1)) .

Thus it follows that {ψ(d(xn, xn+1))} is a nonincreasing sequence and bounded below

and so limn®∞ ψ(d(xn, xn+1)) = r exists. Let limn®∞ ψ(d(xn, xn+1)) = r ≥ 0. Assume r

>0. Then, from (2.1), we have

ψ(d(xn+1, xn+2))
ψ(d(xn, xn+1))

≤ β (ψ (d (xn, xn+1))) ≤ 1

for each n ≥ 1, which yields that

lim
n→∞ β (ψ (d (xn, xn+1))) = 1.

On the other hand, since b Î S, we have limn®∞ ψ(d(xn, xn+1)) = 0 and so r = 0.

Now, we show that {xn} is a Cauchy sequence. Suppose that {xn} is not a Cauchy

sequence. Using Lemma 2.1, we know that there exist ε >0 and two sequences {mk}

and {nk} of positive integers such that the following four sequences tend to ε as k ® ∞:{
d
(
x2mk , x2nk

)}
,

{
d
(
x2mk , x2nk+1

)}
,

{
d
(
x2mk−1, x2nk

)}
,

{
d
(
x2mk−1, x2nk+1

)}
.

Putting, in the contractive condition, x = x2mk−1 and y = x2nk , it follows that

ψ
(
d
(
x2mk , x2nk+1

)) ≤ β
(
ψ

(
d
(
x2mk−1, x2nk

)))
ψ

(
d
(
x2mk−1, x2nk

))
≤ ψ

(
d
(
x2mk−1, x2nk

))
and so

ψ
(
d
(
x2mk , x2nk+1

))
ψ(d

(
x2mk−1, x2nk

) ≤ β
(
ψ

(
d
(
x2mk−1, x2nk

))) ≤ 1

and

lim
k→∞

β
(
ψ

(
d
(
x2mk−1, x2nk

)))
= 1.

Since b Î S, it follows that limk®∞ ψ
(
d
(
x2mk−1, x2nk

))
= 0 . Since ψ is a continuous

mapping, ψ(ε) = 0 and so ε = 0, which contradicts ε > 0. Therefore, {xn} is a Cauchy

sequence in (X, d). Since (X, d) is a complete metric space, there exists z Î X such

that limn®∞ xn = z.

Now, we show that z is a fixed point of f.

If f is continuous, then

z = lim
n→∞ f n(x0) = lim

n→∞ f n+1(x0) = f ( lim
n→∞ f n(x0)) = f (z)
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and hence f (z) = z.

If (2.2) holds, then we have

d(f (z), z) ≤ d(f (z), f (xn)) + d(f (xn), z).

On the other hand, since ψ is nondecreasing and sub-additive, we have

ψ(d(f (z), z)) ≤ ψ(d(f (z), f (xn))) + ψ(d(f (xn), z))

≤ β(ψ(d(z, xn)))ψ(d(z, xn)) + ψ(d(xn+1, z))

≤ ψ(d(z, xn)) + ψ(d(xn+1, z)).

Since d(z, xn) ® 0, ψ(d(z, xn)) ® 0 and so

ψ(d(f (z), z)) = 0 ⇔ d(f (z), z) = 0.

Therefore, we get f (z) = z. this completes the proof. □
In the following, we give a sufficient condition for the uniqueness of the fixed point

in Theorem 2.2. This condition is as follows:

every pair of elements in X has a lower bound or an upper bound. (2:3)

In [20], it is proved that the condition (2.3) is equivalent to the following:

for every x, y ∈ X, there exists z ∈ X which is comparable to x and y. (2:4)

Theorem 2.3. Adding the condition (2.4) to the hypotheses of Theorem 2.2, the fixed

point z of f is unique.

Proof. Let y be another fixed point of f. From (2.4), there exists x Î X which is com-

parable to y and z. The monotonicity implies that fn(x) is comparable to fn(y) = y and

fn(z) = z for n ≥ 0. Moreover, we have

ψ(d(z, f n(x))) = ψ(d(f n(z), f n(x)))

= ψ(d(f (f n−1(z)), f (f n−1(x))))

≤ β(ψ(d(f n−1(z), f n−1(x)))) .ψ(d(f n−1(z), f n−1(x)))

≤ ψ(d(f n−1(z), f n−1(x)))

= ψ(d(z, f n−1(x))).

(2:5)

Consequently, the sequence {gn} defined by gn = ψ(d(z, fn(x))) is nonnegative and

nonincreasing and so

lim
n→∞ ψ(d(z, f n(x))) = γ ≥ 0.

Now, we show that g = 0. Assume that g >0. By passing to the subsequences, if

necessary, we may assume that limn®∞ b(gn) = l exists. From (2.5), it follows that lg =
g and so l = 1. Since b Î S,

γ = lim
n→∞ γn = lim

n→∞ ψ(d(z, f n(x))) = 0.

This is a contradiction and so g = 0.

Similarly, we can prove that

lim
n→∞ ψ(d(y, f n(x))) = 0.
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Finally, from d(z, y) ≤ d(z, fn(x)) + d(fn(x), y), it follows that

ψ(d(z, y)) ≤ ψ(d(z, f n(x))) + ψ(d(f n(x), y))

since ψ is nondecreasing and sub-additive. Therefore, taking n ® ∞, we have ψ(d(z,

y)) = 0.

It follows that d(z, y) = 0 and so z = y. This completes the proof. □

3. Applications
In this section, we show the existence of solution for the following initial-value pro-

blem by using Theorems 2.2 and 2.3:{
ut(x, t) = uxx(x, t) + F(x, t, u, ux), −∞ < x < ∞, 0 < t ≤ T,
u(x, 0) = ϕ(x), −∞ < x < ∞,

(3:1)

where we assume that � is continuously differentiable and that � and �’ are bounded

and F (x, t, u, ux) is a continuous function.

Definition 3.1. By a solution of an initial-boundary-value problem for any ut = uxx +

F (x, t, u, ux) in ℝ × I, where I = [0, T ], we mean a function u = u(x, t) defined in ℝ ×

I such that

(a) u Î C(ℝ × I),

(b) ut, ux and uxx Î C(ℝ × I),

(c) u and ux are bounded in ℝ × I,

(d) ut(x, t) = uxx(x, t) + F (x, t, u(x, t), ux(x, t)) for all (x, t) Î ℝ × I.

Now, we consider the space

� = {ν(x, t) : ν, νx ∈ C(R × I and || ν|| < ∞},

where

||ν|| = sup
x∈R, t∈I

|ν(x, t)| + sup
x∈R,t∈I

|νx(x, t)|.

The set Ω with the norm ||·|| is a Banach space. Obviously, the space with the

metric given by

d(u, ν) = sup
x∈R,t∈I

|u(x, t) − ν(x, t)| + sup
x∈R,t∈I

|ux(x, t) − νx(x, t)|

is a complete metric space. The set Ω can also equipped with a partial order given

by

u, ν ∈ �, u ≤ ν ⇔ u(x, t) ≤ ν(x, t), ux(x, t) ≤ νx(x, t)

for any x Î ℝ and t Î I. Obviously, (Ω, ≤) satisfies the condition (2.4) since, for any

u, ν Î Ω, the functions max{u, ν} and min{u, ν} are the least upper and greatest lower

bounds of u and ν, respectively.

Taking a monotone nondecreasing sequence {νn} ⊆ Ω converging to ν in Ω, for any

x Î ℝ and t Î I,

ν1(x, t) ≤ ν2(x, t) ≤ ν3(x, t) ≤ · · · ≤ νn(x, t) ≤ · · ·
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and

ν1x
(x, t) ≤ ν2x

(x, t) ≤ ν3x
(x, t) ≤ · · · ≤ νnx

(x, t) ≤ · · · .

Further, since the sequences {νn(x, t)} and {νnx(x, t)} of real numbers converge to ν(x,

t) and νx(x, t), respectively, it follows that, for all x Î ℝ, t Î I and n ≥ 1,

νn(x, t) ≤ ν(x, t)

and

νnx(x, t) ≤ νx(x, t).

Therefore, νn ≤ ν for all n ≥ 1 and so (Ω, ≤) with the above mentioned metric satis-

fies the condition (2.2).

Definition 3.2. A lower solution of the initial-value problem (3.1) is a function u Î
Ω such that{

ut ≤ uxx + F(x, t, u, ux), −∞ < x < ∞, 0 < t ≤ T,
u(x, 0) ≤ ϕ(x), −∞ < x < ∞,

where we assume that � is continuously differentiable � and �’ are bounded, the set

Ω is defined in above and F (x, t, u, ux) is a continuous function.

Theorem 3.3. Consider the problem (3.1) with F : ℝ × I × ℝ × ℝ ® ℝ continuous

and assume the following:

(1) for any c >0 with |s| < c and |p| < c, the function F (x, t, s, p) is uniformly

Hölder continuous in X and t for each compact subset of ℝ × I;

(2) there exists a constant cF ≤ (T + 2π
−1
2 T

1
2 )−1 such that

0 ≤ F(x, t, s2, p2) − F(x, t, s1, p1) ≤ cF(ln(s2 − s1 + p2 − p1 + 1))

for all (s1, p1) and (s2, p2) in ℝ × ℝ with s1 ≤ s2 and p1 ≤ p2;

(3) F is bounded for bounded s and p.

Then the existence of a lower solution for the initial-value problem (3.1) provides the

existence of the unique solution of the problem (3.1).

Proof. The problem (3.1) is equivalent to the integral equation

u(x, t) =
∫ ∞

−∞
k(x−ξ , t)ϕ(ξ)dξ+

∫ t

0

∫ ∞

−∞
k(x−ξ , t−τ )F(ξ , τ , u(ξ , τ ), ux(ξ , τ ))dξdτ

for all x Î ℝ and 0 < t ≤ T , where

k(x, t) =
1√
4π t

exp
{−x2

4t

}

for all x Î ℝ and t >0. The initial-value problem (3.1) possesses a unique solution if

and only if the above integral-differential equation possesses a unique solution u such

that u and ux are continuous and bounded for all x Î ℝ and 0 < t ≤ T.
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Define a mapping F: Ω ® Ω by

(Fu) (x, t) =
∫ ∞

−∞
k(x − ξ , t)ϕ(ξ)dξ

+
∫ t

0

∫ ∞

−∞
k(x − ξ , t − τ )F(ξ , τ , u(ξ , τ ), ux(ξ , τ ))dξdτ

for all x Î ℝ and t Î I. Note that, if u Î Ω is a fixed point of F, then u is a solution

of the problem (3.1).

Now, we show that the hypothesis in Theorems 2.2 and 2.3 are satisfied. The map-

ping F is nondecreasing since, by the hypothesis, for u ≥ ν,

F(x, t, u(x, t), ux(x, t)) ≥ F(x, t, ν(x, t), νx(x, t)).

By using that k(x, t) >0 for all (x, t) Î ℝ × (0, T ], we conclude that

(Fu)(x, t) =
∫ ∞

−∞
k(x − ξ , t)ϕ(ξ)dξ

+
∫ t

0

∫ ∞

−∞
k(x − ξ , t − τ )F(ξ , τ , u(ξ , τ ), ux(ξ , τ ))dξdτ

≥
∫ ∞

−∞
k(x − ξ , t)ϕ(ξ)dξ +

∫ t

0

∫ ∞

−∞
k(x − ξ , t − τ )F(ξ , τ , ν (ξ , τ ), νx(ξ , τ ))dξdτ

= (Fν) (x, t)

for all x Î ℝ and t Î I. Besides, we have

|(Fu)(x, t) − (Fν) (x, t)|

≤
∫ t

0

∫ ∞

−∞
k(x − ξ , t − τ )|F(ξ , τ , u(ξ , τ ), ux(ξ , τ )) − F(ξ , τ , ν(ξ , τ ), νx(ξ , τ ))|dξdτ

≤
∫ t

0

∫ ∞

−∞
k(x − ξ , t − τ ) · cF ln(u(ξ , τ ) − ν (ξ , τ ) + ux(ξ , τ ) − νx(ξ , τ ) + 1)dξdτ

≤ cF · ln(d(u, ν) + 1)
∫ t

0

∫ ∞

−∞
k(x − ξ , t − τ )dξdτ

≤ cF · ln(d(u, v) + 1) · T

(3:2)

for all u ≥ ν. Similarly, we have∣∣∣∣∂Fu∂x
(x, t) − ∂Fν

∂x
(x, t)

∣∣∣∣ ≤ cF · ln(d(u, ν) + 1)
∫ t

0

∫ ∞

−∞
|∂k
∂x

(x − ξ , t − τ )| dξdτ

≤ cF · ln(d(u, ν) + 1) · 2π
−1
2 T

1
2 .

(3:3)

Combining (3.2) with (3.3), we obtain

d(Fu, Fν) ≤ cF(T + 2π
−1
2 T

1
2 ) ln(d(u, ν) + 1) ≤ ln(d(u, ν) + 1),

which implies that

ln(d(Fu, Fν) + 1) ≤ ln(ln(d(u, ν) + 1) + 1)

=
ln(ln(d(u, ν) + 1) + 1)

ln(d(u, ν) + 1)
. ln(d(u, ν) + 1).

Put ψ(x) = ln(x + 1) and β(x) = ψ(x)
x

. Obviously, ψ : [0, ∞) ® [0, ∞) is continuous,

sub-additive, nondecreasing (ψ ′(x) = 1
x+1 > 0) and ψ is positive in (0, ∞) with ψ(0) = 0

and also ψ(x) < x for any x >0 and b Î S.
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Finally, let a(x, t) be a lower solution for (3.1). Then we show that a ≤ F a. Integrat-
ing the following:

(α(ξ , τ )k(x − ξ , t − τ ))τ − (αξ (ξ , τ )k(x − ξ , t − τ ))ξ + (α(ξ , τ )kξ (x − ξ , t − τ ))ξ
≤ F(ξ , τ , α(ξ , τ ), αξ (ξ , τ ))k(x − ξ , t − τ )

for -∞ < ξ < ∞ and 0 < τ < t, we obtain the following:

α(x, t) ≤
∫ ∞

−∞
k(x − ξ , t)ϕ(ξ)dξ+

∫ t

0

∫ ∞

−∞
k(x − ξ , t − τ )F(ξ , τ , α(ξ , τ ), αξ (ξ , τ ))dξdτ

= (Fα)(x, t)

for all x Î ℝ and t Î (0, T ]. Therefore, by Theorems 2.2 and 2.3, F has a unique

fixed point. This completes the proof. □
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