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Abstract

In this article, we first give a multivalued version of an iteration scheme of Agarwal
et al. We use an idea due to Shahzad and Zegeye which removes a “strong
condition” on the mapping involved in the iteration scheme and an observation by
Song and Cho about the set of fixed points of that mapping. In this way, we
approximate fixed points of a multivalued nonexpansive mapping through an
iteration scheme which is independent of but faster than Ishikawa scheme used
both by Song and Cho, and Shahzad and Zegeye. Thus our results improve and
unify corresponding results in the contemporary literature.
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1. Introduction and preliminaries
Throughout the article, N denotes the set of positive integers. Let E be a real Banach

space. A subset K is called proximinal if for each x Î E, there exists an element k Î K

such that

d(x, k) = inf{||x − y|| : y ∈ K} = d(x,K)

It is known that a weakly compact convex subsets of a Banach space and closed con-

vex subsets of a uniformly convex Banach space are proximinal. We shall denote the

family of nonempty bounded proximinal subsets of K by P(K). Consistent with [1], let

CB(K) be the class of all nonempty bounded and closed subsets of K. Let H be a Haus-

dorff metric induced by the metric d of E, that is

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}

for every A, B Î CB(E). A multivalued mapping T : K ® P (K) is said to be a con-

traction if there exists a constant k Î [0, 1) such that for any x, y Î K,

H(Tx,Ty) ≤ k||x − y||,

and T is said to be nonexpansive if

H(Tx,Ty) ≤ ||x − y||

for all x, y Î K. A point x Î K is called a fixed point of T if x Î Tx.
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The study of fixed points for multivalued contractions and nonexpansive mappings

using the Hausdorff metric was initiated by Markin [2] (see also [1]). Later, an interest-

ing and rich fixed point theory for such maps was developed which has applications in

control theory, convex optimization, differential inclusion, and economics (see, [3] and

references cited therein). Moreover, the existence of fixed points for multivalued non-

expansive mappings in uniformly convex Banach spaces was proved by Lim [4].

The theory of multivalued nonexpansive mappings is harder than the corresponding

theory of single valued nonexpansive mappings. Different iterative processes have been

used to approximate the fixed points of multivalued nonexpansive mappings. Among

these iterative processes, Sastry and Babu [5] considered the following.

Let K be a nonempty convex subset of E, T : K ® P(K) a multivalued mapping with

p Î Tp.

(i) The sequences of Mann iterates is defined by x1 Î K,

xn+1 = (1 − an)xn + anyn, (1:1)

where yn Î Txn is such that ||yn - p|| = d(p, Txn), and {an} is a sequence of numbers

in (0, 1) satisfying lim
n→∞ an = 0 and

∑
an = ∞.

(ii) The sequence of Ishikawa iterates is defined by x1 Î K,
{
yn = (1 − bn)xn + bnzn,
xn+1 = (1 − an)xn + anun,

(1:2)

where zn Î Txn, un Î Tyn are such that ||zn - p|| = d(p, Txn) and ||un - p|| = d(p,

Tyn), and {an}, {bn} are real sequences of numbers with 0 ≤ an, bn <1 satisfying

lim
n→∞ bn = 0 and ∑anbn = ∞.

Panyanak [6] generalized the results proved by Sastry and Babu [5].

The following is a useful Lemma due to Nadler [1].

Lemma 1. Let A, B Î CB(E) and a Î A. If h >0, then there exists b Î B such that d

(a, b) ≤ H(A, B) + h.
Based on the above Lemma, Song and Wang [7] modified the iteration scheme due

to Panyanak [6] and improved the results presented therein. Their scheme is given as

follows:

Let K be a nonempty convex subset of E, an Î [0, 1], bn Î [0, 1] and hn Î (0, ∞)

such that limn ® ∞hn = 0. Choose x1 Î K and z1 Î Tx1. Let

y1 = (1 − b1)x1 + b1z1.

Choose u1 Î Ty1 such that || z1 - u1 || ≤ H(Tx1, Ty1) + h1 (see [1,8]). Let

x2 = (1 − a1)x1 + a1u1.

Choose z2 Î Tx2 such that || z2 - u1 || ≤ H(Tx2, Ty1) + h2. Take

y2 = (1 − b2)x2 + b2z2.

Choose u2 Î Ty2 such that || z2 - u2 || ≤ H(Tx2, Ty2) + h2. Let

x3 = (1 − a2)x2 + a2u2.

Khan and Yildirim Fixed Point Theory and Applications 2012, 2012:73
http://www.fixedpointtheoryandapplications.com/content/2012/1/73

Page 2 of 9



Inductively, we have
{
yn = (1 − bn)xn + bnzn
xn+1 = (1 − an)xn + anun

(1:3)

where zn Î Txn, un Î Tyn are such that ||zn - un|| ≤ H(Txn, Tyn) + hn and ||zn+1
-un|| ≤ H(Txn+1, Tyn) + hn, and {an},{bn} are real sequences of numbers with 0 ≤ an,

bn <1 satisfying lim
n→∞ bn = 0 and ∑anbn = ∞.

It is to be noted that Song and Wang [7] need the condition Tp = {p} in order to prove

their Theorem 1. Actually, Panyanak [6] proved some results using Ishikawa type iteration

process without this condition. Song and Wang [7] showed that without this condition his

process was not well-defined. They reconstructed the process using the condition Tp = {p}

which made it well-defined. Such a condition was also used by Jung [9].

Recently, Shahzad and Zegeye [10] remarked as follows:

“We note that the iteration scheme constructed by Song and Wang [7] involves the

estimates which are not easy to be computed and the scheme is more time consuming.

We also observe that Song and Wang [7] did not use the above estimates in their

proofs and applied Lemma 2.1 (of [10]) without showing xn - p, yn - p Î BR(0). The

assumption on T namely “Tp = {p} for any p Î F(T)” is quite strong.... Then we con-

struct an iteration scheme which removes the restriction of T namely Tp = {p} for any

p Î F(T).”

To do this, they defined PT(x) = {y Î Tx : ||x - y|| = d(x, Tx)} for a multivalued map-

ping T : K ® P(K). They also proved a couple of strong convergence results using Ishi-

kawa type iteration process.

On the other hand, Agarwal et al. [11] introduced the following iteration scheme for

single-valued mappings:
⎧⎨
⎩
x1 = x ∈ C,
xn+1 = (1 − αn)Txn + αnTyn,
yn = (1 − βn)xn + βnTxn, n ∈ N

(1:4)

where {an} and {bn} are in (0, 1). This scheme is independent of both Mann and Ishi-

kawa schemes. They proved that this scheme converges at a rate faster than both

Picard iteration scheme xn+1 = Txn and Mann iteration scheme for contractions. Fol-

lowing their method, it was observed in [12, Example 3.7] that this scheme also con-

verges faster than Ishikawa iteration scheme.

In this paper, we first give a multivalued version of the iteration scheme (1.4) of

Agarwal et al. [11] and then use the idea of removal of “Tp = {p} for any p Î F(T)”

due to Shahzad and Zegeye [10] to approximate fixed points of a multivalued nonex-

pansive mapping T. We also use a result of Song and Cho [13] saying that set of fixed

points of T is same as that of PT , see Lemma 2 below. Moreover, we use the method

of direct construction of Cauchy sequence as indicated by Song and Cho [13] (and

opposed to [10]) but also used by many other authors including [12,14,15]. Keeping

above in mind, we define our iteration scheme as follows:
⎧⎨
⎩
x1 ∈ K,
xn+1 = (1 − λ)vn + λun
yn = (1 − η)xn + ηvn, n ∈ N

(1:5)
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where vn Î PT(xn), un Î PT(yn) and 0 < l, h <1. We have used l, h only for the sake

of simplicity but an, bn could be used equally well under suitable conditions. In this

way, we approximate fixed points of a multivalued nonexpansive mapping by an itera-

tion scheme which is independent of but faster than Ishikawa scheme. Thus our results

improve corresponding results of Shahzad and Zegeye [10], Song and Cho [13] and the

results generalized therein.

Now, we give the following definitions.

Definition 1. A Banach space E is said to satisfy Opial’s condition [16]if for any

sequence {xn} in E, xn ⇀ x implies that

lim sup
n→∞

||xn − x|| < lim sup
n→∞

||xn − y||

for all y Î E with y ≠ x.

Examples of Banach spaces satisfying this condition are Hilbert spaces and all lp

spaces (1 < p < ∞). On the other hand, Lp[0, 2π] with 1 < p ≠ 2 fail to satisfy Opial’s

condition.

Definition 2. A multivalued mapping T : K ® P(E) is called demiclosed at y Î K if

for any sequence {xn} in K weakly convergent to an element x and yn Î Txn strongly

convergent to y, we have y Î Tx.

The following is the multivalued version of condition (I) of Senter and Dotson [17].

Definition 3. A multivalued nonexpansive mapping T : K ® CB(K) where K a subset of

E, is said to satisfy condition (I) if there exists a nondecreasing function f : [0, ∞) ® [0, ∞)

with f(0) = 0, f(r) >0 for all r Î (0, ∞) such that d(x, Tx) ≥ f(d(x, F(T)) for all x Î K.

The following very useful theorem is due to Song and Cho [13].

Lemma 2. [13]Let T : K ® P (K) be a multivalued mapping and PT(x) = {y Î Tx : ||

x - y|| = d(x, Tx)}. Then the following are equivalent.

(1) x Î F(T);

(2) PT (x) = {x};

(3) x Î F(PT).

Moreover, F(T) = F(PT).

Next, we state the following helpful lemma.

Lemma 3. [18]Let E be a uniformly convex Banach space and 0 < p ≤ tn ≤ q <1 for all n

Î N. Suppose that {xn} and {yn} are two sequences of E such that lim supn® ∞ ||xn|| ≤ r,

lim supn® ∞ ||yn|| ≤ r and limn® ∞ ||tnxn + (1 - tn)yn|| = r hold for some r ≥ 0. Then

limn® ∞ ||xn - yn|| = 0.

2. Main results
We start with the following couple of important lemmas.

Lemma 4. Let E be a normed space and K a nonempty closed convex subset of E. Let T :

K ® P (K) be a multivalued mapping such that F(T) ≠ ∅ and PT is a nonexpansive map-

ping. Let {xn} be the sequence as defined in (1.5). Then limn® ∞ ||xn - p|| exists for all p Î
F (T).

Proof. Let p Î F(T). Then p ÎPT (p) = {p} by Lemma 2. It follows from (1.5) that

||xn+1 − p|| = ||(1 − λ)vn + λun − p||
≤ (1 − λ)||vn − p|| + λ||un − p||
≤ (1 − λ)H(PT(xn),PT(p)) + λH(PT(yn),PT(p))

≤ (1 − λ)||xn − p|| + λ||yn − p||.

(2:1)
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But

||yn − p|| = ||(1 − η)xn + ηvn − p||
≤ (1 − η)||xn − p|| + η||vn − p||
≤ (1 − η)||xn − p|| + ηH(PT(xn),PT(p))

≤ (1 − η)||xn − p|| + η||xn − p||
= ||xn − p||.

(2:2)

Thus (2.1) becomes

||xn+1 − p|| ≤ (1 − λ)||xn − p|| + λ||xn − p||
= ||xn − p||,

and limn® ∞ ||xn - p|| exists for each p Î F (T). □
Lemma 5. Let E be a uniformly convex Banach space and K be a nonempty closed

convex subset of E. Let T : K ® P(K) be a multivalued mapping such that F(T) ≠ ∅
and PT is a nonexpansive mapping. Let {xn} be the sequence as defined in (1.5). Then

lim
n→∞ d(xn, Txn) = 0 .

Proof. From Lemma 4, lim
n→∞ ||xn − p|| exists for each p Î F (T). We suppose that

lim
n→∞ ||xn − p|| = c for some c ≥ 0.

Since lim supn® ∞ ||vn - p|| ≤ lim supn® ∞ H (PT (xn), PT (p)) ≤ lim supn® ∞ || xn -

p || = c,

so

lim sup
n→∞

||vn − p|| ≤ c. (2:3)

Similarly,

lim sup
n→∞

||un − p|| ≤ c.

Applying Lemma 3, we get

lim
n→∞ ||vn − un|| = 0.

Taking lim sup on both sides of (2.2), we obtain

lim sup
n→∞

||yn − p|| ≤ c. (2:4)

Also

||xn+1 − p|| = ||(1 − λ)vn + λun − p||
= ||(vn − p) + λ(un − vn)||
≤ ||vn − p|| + ||vn − un||

implies that

c ≤ lim inf||vn − p||. (2:5)

Combining (2.3) and (2.5), we have

lim
n→∞ ||vn − p|| = c.
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Thus

||vn − p|| ≤ ||vn − un|| + ||un − p||
≤ ||vn − un|| +H(PT(yn),PT(p))

≤ ||vn − un|| + ||yn − p||

gives

c ≤ lim inf||yn − p|| (2:6)

and, in turn, by (2.4), we have

lim
n→∞ ||yn − p|| = c.

Applying Lemma 3 once again,

lim
n→∞ ||xn − vn|| = 0. (2:7)

Since d(xn, Txn) ≤ ||xn - vn||, we have

lim
n→∞ d(xn, Txn) = 0.

□
Now we approximate fixed points of the mapping T through weak convergence of

the sequence {xn} defined in (1.5).

Theorem 1. Let E be a uniformly convex Banach space satisfying Opial’s condition

and K a nonempty closed convex subset of E. Let T : K ® P(K) be a multivalued map-

ping such that F(T) ≠ ∅ and PT is a nonexpansive mapping. Let {xn} be the sequence as

defined in (1.5). Let I - PT be demiclosed with respect to zero, then {xn} converges weakly

to a fixed point of T.

Proof. Let p Î F(T) = F(PT). From the proof of Lemma 4, lim
n→∞ ||xn − p|| exists. Now

we prove that {xn} has a unique weak subsequential limit in F(T). To prove this, let z1

and z2 be weak limits of the subsequences {xni} and {xnj} of {xn}, respectively. By (2.7),

there exists vn Î Txn such that lim
n→∞ ||xn − vn|| = 0 . Since I - PT is demiclosed with

respect to zero, therefore we obtain z1 Î F(PT ) = F(T). In the same way, we can prove

that z2 Î F(T).

Next, we prove uniqueness. For this, suppose that z1 ≠ z2. Then by Opial’s condition,

we have

lim
n→∞ ||xn − z1|| = lim

ni→∞ ||xni − z1||
< lim

ni→∞ ||xni − z2||
= lim

n→∞ ||xn − z2||
= lim

nj→∞ ||xnj − z2||

< lim
nj→∞ ||xnj − z1||

= lim
n→∞ ||xn − z1||,

which is a contradiction. Hence {xn} converges weakly to a point in F(T). □
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We now give some strong convergence theorems. Our first strong convergence theo-

rem is valid in general real Banach spaces. We then apply this theorem to obtain a

result in uniformly convex Banach spaces. We also use the method of direct construc-

tion of Cauchy sequence as indicated by Song and Cho [13] (and opposed to [10]) but

used also by many other authors including [12,14,15].

Theorem 2. Let E be a real Banach space and K a nonempty closed convex subset of

E. Let T : K ® P(K) be a multivalued mapping such that F(T) ≠ ∅ and PT is a nonex-

pansive mapping. Let {xn} be the sequence as defined in (1.5), then {xn} converges

strongly to a point of F(T) if and only if lim infn® ∞d(xn, F(T)) = 0.

Proof. The necessity is obvious. Conversely, suppose that lim infn® ∞d(xn, F(T)) = 0.

As proved in Lemma 4, we have

||xn+1 − p|| ≤ ||xn − p||,

which gives

d(xn+1, F(T)) ≤ d(xn, F(T)).

This implies that lim
n→∞ d(xn, F(T)) exists and so by the hypothesis,

lim inf
n→∞ d(xn, F(T)) = 0 . Therefore we must have lim

n→∞ d(xn, F(T)) = 0.

Next, we show that {xn} is a Cauchy sequence in K. Let ε >0 be arbitrarily chosen.

Since lim
n→∞ d(xn, F(T)) = 0. , there exists a constant n0 such that for all n ≥ n0, we have

d(xn, F(T)) <
ε

4
.

In particular, inf{||xn0 − p|| : p ∈ F(T)} <
ε

4
. There must exist a p* Î F(T) such that

||xn0 − p∗|| <
ε

2
.

Now for m, n ≥ n0, we have

||xn+m − xn|| ≤ ||xn+m − p∗|| + ||xn − p∗||
≤ 2||xn0 − p∗||
< 2

( ε

2

)
= ε.

Hence {xn} is a Cauchy sequence in a closed subset K of a Banach space E, and so it

must converge in K. Let lim
n→∞ xn = q . Now

d(q, PTq) ≤ ||xn − q|| + d(xn, PTxn) +H(PTxn, PTq)

≤ ||xn − q|| + ||xn − vn|| + ||xn − q||
→ 0 as n → ∞

which gives that d(q, PTq) = 0. But PT is a nonexpansive mapping so F(PT) is closed.

Therefore, q Î F(PT) = F(T). □
We now apply the above theorem to obtain the following theorem in uniformly con-

vex Banach spaces where T : K ® P (K) satisfies condition (I).

Theorem 3. Let E be a uniformly convex Banach space and K a nonempty closed

convex subset of E. Let T : K ® P (K) be a multivalued mapping satisfying condition (I)
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such that F(T ) ≠ ∅ and PT is a nonexpansive mapping. Let {xn} be the sequence as

defined in (1.5), then {xn} converges strongly to a point of F(T).

Proof. By Lemma 5, limn® ∞ ||xn - p|| exists for all p Î F(T). Let this limit be c for

some c ≥ 0.

If c = 0, there is nothing to prove.

Suppose c >0. Now ||xn+1-p|| ≤ ||xn - p|| implies that

inf
p∈F(T)

||xn+1 − p|| ≤ inf
p∈F(T)

||xn − p||,

which means that d(xn+1, F(T)) ≤ d(xn, F(T)) and so lim
n→∞ d(xn, F(T)) exists. By using

condition (I) and Lemma 5, we have

lim
n→∞ f (d(xn, F(T))) ≤ lim

n→∞ d(xn, Txn) = 0.

That is,

lim
n→∞ f (d(xn, F(T))) = 0.

Since f is a nondecreasing function and f(0) = 0, it follows that lim
n→∞ d(xn, F(T)) = 0. .

Now applying Theorem 2, we obtain the result. □
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