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Abstract

The purpose of this article is to introduce the concept of total quasi- j-
asymptotically nonexpansive mapping which contains many kinds of mappings as its
special cases and we prove a strong convergence theorem by using a hybrid
method for finding a common element of the set of solutions for a generalized
mixed equilibrium problems, the set of fixed points of a family of total quasi- j-
asymptotically nonexpansive mappings in uniformly smooth and strictly convex
Banach space with the Kadec-Klee property. The results presented in the article
improve and extend some recent results.
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1 Introduction
Let E be a Banach space and C be a closed convex subsets of E. Let F be an equili-

brium bifunction from C × C into R, ψ: C ® R be a real-valued function and A: C ®
E* be a nonlinear mapping. The “so-called” generalized mixed equilibrium problem is

to find z Î C such that

F(z, y) + 〈Az, y − z〉 + ψ(y) − ψ(z) ≥ 0,∀y ∈ C. (1:1)

The set of solutions of (1.1) is denoted by GMEP, i.e.,

GMEP = {z ∈ C : F(z, y) + 〈Az, y − z〉 + ψ(y) − ψ(z) ≥ 0, ∀y ∈ C}.

Special examples:

(I) If A = 0, then the problem (1.1) is equivalent to find z Î C such that

F(z, y) + ψ(y) − ψ(z) ≥ 0,∀y ∈ C. (1:2)

which is called the mixed equilibrium problem, see [1]. The set of solutions of (1.2)

is denoted by MEP.

(II) If F = 0, then the problem (1.1) is equivalent to find z Î C such that

〈Az, y − z〉 + ψ(y) − ψ(z) ≥ 0,∀y ∈ C. (1:3)
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which is called the mixed variational inequality of Browder type. The set of solutions

of (1.3) is denoted by V I(C, A, ψ).

(III) If ψ = 0, then the problem (1.1) is equivalent to find z Î C such that

F(z, y) + 〈Az, y − z〉 ≥ 0,∀y ∈ C. (1:4)

which is called the generalized equilibrium problem, see [2]. The set of solutions of

(1.4) is denoted by EP.

(IV) If A = 0, ψ = 0, then the problem (1.1) is equivalent to find z Î C such that

F(z, y) ≥ 0,∀y ∈ C. (1:5)

which is called the equilibrium problem. The set of solutions of (1.5) is denoted by

EP(F).

These show that the problem (1.1) is very general in the sense that numerous pro-

blems in physics, optimization, and economics reduce to finding a solution of (1.1).

Recently, some methods have been proposed for the generalized mixed equilibrium

problem in Banach spaces (see, for example [1-7]).

Let E be a smooth, strictly convex, and reflexive Banach spaces and C be a nonempty

closed convex subsets of E. Throughout this article, we denote by j the function

defined by

φ(y, x) = ||y||2 − 2〈y, Jx〉 + ||x||2,∀x, y ∈ E, (1:6)

where J: E ® 2E* is the normalized duality mapping.

Let T: C ® C be a mapping and F (T) be the set of fixed points of T .

Recall that a point p Î C is said to be an asymptotic fixed point of T if there exists

{xn} in C which converges weakly to p and limn®∞ ||xn - Txn|| = 0. We denote the set

of all asymptotic fixed point of T by F̃(T) . A point p Î C is said to be a strong asymp-

totic fixed point of T if there exists {xn} in C such that xn ® p and limn®∞ ||xn - Txn||

= 0 We denote the set of all strongly asymptotic fixed point of T by F̂(T) .

A mapping T: C ® C is said to be nonexpansive, if

||Tx − Ty|| ≤ ||x − y||, ∀x, y ∈ C.

A mapping T: C ® C is said to be relatively nonexpansive if F (T) ≠ Ø, F(T) = F̃(T) ,

and

φ(u, Tx) ≤ φ(u, x), ∀u ∈ F(T), x ∈ C

A mapping T: C ® C is said to be weak relatively nonexpansive if F(T) ≠ Ø,

F(T) = F̂(T) , and

φ(u, Tx) ≤ φ(u, x), ∀u ∈ F(T), x ∈ C

A mapping T: C ® C is said to be quasi-j-nonexpansive, if F(T) ≠ Ø and

φ(u, Tx) ≤ φ(u, x), ∀x ∈ C, ∀u ∈ F(T)

A mapping T: C ® C is said to be quasi-j-asymptotically nonexpansive, if there

exists some real sequence {kn} with kn ≥ 1 and kn ® 1 and F (T) ≠ ∅ such that
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φ(u, Tnx) ≤ knφ(u, x),∀n ≥ 1, x ∈ C, u ∈ F(T) (1:7)

A mapping T: C ® C is said to be closed, if for any sequence {xn} ⊂ C with xn ® x

and Txn ® y, then Tx = y.

Definition 1.1 (1) A mapping T: C ® C is said to be total quasi-j-asymptotically

nonexpansive, if F (T) ≠ ∅ and there exist nonnegative real sequences {υn}, {μn} with

υn ® 0, μn ® 0 (as n ® ∞) and a strictly increasing continuous function ζ: ℜ+ ® ℜ +

with ζ(0) = 0 such that for all x Î C, p Î F(T)

φ(p, Tnx) ≤ φ(p, x) + vnζ (φ(p, x)) + μn, ∀n ≥ 1. (1:8)

(2) A family of mappings {Tl}lÎΛ: C ® C is said to be uniformly total quasi-j-
asymptotically nonexpansive, if ∩lÎΛ F (Tl) ≠ ∅ and there exist nonnegative real

sequences {υn}, {μn} with υn ® 0, μn ® 0(as n ® ∞) and a strictly increasing continu-

ous function ζ: ℜ+ ® ℜ+ with ζ(0) = 0 such that for all xÎ C, pÎ∩lÎΛ F (Tl)

φ(p, Tn
i x) ≤ φ(p, x) + vnζ (φ(p, x)) + μn, ∀n ≥ 1. (1:9)

Remark 1.1 From the definitions, it is easy to know that

(1) Each relatively nonexpansive mapping is closed;

(2) Taking ζ(t) = t, t ≥ 0, υn = (kn - 1) and μn = 0,, then (1.7) can be rewritten as

φ(p, Tnx) ≤ φ(p, x) + vnζ (φ(p, x)) + μn, ∀n ≥ 1, x ∈ C, p ∈ F(T). (1:10)

This implies that each quasi-j-asymptotically nonexpansive mapping must be a total

quasi-j-asymptotically nonexpansive mapping, but the converse is not true;

(3) The class of quasi-j-asymptotically nonexpansive mappings contains properly the

class of quasi-j-nonexpansive mappings as a subclass, but the converse is not true;

(4) The class of quasi-j-nonexpansive mappings contains properly the class of weak

relatively nonexpansive mappings as a subclass, but the converse is not true;

(5) The class of weak relatively nonexpansive contains properly the class of relatively

nonexpansive mappings as a subclass, but the converse is not true.

Iterative approximation of fixed points for relatively nonexpansive mappings, weak

relatively nonexpansive mappings, quasi-j nonexpansive mappings, quasi-j-asymptoti-

cally non-expansive mappings in the setting of Banach spaces has been studied exten-

sively by many authors (see [5-13]).

Motivated by the above, the purpose of this article is to introduce the concept of

total quasi-j-asymptotically nonexpansive mapping which contains many kinds of

mappings as its special cases and we prove a strong convergence theorem by using a

hybrid method for finding a common element of the set of solutions for a generalized

mixed equilibrium problems, the set of fixed points of a family of total quasi- j-
asymptotically nonexpansive mappings in uniformly smooth and strictly convex Banach

space with the Kadec-Klee property. The results presented in the paper improve and

extend some recent results.

2 Preliminaries
Throughout this article, we assume that all the Banach spaces are real. We denote by

N and ℝ the sets of positive integers and real numbers, respectively. Let E be a Banach

space and let E* be the topological dual of E. For all x Î E and x* Î E* , we denote by
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〈x, x*〉 the value of x* at x. The mapping J: E ® 2E* defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2}, x ∈ E, (2:1)

is normalized duality mapping. We denote the weak convergence and the strong

convergence of a sequence {xn} to x by xn ⇀ x and xn ® x, respectively.

A Banach spaces E is said to be strictly convex if ||x+y||
2 < 1 for x, yÎ S(E) = {z Î E: ||

z|| = 1} with x ≠ y. It is said to be uniformly convex if for any given ε Î (0, 2], there

exists δ >0 such that ||x+y||
2 < 1 − δ for x, y Î S(E) with ||x - y|| ≥ ε. E is said to have

the Kadec-Klee property, if for any sequence {xn} ⊂ E such that xn ⇀ xÎ E and ||xn||

® ||x||, then xn ® x.

Define f: S(E) × S(E) × ℝ \ {0} ® ℝ by

f (x, y, t) =
‖ x + ty ‖ − ‖ x ‖

t

for x, y Î S(E) and t Îℝ \ {0}. A norm of E is said to be Gâteaux differentiable if

limt®0 f(x, y, t) has a limit for each x, y Î S(E). In this case, E is said to be smooth.

We know that if E is smooth, strictly convex, and reflexive, then the duality mapping J

is single valued, one to one, and onto. In this case, the inverse mapping J-1 coincides

with the duality mapping J* on E*. See [14] for more details.

Remark 2.1 If E is a reflexive and strictly convex Banach space, then J-1 is hemi-con-

tinuous, i.e., J-1 is norm-weak-continuous.

Let {Cn} be a sequence of nonempty closed convex subset of a reflexive Banach space

E. We define two subsets s - LinCn and w - LsnCn as follows: x Î s - LinCn if and only

if there exists {xn} ⊂ E such that {xn} converges strongly to x and that xn Î Cn for all n

Î N. Similarly, y Î w - LsnCn if and only if there exists a subsequence {Cni} of {Cn}

and a sequence {yi} ⊂ E such that {yi} converges weakly to y and yi ∈ Cni for all i Î N.

We define the Mosco convergence [15] of {Cn} as follows: If C0 = s - LinCn = w -

LsnCn, then {Cn} is said to be convergent to C0 in the sense of Mosco and we write C0

= M -limn®∞ Cn.

For more details, see [16].

Let C be a nonempty closed convex subset of a smooth, strictly convex, and reflexive

Banach space E. Then, for arbitrarily fixed x Î E, the function y a ||x - y||2: C ® R+

has a unique minimizer yx Î C. Using such a point, we define the metric projection PC
by PC x = yx = arg minyÎC ||x - y||2 for every x Î E. In a similar fashion, we can see

that the function y a j(x, y): C ® R+ has a unique minimizer zx Î C. The generalized

projection ΠC of E onto C is defined by ΠC = zx = arg minyÎC j(x, y) for every x Î E;

see [17].

The generalized projection ΠC from E onto C is well defined, single valued and satis-

fies

(||x|| − ||y||)2 ≤ φ(y, x) ≤ (||x|| + ||y||)2,∀x, y ∈ E (2:2)

If E is a Hilbert space, then j(y, x) = ||y - x||2 and ΠC is the metric projection PC of

E onto C.

It is well-known that the following conclusions hold:
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Lemma 2.1 [17,18]. Let C be a nonempty closed convex subsets of a smooth, strictly

convex, and reflexive Banach spaces. Then

φ(x, �Cy) + φ(�Cy, y) ≤ φ(x, y),∀x ∈ C, y ∈ E. (2:3)

Lemma 2.2. Let C be a nonempty closed convex subsets of a smooth, strictly convex,

and reflexive Banach spaces E, let x Î E and z Î C. Then the following conclusions

hold:

(a) z = ∏C x⇔〈y - z, Jx - jz〉 ≤ 0, ∀y Î C.

(b) For x, y Î E, j (x, y) = 0 if and only if x = y.

The following theorem proved by Tsukada [19] plays an important role in our

results.

Theorem 2.1. Let E be a smooth, reflexive, and strictly convex Banach spaces having

the Kadec-Klee property. Let {Kn} be a sequence of nonempty closed convex subsets of

E. If K0 = M - limn®∞ Kn exists and is nonempty, then
{
PKnx

}
converges strongly to

PK0x for each x Î C.

Theorem 2.1 is still valid if we replace the metric projections with the generalized

pro-jections as follows:

Theorem 2.2 Let E be a smooth, reflexive, and strictly convex Banach spaces having

the Kadec-Klee property. Let {Kn} be a sequence of nonempty closed convex subsets of

E. If K0 = M - limn®∞ Kn exists and is nonempty, then
{∏

Kn
x
}
converges strongly to∏

K0
x for each x Î C.

For solving the equilibrium problem for bifunction F: C × C ® ℝ, let us assume that

F satisfies the following conditions:

(A1) F (x, x) = 0 for all x Î C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y Î C;

(A3) for each x, y, z Î C,

lim sup
t↓0

F(tz + (1 − t)x, y) ≤ F(x, y);

(A4) for each x Î C, y a F (x, y) is a convex and lower semicontinuous.

If an equilibrium bifunction F: C × C ® R satisfies conditions (A1)-(A4), then we

have the following results.

Lemma 2.3 [20]. Let C be a nonempty closed convex subset of a smooth, strictly

convex, and reflexive Banach spaces E, let F be an equilibrium bifunction from C × C

to ℝ satisfying conditions (A1)-(A4), let r >0 and let x Î E. Then, there exists z Î C

such that

F(z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.

Lemma 2.4 [21]. Let C be a nonempty closed convex subset of a smooth, strictly

convex, and reflexive Banach spaces E, let F: C × C ® ℝ be an equilibrium bifunction

satisfying conditions (A1)-(A4). For r >0 and x Î E, define a mapping Tr: E ® C as fol-

lows:

Tr(x) =
{
z ∈ C : F(z, y) +

1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}
.
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for all x Î E. Then, the following hold:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping, i.e., for any x, y Î E,

〈Trx − Try, JTrx − JTry〉 ≤ 〈Trx − Try, Jx − Jy〉;

(3) F(Tr) = F̂(Tr) = EP(F) ;

(4) EP (F) is a closed and convex set.

Lemma 2.5 [21]. Let C be a nonempty closed convex subset of a smooth, strictly

convex, and reflexive Banach spaces E, let F: C × C ® ℝ be an equilibrium bifunction

satisfying conditions (A1)-(A4). For r >0 and x Î E and q Î F (Tr),

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x)

Lemma 2.6 [22]. Let E be a uniformly convex Banach space and let r >0. Then there

exists a strictly increasing, continuous, and convex function g: [0, 2r] ® R such that g

(0) = 0 and

‖ tx + (1 − t)y‖2 ≤ t ‖ x‖2 + (1 − t) ‖ y‖2 − t(1 − t)g(‖ x − y ‖). (2:4)

3 The main results
Theorem 3.1. Let E be a uniformly smooth and strictly convex Banach space with

Kadec-Klee property and C be a nonempty closed convex subset of E. A: C ® E* be a

continuous and monotone mapping, ψ: C ® ℝ be a lower semi-continuous and convex

function and F be a bifunction from C ×C to ℝ which satisfies the conditions (A1)-(A4).

Let {Tl}(l Î Λ): C ® C be a family of uniformly Ll-Lipschitzian continuous and uni-

formly total quasi-j-asymptotically nonexpansive mappings such that

F =
⋂

λ∈�
F (Tλ)

⋂
GMEP �= ∅ . Assume that K = sup{||u||: u Î F} < ∞. Let {xn} be the

sequence generated by x1 = x Î C, C1 = C and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yλ,n = J−1(αnJxn + (1 − αn)JTn
λxn), λ ∈ �,

uλ,n ∈ C such that
F(uλ,n, y) + 〈Auλ,n, y − uλ,n〉 + ψ(y) − ψ(uλ,n)

+
1
rλ,n

〈y − uλ,n, Juλ,n − Jyλ,n〉 ≥ 0, ∀y ∈ C, λ ∈ �

Cn+1 = {z ∈ Cn : sup
λ∈�

φ(z, uλ,n) ≤ φ(z, xn) + ξn},
xn+1 = �Cn+1x, ∀n ≥ 0.

(3:1)

where ξn = (1 - an)(νn supuÎF ζ(j(u, xn)) + μn),{an} is a sequence in [0, 1] such that

lim infn®∞ an(1 - an) >0, lim infn®∞ an <1 and {rl, n} [a, ∞) for some a >0, then {xn}

converge strongly to some point x* in F.

Proof. We define a bifunction G: C × C ® R by

G(z, y) = F(z, y) + 〈Az, y − z〉 + ψ(y) − ψ(z), ∀z, y ∈ C.

It is easy to prove that the bifunction G satisfies conditions(A1)-(A4).

Therefore, the generalized mixed equilibrium problem (1.1) is equivalent to the fol-

lowing equilibrium problem: find z Î C such that

G(z, y) ≥ 0, ∀y ∈ C,
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and GMEP = EP (G), F = GMEP ∩⋂lÎÎΛ=EP(G) ∩⋂lÎΛ F(Tl). So, (3.1) can be written

as:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yλ,n = J−1(αnJxn + (1 − αn)JTn
λxn) for all λ ∈ �,

uλ,n ∈ C such that G(uλ,n, y) +
1
rλ,n

〈y − uλ,n, Juλ,n − Jyλ,n〉 ≥ 0, ∀y ∈ C, λ ∈ �

Cn+1 = {z ∈ Cn : sup
λ∈�

φ(z, uλ,n) ≤ φ(z, xn) + ξn},
xn+1 = �Cn+1x, ∀n ≥ 0.

(3:2)

Since the bifunction G satisfies conditions (A1)-(A4), from Lemma 2.4, for given r >0

and x Î E, the mapping Wr: E ® C defined by

Wr(x) =
{
z ∈ C : G(z, y) +

1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}
.

has the same properties as in Lemma 2.4.

Putting uλ,n = Wrλ,nyλ,n for all n Î N, we have from Lemmas 2.4 and 2.5 that Wrλ,n is

relatively nonexpansive.

We divide the proof of Theorem 3.1 into five steps:

Step 1. We first show that Cn is closed and convex for every n Î N.

From the definition of j, we may show that

Cn+1 = {z ∈ Cn : supλ∈�φ(z, uλ,n) ≤ φ(z, xn) + ξn}
= ∩λ∈�{z ∈ Cn : φ(z, uλ,n) ≤ φ(z, xn) + ξn}
= ∩λ∈�{z ∈ C : 2〈z, Jxn − Juλ,n〉+ ‖ uλ,n‖2− ‖ xn‖2 − ξn ≤ 0} ∩ Cn,

and thus Cn is closed and convex for every n Î N.

Step 2. Sequence {xn} is bounded.

In fact, since xn = �Cnx , for any p Î F, from Lemma 2.1, we have

φ(xn, x) = φ(�Cnx, x) ≤ φ(p, x) − φ(p, xn) ≤ φ(p, x).

This implies that the sequence {j (xn, x)} is bounded, and so {xn} is bounded.

Step 3. Next we show that F ⊂ Cn for each n Î N.

For any u ∈ F , since Wrλ,n is relatively nonexpansive, {Tl}, l Î Λ is uniformly total

quasi-j-asymptotically nonexpansive and E* is uniformly convex, it follows from

Lemma 2.6 that

φ(u, uλ,n) = φ(u, Wrλ,n yλ,n) ≤ φ(u, yλ,n)

= φ(u, J−1(αnJxn + (1 − αn)JTn
λxn)

= ||u||2 − 2〈u,αnJxn + (1 − αn)JTn
λxn〉 + ||αnJxn + (1 − αn)JTn

λxn||2
≤ ||u||2 − 2αn〈u, Jxn〉 − 2(1 − αn)〈u, JTn

λxn〉 + αn||Jxn||2 + (1 − αn)||JTn
λxn||2

− αn(1 − αn)g(||Jxn − JTn
λxn||)

= αnφ(u, xn) + (1 − αn)φ(u, Tn
λxn) − αn(1 − αn)g(||Jxn − JTn

λxn||)
≤ αnφ(u, xn) + (1 − αn)[φ(u, xn) + vnζ (φ(u, xn)) + μn] − αn(1 − αn)g(||Jxn– JTn

λxn||)
= φ(u, xn) + (1 − αn)[vnζ (φ(u, xn)) + μn]–αn(1 – αn)g(||Jxn– JTn

λxn||)
≤ φ(u, xn) + ξn − αn(1 − αn)g(||Jxn − JTn

λxn||)
≤ φ(u, xn) + ξn.

(3:3)

This shows that {yl, n} is bounded and suplÎΛ j (u, ul, n) ≤ j(u, xn) + ξn, i.e., u Î
Cn, this implies that
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F ⊂ Cn, ∀n ∈ N.

Step 4. Now we prove that the limit limn®∞ xn exists.

Since F is nonempty, Cn is a nonempty closed convex subset of E and thus �Cn

exists for every n Î N. Hence {xn} is well defined. Also, since {Cn} is a decreasing

sequence of closed convex subsets of C such that C0 =
⋂∞

n=1 Cn is nonempty. There-

fore, we have

M − lim
n→∞Cn = C0 =

∞⋂
n=1

Cn �= ∅.

By Theorem 2.2, {xn} = {�Cnx} converges strongly to x* = �C0x . Therefore, we have

‖ xn+1 − xn ‖→ 0. (3:4)

Step 5. Next we prove x∗ ∈ F .

(a) First, we prove x*Î⋂l Î Λ F(Tl).

In fact, since xn ® x*, we have

φ(xn+1, xn) → 0. (3:5)

In view of xn+1 Î Cn+1, from the definition of Cn+1, we have

sup
λ∈�

φ(xn+1, uλ,n) ≤ φ(xn+1, xn) + ξn.

From (3.5) and ξn ® 0, we have

sup
λ∈�

φ(xn+1, uλ,n) → 0.

From (2.2) it yields suplÎΛ (||xn+1|| - ||ul, n||)
2 ® 0. Since ||xn+1|| ® ||x*||, we have

‖ uλ,n ‖→‖ x∗ ‖ (n → ∞),∀λ ∈ � (3:6)

Hence we have

||Juλ,n|| → ||Jx∗|| (n → ∞) , ∀λ ∈ � (3:7)

This implies that {Jul, n} is uniformly bounded in E*. Since E is reflexive, and so is

E*. We can assume that Jul, n⇀f0 Î E*. In view of the reflexive of E, we see that J(E) =

E*. Hence there exists p Î E such that Jp = f0. Since

φ
(
xn+1, uλ,n

)
= ||xn+1||2 − 2

〈
xn+1, Juλ,n

〉
+ ||uλ,n||2

= ||xn+1||2 − 2
〈
xn+1, Juλ,n

〉
+ ||uλ,n||2

Taking lim infn®∞ on the both sides of equality above and in view of the weak lower

semicontinuity of norm || · ||, it yields that

0 ≥ ||x∗||2 − 2
〈
x∗, f0

〉
+ ||f0||2 = ||x∗||2 − 2

〈
x∗, Jp

〉
+ ||Jp||2

= ||x∗||2 − 2
〈
x∗, Jp

〉
+ ||p||2 = φ

(
x∗, p

)

i.e., x* = p. This implies that f0 = Jx*, and so Jul, n ⇀ Jx*, ∀ l Î Λ. It follows from

(3.7) and the Kadec-Klee property of E* that Jul, n ® Jx*(n ® ∞). Note that J-1: E* ®
E is hemi-continuous, it yields that ul, n ⇀ x*. In view of (3.6) and the Kadec-Klee

Zuo et al. Fixed Point Theory and Applications 2012, 2012:70
http://www.fixedpointtheoryandapplications.com/content/2012/1/70

Page 8 of 12



property of E, we have

lim
n→∞ uλ,n = x∗. ∀λ ∈ � (3:8)

From (3.8), we have

lim
n→∞ ||xn − uλ,n|| = 0, ∀λ ∈ � (3:9)

Since J is uniformly continuous, we have that

||Jxn − Juλ,n|| → 0, ∀λ ∈ � (3:10)

From (3.9) and (3.10), we have

φ (u, xn) − φ
(
u, uλ,n

)
= ‖xn‖2 − ∥∥uλ,n

∥∥2 − 2
〈
u, Jxn − Juλ,n

〉
≤ |||xn||2 − ||uλ,n||2| + 2 | 〈u, Jxn − Juλ,n

〉 |
≤ | ||xn|| − ||uλ,n|| | (||xn|| + ||uλ,n||

)
+ 2||u|| · ||Jxn − Juλ,n||

≤ ||xn − uλ,n||
(||xn|| + ||uλ,n||

)
+ 2||u|| · ||Jxn − Juλ,n||.

→ 0

(3:11)

It follows from (3.3), (3.11) and ξn ® 0 that

αn (1 − αn) g(||Jxn − JTn
λxn||) ≤ φ (u, xn) − φ(u, uλ,n + ξn → 0. (3:12)

In view of condition lim infn®∞ an(1 - an) >0, we see that

g(||Jxn − JTn
λxn||) → 0 (as n → ∞) .

It follows from the property of g that

||Jxn − JTn
λ xn|| → 0 (as n → ∞) . (3:13)

Since xn ® x* and so Jxn ® Jx*. From (3.13) we have

JTn
λ xn → Jx∗ (as n → ∞) .

Since J -1: E* ® E is hemi-continuous, it follows that

Tn
λxn ⇀ x∗, ∀λ ∈ �. (3:14)

On the other hand, for each l Î Λ we have

| ||Tn
λxn|| − ||x∗|| | = | ||J(Tn

λxn) || − ||Jx∗|| | ≤ ||J(Tn
λxn)− Jx∗|| → 0 (as n → ∞) .

This together with (3.14) shows that

Tn
λxn → x∗, ∀ λ ∈ �. (3:15)

Furthermore, by the assumption that for each l Î Λ, Tl is uniformly Ll-Lipschitz

continuous, hence from (3.4) and (3.15), we have

||Tn+1
λ xn − Tn

λ xn|| ≤ ||Tn+1
λ xn − Tn+1

λ xn+1|| + ||Tn+1
λ xn+1 − xn+1||

+ ||xn+1 − xn|| + ||xn − Tn
λxn||

≤ (Lλ + 1) ||xn+1 − xn|| + ||Tn+1
λ xn+1 − xn+1|| + ||xn − Tn

λxn||
→ 0
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This implies that Tn+1
λ xn → x∗ , i.e., TλTn

λxn → x∗ . In view of (3.15) and Tl is uni-

formly Lipschitzian continuous, it yields that Tlx* = x*, ∀ l Î Λ. This implies that

x*Î⋂l Î Λ F(Tl).

(b) Next, we prove x* Î EP(G).

Since

φ(uλ,n, yλ,n) = φ(Wrλ,nyλ,n, yλ,n)

≤ φ(u, yλ,n) − φ(u,Wrλ,nyλ,n)

≤ φ (u, xn) + ξn − φ(u,Wrλ,n yλ,n)

= φ (u, xn) + ξn − φ
(
u, uλ,n

)
.

(3:16)

Hence it follows from (3.11) and (3.16) that

lim
n→∞ φ

(
uλ,n, yλ,n

)
= 0. (3:17)

From (2.2) and (3.17) it yields (||ul, n|| - ||yl, n||)
2 ®0. Since ||ul, n||® ||x*||, we

have

||yλ,n|| → ||x∗|| (n → ∞) . (3:18)

Hence we have

||Jyλ,n|| → ||Jx∗||(n → ∞). (3:19)

This implies that {Jyl, n} is bounded in E*. Since E is reflexive, and so is E*. we can

assume that Jyl, n ⇀ g0 Î E*. In view of the reflexive of E, we see that J(E) = E*. Hence

there exists y Î E such that Jy = g0. Since

φ
(
uλ,n, yλ,n

)
= ||uλ,n||2 − 2

〈
uλ,n, Jyλ,n

〉
+ ||yλ,n||2

= ||uλ,n||2 − 2
〈
uλ,n, Jyλ,n

〉
+ ||Jyλ,n||2

Taking lim infn®∞ on the both sides of equality above and in view of the weak lower

semicontinuity of norm || · ||, it yields that

0 ≥ ||x∗||2 − 2
〈
x∗, g0

〉
+ ||g0||2 = ||x∗||2 − 2

〈
x∗, Jy

〉
+ ||Jy||2

= ||x∗||2 − 2
〈
x∗, Jy

〉
+ ||y||2 = φ

(
x∗, y

)

i.e., x* = y. This implies that g0 = Jx*, and so Jyl, n ⇀ Jx*. It follows from (3.19) and

the Kadec-Klee property of E* that Jyn(l) ® Jx*(n ® ∞). Note that J-1: E* ® E is hemi-

continuous, it yields that yl, n ⇀ x*. It follows from (3.18) and the Kadec-Klee property

of E that

lim
n→∞ yλ,n = x∗. (3:20)

Since ul, n ® x*, from (3.20), we have

lim
n→∞ ||uλ,n − yλ,n|| = 0. (3:21)

Since J is uniformly norm-to-norm continuous on bounded sets, from (3.21), we have

lim
n→∞ ||Juλ,n − Jyλ,n|| = 0. (3:22)
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From rl, n ≥ a, we have

lim
n→∞

||Juλ,n − Jyλ,n||
rλ,n

= 0. (3:23)

By uλ,n = Wrλ,nyλ,n , we have

G(uλ,n, y) +
1
rλ,n

〈y − uλ,n, Juλ,n − Jyλ,n〉 ≥ 0, ∀y ∈ C. (3:24)

From condition (A2), we have

1
rλ,n

〈y − uλ,n, Juλ,n − Jyλ,n〉 ≥ −G(uλ,n, y) ≥ G(y, uλ,n), ∀y ∈ C. (3:25)

Since G(x,·) is convex and lower semicontinuous, it is also weakly lower semicontinu-

ous, letting n ® ∞, we have from (3.25) and (A4) that

G(y, x∗) ≤ 0, ∀y ∈ C. (3:26)

For any t with 0 < t ≤ 1 and y Î C, let yt = ty + (1 - t)x*. Since y Î C and hence G

(yt, x*) ≤ 0, from conditions (A1) and (A4), we have

0 = G(yt, yt) ≤ tG(yt, y) + (1 − t)G(yt, x∗) ≤ tG(yt, y)

This implies that G(yt, y) ≥ 0. Hence from condition (A3), we have G(x*, y) ≥ 0 for all

y Î C, and hence x* Î EP (G).

This completes the proof of Theorem 3.1.

The proof of Theorem 3.1 shows that the properties of generalized projections used

in the iterative scheme do not interact with the properties of mappings {Tl}.

Theorem 3.2. Let E be a uniformly smooth and strictly convex Banach space with

Kadec-Klee property and C be a nonempty closed convex subset of E. A: C ® E* be a

continuous and monotone mapping, ψ: C ® ℝ be a lower semi-continuous and convex

function and F be a bifunction from C ×C to ℝ which satisfies the conditions (A1)-(A4).

Let {Tl}(l Î Λ): C ® C be a family of uniformly Ll-Lipschitzian continuous and uni-

formly quasi-j-asymptotically nonexpansive mappings such that

F =
⋂

λ∈� F(Tλ)
⋂

GMEP �= ∅ . Assume that K = sup{||u|| : u ∈ F} < ∞ . Let {xn} be

the sequence generated by x1 = x Î C, C1 = C and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yλ,n = J−1(αnJxn + (1 − αn)JTn
λxn), λ ∈ �,

uλ,n ∈ C such that

F(uλ,n, y) + 〈Auλ,n, y − uλ,n〉 + ψ(y) − ψ(uλ,n)

+
1
rλ,n

〈y − uλ,n, Juλ,n − Jyλ,n〉 ≥ 0, ∀y ∈ C, λ ∈ �

Cn+1 =
{
z ∈ Cn : sup

λ∈�

φ(z, uλ,n) ≤ φ(z, xn) + ξn

}
,

xn+1 = �Cn+1x, ∀n ≥ 0.

(3:27)

where ξn = (1 − αn)(vnsupu∈Fζ (φ(u, xn)) + μn), {an} is a sequence in 0[1] such that

lim infn®∞ an(1 - an) >0, lim infn®∞ an <1 and {rl, n} ⊂ [a, ∞) for some a >0, then

{xn} converge strongly to some point x* in F.
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Proof. In Theorem 3.1 take ζ(t) = t, νn = kn - 1, μn = 0. Therefore the conclusion of

Theorem 3.2 can be obtained form Theorem 3.1.
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