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Abstract

In this article, we introduce a new iterative scheme for finding a common element
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1. Introduction

The theory of variational inequalities represents, in fact, a very natural generalization of
the theory of boundary value problems and allows us to consider new problems arising
from many fields of applied mathematics, such as mechanics, physics, engineering, the
theory of convex programming, and the theory of control. While the variational theory
of boundary value problems has its starting point in the method of orthogonal projec-
tion, the theory of variational inequalities has its starting point in the projection on a
convex set.

Let C be a nonempty closed and convex subset of a real Hilbert space H. The classi-
cal variational inequality problem is to find a u € C such that (v-u, Au) > 0 for all v e
C, where A is a nonlinear mapping. The set of solutions of the variational inequality is
denoted by VI(C, A). The variational inequality problem has been extensively studied
in the literature, see [1-5] and the reference therein. In the context of the variational
inequality problem, this implies that u € VI(C, A) < u = Pc(u - AAu), YA > 0, where
P is a metric projection of H into C.

Let A be a mapping from C to H, then A is called monotone if and only if for each x,
ye C

(x—y,Ax—Ay) > 0. (1.1)

An operator A is said to be strongly positive on H if there exists a constant y > 0
such that
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(Ax,x) > 7 xlI?, Vx € H.

A mapping A of C into itself is called L-Lipschitz continuous if there exits a positive
and number L such that

||Ax—Ay|| §L||x—y , Vx,yeC.

A mapping A of C into H is called a-inverse-strongly monotone if there exists a posi-
tive real number o such that

(x =y, Ax — Ay) > o| Ax — Ay||,

for all x, y € C; see [2,6-10]. If A is an a-inverse strongly monotone mapping of C
1

into H, then it is obvious that A is -Lipschitz continuous, that is,
o

||Ax—Ay|| < ; ||x—yH for all x, y € C. Clearly, the class of monotone mappings
include the class of a-inverse strongly monotone mappings.
Recall that a mapping T of C into H is called pseudo-contractive if for each x, y € C,

we have
(Tx =Ty, x—y) < [x—y|. (1.2)

T is said to be a k-strict pseudo-contractive mapping if there exists a constant 0 < k
< 1 such that

(x—yTx—Ty) < ||x—y||2 —k||(I—T)x—(I—T)y ?, for all x, y € D(T).

A mapping T of C into itself is called nonexpansive if || Tx - Ty|| < |lx - y||, for all x, y € C.
We denote by F(T) the set of fixed points of 7. Clearly, the class of pseudo-contractive
mappings include the class of nonexpansive and strict pseudo-contractive mappings.

For finding an element of F(7), where T is a nonexpansive mapping of C into itself,
Halpern [11] was the first to study the convergence of the following scheme:

Xpe1 = Appath + (1 — a1 )T (%), n >0, (1.3)

where u, xo € C and a sequence {o,,} of real numbers in (0,1) in the framework of
Hilbert spaces. Lions [12] improved the result of Halpern by proving strong conver-
gence of {x,} to a fixed point of T provided that the real sequence {o,,} satisfies certain
mild conditions. In 2000, Moudafi [13] introduced viscosity approximation method
and proved that if H is a real Hilbert space, for given x, € C, the sequence {x,} gener-
ated by the algorithm

Xn+l = Olnf(xn) + (1 - an)T(xn)z n>0, (1.4)

where f: C — C is a contraction mapping with a constant 8 € (0,1) and {e,,} < (0,1)
satisfies certain conditions, converges strongly to fixed point of Moudafi [13] gener-
alizes Halpern’s theorems in the direction of viscosity approximations. In [14,15],
Zegeye and Shahzad extended Moudafi’s result to Banach spaces which more general
than Hilbert spaces. For other related results, see [16-18]. Viscosity approximations are
very important because they are applied to convex optimization, linear programming,
monotone inclusion and elliptic differential equations. Marino and Xu [19], studied the
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viscosity approximation method for nonexpansive mappings and considered the follow-
ing general iterative method:

Xni1 = (I — 0 A)Txy + oy f(xn), n=>0. (1.5)

They proved that if the sequence {¢,} of parameters satisfies appropriate conditions,
then the sequence {x,} generated by (1.5) converges strongly to the unique solution of
the variational inequality

(A=yf)x*,x—x*)>=0,x e C,

which is the optimality condition for the minimization problem

1
i Ax, x) — h(x),
min _ {Ax, x) — h(x)
where / is a potential function for yf (ie., h'(x) = Yfix) for x € H).
For finding an element of F(T) n VI(C, A), where T is nonexpansive and A is
a-inverse strongly monotone, Takahashi and Toyoda [20] introduced the following

iterative scheme:
Xns1 = opXp + (1 — o) TPc(xy — ApAxy), n > 0. (1.6)

where xg € C, {¢,} is a sequence in (0,1), and {A,} is a sequence in (0, 2¢), and
obtained weak convergence theorem in a Hilbert space H. liduka and Takahashi [7]
proposed a new iterative scheme x; = x € C and

Xes1 = X + (1 — o) TPc(xn — ApAxy,), n >0, (1.7)

and obtained strong convergence theorem in a Hilbert space.

Motivated and inspired by the work mentioned above which combined from Equa-
tions (1.5) and (1.6), in this article, we introduced a new iterative scheme (3.1) below
which converges strongly to common element of the set of fixed points of continuous
pseudo-contractive mappings which more general than nonexpansive mappings and
the solution set of the variational inequality problem of continuous monotone map-
pings which more general than a-inverse strongly monotone mappings. As a conse-
quence, we provide an iterative scheme which converges strongly to a common
element of set of fixed points of finite family continuous pseudo-contractive mappings
and the solutions set of finite family of variational inequality problems for continuous
monotone mappings. Our theorems extend and unify most the results that have been
proved for these important class of nonlinear operators.

2. Preliminaries

Let H be a nonempty closed and convex subset of a real Hilbert space H. Let A be a
mapping from C into H. For every point x € H, there exists a unique nearest point in
C, denoted by P, such that

llx — Pex|l < |x—y|, Vy € C.

PC is called the metric projection of H onto C. We know that Pc is a nonexpansive
mapping of H onto C.
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Lemma 2.1.Let H be a real Hilbert space. The following identity holds:
|x+y|* < Il +2{p,x+)), VxyeH.

Lemma 2.2.Let C be a closed convex subset of a Hilbert space H. Let x € H and xq e C.
Then xo = Pcx if and only if

(z — x0, %0 — x), Yz € C.

Lemma 2.3.[21]Let {a,} be a sequence of nonnegative real numbers satisfying the
following relation

a1 < (1 —yp)an+0n, n>0,

where,

(i) ) € (0,1), Of‘iyn - o0,

o
(i) lim supn_)oo;'/: <O0or r; lon| < 0.

Then, the sequence {a,} — 0 as n — .

Lemma 2.4.[22]Let C be a nonempty closed and convex subset of a real Hilbert space
H. Let A : C > H be a continuous monotone mapping. Then, for r > 0 and x € H,
there exist z € C such that

(y—z,Az)+i(y—z,z—x)zO,VyeC. (2.1)

Moreover, by a similar argument of the proof of Lemmas 2.8 and 2.9 in[23], Zegeye
[22]obtained the following lemmas:

Lemma 2.5.[22]Let C be a nonempty closed and convex subset of a real Hilbert space
H. Let A : C — H be a continuous monotone mapping. For r > 0 and x € H, define a
mapping F, : H— C as follows:

1
Fox := [ze C:(y—zAz)+ . y—zz-x)>0, we C}
for all x € H. Then the following hold:

(1) F, is single-valued;
(2) F, is a firmly nonexpansive type mapping, i.e., for all x, y € H,

| Frx — Fry”2 <(Fx—Fy,x—y);

(3) F(F,) = VI(CA);
(4) VI(C, A) is closed and convex.

In the sequel, we shall make use of the following lemmas:

Lemma 2.6.[22]Let C be a nonempty closed and convex subset of a real Hilbert space
H. Let T : C — H be a continuous pseudo-contractive mapping. Then, for r > 0 and x
€ H, there exist z € C such that

Page 4 of 15
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y—z,Tz—ly—z,(l+r)z—x <0, WyeC (2.2)
T

Lemma 2.7.[22]Let C be a nonempty closed and convex subset of a real Hilbert space
H. Let T: C — C be a continuous pseudo-contractive mapping. For r > 0 and x € H,
define a mapping T, : H — C as follows:

1
Tyx := {ze C:(y—z,Tz)+ . (y—z,(l +r)z—x) <0, Vye C}
for all x € H. Then the following hold:

(1) T, is single - valued;
(2) T, is a firmly nonexpansive type mapping, i.e., for all x, y € H,

HTrx - Tr)/Hz =< <Trx — Ty, x— Y>;

(3) K(T,) = K(T);
(4) E(T) is closed and convex.

Lemma 2.8.[19]Assume A is a strongly positive linear bounded operator on a Hilbert
space H with coefficient 7 > Oand 0 <p < ||A|™". Then ||I — pA] < 1 — py.

Let C be a nonempty closed and convex subset of a real Hilbert space H. Let T: C — C
be a continuous pseudo-contractive mapping and A : C — H be a continuous monotone
mapping. Then in what follows, T}, and F;, will be defined as follows: For x € H and {r,} €
(0, =), defined

1
T, x = {zeC:(y—z,Tz)— .

n

y—z(1-m)z—x)<0, Ve C}
and

1
F, x := {ze C:(y—z,Az)+ ;

<y—z,z—x) >0, Vye C}.

n

3. Strong convergence theorems

In this section, we will prove a strong convergence theorem for finding a common ele-
ment of the set of fixed points for a continuous pseudo-contractive mapping and the
solution set of a variational inequality problem governed by continuous monotone
mappings.

Theorem 3.1.Let C be a nonempty closed and convex subset of a real Hilbert space
H. Let T: C — C be a continuous pseudo-contractive mapping and A : C — H be a
continuous monotone mapping such that § := F(T) N VI(C,A) # 0. Let f be a contrac-
tion of H into itself with a contraction constant B and let B : H — H be a strongly posi-
tive linear bounded self-adjoint operator with coefficients 8 > Oand let {x,} be a

sequence generated by x, € C and

{)’n = Fxy (3.1)
Xn+1 = anyf(xn) +8pxn + [(1 — 8p)] — OénB]Trn}/n, .
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where {a,,} € [0,1] and {r,} € (0, ) such that

o0
(C1) limy oy = 0, > aty = 0

n=1

00
(CZ) limn_moSn =0, Z |8n+1 - 87!' <

n=1

o0
(C3) liminf, 0oty > 0, Y |1ny1 — 1| < 00.
n=1

Then, the sequence {x,} converges strongly to z € §, which is the unique solution of the

variational inequality:
(B=yfzx—z)>=0, Vxe3. (3.2)

Equivalently, z = Pz(I — B + yf)z, which is the optimality condition for the minimiza-

tion problem
in ! (Az,z) — h
I;1€1Cn ) z,z (=),

where h is a potential function for yf (i.e,h(z) = Yz) for z € H).

Remark: (1) The variational inequality (3.2) has the unique solution; (see [19]). (2) It
follows from condition (C1) that (1 - ¢, - o,B is positive and
[(1=8,)I —anB|| <1— 8, —aup forall n > 1; (see [24]).

Proof. We processed the proof with following four steps:

Step 1. First, we will prove that the sequence {x,} is bounded.
Let v € § and let u, = Ty, y» and yy = F, x4 Then, from Lemmas 2.5 and 2.7 that

| < llxa — vl (3.3)

lu, —vll = “TrnYn - Tr,lv| < ||)/n — U” = ||Frnxn — Frnv

Moreover, from (3.1) and (3.2), we compute

lnet = Il = Jetn(y ( (n) = Bv)) + 8 (o6 — ) + [(1 = 8a) — 0 B]T;, — ]| .
< o | 7f(xa) = B) | + 8 || (0 — v)|| + || (1 = 8:)I — B | T;, —v] -
< anBy 1% — vl + o | vf(v) = Bo|| + 8 llxn — vll + (1 + 85 — cnB) | Trovn — v -
< By xn = Vil +on | (v) = Bu|| + 8 %0 — vl + (1 + 8 — ) llun — vl
< anBy xn — il + oty ||y f(v) = Bu|| + 8y llxn — vll + (1 + 85 — 0tnfB) I — vl .
= anBy IIxn — vll + o |y f(v) = B + 8, Xy — vl| + Ilx, — vl
— 8 1w — vll — et llxa — v
= anBy Ixn = vll +an | yf(v) = Bo|| + llxn — vl = atnf8 10 — vl
< (anBy + 1 — f) llxn — vll + o | (v) — By
= (1= an(B — By)) llxn — vll + e | ¥f(v) — By||.

[/ ) Bvlll} T
B— By

= maX{llxn -,

Therefore, by the simple introduction, we have

1, 1) =]

,Vn>1
B—By }

llx;, — vl = max { llx1 —

which show that {x,} is bounded, so {y,}, {#,}, and {f{x,)} are bounded.

Page 6 of 15
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Step 2. We will show that ||x,,,; - x,]| > 0 and ||, - y,,|| > 0 as 1 — eo.
Notice that each T, and F;, are firmly nonexpansive. Hence, we have

”un+l - un” = ||Trnyn+l - TTHYn ” = ||Yn+1 —Vn || = ||Frnxn+1 - Frnxn” = ||xn+1 - xn” .
From (3.1), we note that

141 — xnll = ”Dln)/f(xn) +8nxn + [(1 — 8) — ctnB] Ty, v
—atn 1V (%no1) = Su1%n-1 — [(1 = 8p—1)] — 0tn1 B] Ty pnn | -
= ”uz,,yf(xn) +8pXpn + (I — 8y — anB)uy
—an_17f (%n=1) — Sn—1%n—1 — (I — 8p—1 — a1 B)up_1] .
=< ”anyf(xn) —apyf(xn-1) + anyf(xn—l) +8nXn — Sp—1Xn—1 — an—lyf(xn—l)
+(I—8p —ayB)uy — (I — 8y — anB)up—1 + (I — 8p — auB)ty_1
—(I = 8p—1 — an_1B)up_y || .
=< ”an)/f(xn) - Uln)/f(xn—l)” + ”‘xnyf(xn—l) — ap1Yf(xn-1) ” + 18nxn — Sn—1%n—1l
+ (= 8 — nB)un — (I — 84 — €uB)un_1 || + | (I — 81 — taB)un_
—(I = 8p—1 — ap_1B)up_y || .
= oy [|f(en) = f(@nm1) || + lotn — ctner | | (en1) | + 8nXn — Sne1Xn—1 + SuXn—1 — SuXn—1
+ (I = 80— 0B [ty — | + (I — 85 — €uB — I + 841 + otn_1 B)utn_1 ] -
=y B 1%n — X1l + lotn — et |y [[f (en1) || + 8n 120 — X | + 180 — 81| n—r
+ 1= 8n — Bl lun — un—1ll +18n—1 — 8 + an—1B + o Bl l[utn—1 1l - (3.4)
< anyB llxn — Xno1ll + lotn — otn—1] ¥ [[f (Xnz1)|| + 8n 160 — X1 | + 185 — Snt] llxn—1ll
+ 1= 8n — anBl xn — Xn—1ll + [8n—1 — nl lun—1ll + latn—1B + e Bl lun—11l .
< anyB llxn — Xno1ll + lotn — atn—1| ¥ [[f (Xnz1)|| + 8n 160 — X1 | + 185 — Snt] llxn—1ll
+ 1= 8n — anBl xn — Xn—1ll + 18n—1 — 8nl IXn—1ll — lotn—1 — 0tu| B IXn—11l -
< anyB ln — Xatll + latw — a1l y [f (en1) | + 8 1n — 21
+ I = 8n — anBl lxn — Xn—1ll — lotn—1 — ol Bllxn—11l.
< anyB 11 — X1l + ot — en1l v |f (K1) | + 185 + 1 = 84 — ctuBl 30 — Xn—1 |
— lotn—1 — anl B llxy—11l -
< anyB llxn — xno1ll + lotn — ctn—1] ¥ [[f (%n=1)|| + 1T — @B llxn — X1
— lotg — 1| B llxy—11l -
<y Bl — x|l + low — o1 |7 f (xn1) = Bxua | + 1T — Bl 1%y — %01
< anyB lIxn — xXn-1ll + lotn — 1] Hyf(xn—l) — By H +|I—anB| HYn —Yn-1 “
< anyBlxXn — Xn—1ll + ln — ctn—1| K+ [I — anB| ”Yn —Vn—1

’

where K = ||Yfix,.1) - Bx,all = 2 sup{l|[fix,) || + ll#.l:n € Nj. Moreover, since ¥, = Fy, %,
and Yn+1 = Fr,, %41, we get

1
(= Aya)+ fy=ymym—x) 20, WyeC (3.5)
n
and
1
(V - Yn+1rAYn+1) + - <Y — Vn+1: Vel — xn+1) >0, VyeC (3.6)
n+

Putting y = ,,,1 in (3.5) and y = y,, in (3.6), we obtain

1
(Ym—l — Vn/A)’n) + r <}’n+1 —VnVn — xn) >0 (3.7)
and
1
(yn - Yn+1/Ayn+l> + Tl (yn — Vn+1:Yn+1 — xn+1) > 0. (38)
n+
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Adding (3.7) and (3.8), we have

Vn — Xn _)’n+1_xn+1>20

n Tn+l

(Vn+1 — Vn, AYn — A}’n+1) + <Yn+1 — Vs

which implies that

Vn — Xn _ Vn+1 _xn+1> > 0.

n Tnel

- <yn+1 - yn/ A)/n+1 - A)/n> + <Yn+1 - yn/

Using the fact that A is monotone, we get

Yn — Xn _ VYn+1 _xn+1> > 0.

n Tn+l

<Yn+1 — Vs

and hence

Tn

<YV1+1 - )/n/ yn - }/n+1 + )/n+1 - )/n - r (yn+1 - xn+1)> Z 0

n+l

We observe that

T

r il )(y‘n+1 - xn+1)>

n

H)’n+1 —Vn ”2 < <yn+1 — VnrXn+1 — xn(l -
(3.9)

=< ||Yn+1 _Yn” {”xn+1 —xnll + (1 - n )‘ ||(yn+l _xn+1)||} .
Tnel

Without loss of generality, let k be a real number such that r,, >k > 0 for all w € N.
Then, we have

1
||)/n+1 —Vn ” =< [ %ne1 — Xull + [Tne1 — Tnl ||)/n+1 — Xn+1 H
Tn+1 (3.10)

1
< xpe1r — xull + I [Tha1 — Tl M,

where M = sup{||y,, - x,|: » € N}. Furthermore, from (3.4) and (3.10), we have

1
[1%ns1 — xnll < @nyBllxn — xn—1ll + llaw — 01| K + (1 - Oln) (”xn — Xp—1ll + k ™ — Ti—1|M> .
1
= (1 — Qp +0ln)//3) ”xn — Xpn—1 ” + |an - anfll K+ k |rn - TnfllM-
M
= (1 - an(l - Vﬂ)) ”xn — Xp—1 H +K|an - an—ll + k Irn - Tn—ll .
Using Lemma 2.3, and by the conditions (C1) and (C3), we have
lim [lxp01 — %41l = 0.
n—-oo
Consequently, from (3.10), we obtain
lim [ynr —yuf = 0. (3.11)

Since uy = Ty, yn and Upy1 = Tr,,, Vn+1, we have

1
(y — Uy, Tu,,) -, (y — U, (1 — 1)y — y,,) <0, VyeC (3.12)

n

Page 8 of 15
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and
1
(y = tnar, Tupar) — . (y = tnar, (1 = ra1 Ytpr — Y1) <0, Wy eC. (3.13)

n+1

Putting y := u,,; in (3.12) and y := u, in (3.13), we get

1
(Une1 — tn, Tuy) — ’ (un+1 — Un, (1 - 7n)un - Yn> <0. (3.14)
n
and
1
(un — Un+1, Tu‘n+1) - (un — Up+1, (1 - rn+1)un+1 - Y‘n+1> = 0. (315)
n+1

Adding (3.14) and (3.15), we have

(1 - Tn)un —Vn _ (1 — rn+1)un+1 — Yn+1> <o.

(Uns1 — tn, Tup — Ttip,1) _<un+1 — Up,
Tn Th+l

Using the fact that T is pseudo-contractive, we get

Un — Vn _ “n+l_)/n+l>>0

Un+1 — Up,
Tn Tnel

and hence

Tn
<un+1 — Up, Up — Up+l + Upsl — Yn — . (un+1 + Yn+1)> > 0.
n+1

Thus, using the methods in (3.9) and (3.10), we can obtain
1
lUns1 — unll < ||Yn+l —Vn ” + [Tns1 +Tn| M1, (3.16)
Tn+1

where M; = sup{||lu,, - y,|l: » € N}. Therefore, from (3.11) and property of {r,}, we
get

lim ([tp — unll = 0.
n—00

Furthermore, since X, = ay—1Yf(Xns1) + Sn—1Xn—1 + [(1 — 8p—1)] — on—1B| Ty, Yn—1, we

have

< %0 = ttn—1 | + lttn—1 — ual

letn—17f (Xn-1) + 8n—1%a—1 + [(1 = 8a—1)I — 0tn—1B| Ty, yu1 — tin—1 | + ltn—1 — ttu
ano1¥f (Xn=1) + Sn_1%n—1 + (I — 8pm1 — tn1B)un—1 — th—1 || + w1 —
n—1Vf (Xno1) + Su_1Xn—1 + Un—1 — Sp—1tin_1 — Otn—1Btn_y — tp_1 ]| + lttn—1 — unll
an-1Vf(%n=1) = n1Bttn_1 + Sp—1Xn—1 — Sn—rttn_1]| + lltn—1 — tnll

Qp—1 ”Vf(xn—l) - Bun—l ” + Sn—l ”xn—l - un—l” + ”un—l — Up ” .

[l — |

=
=

Thus, by (C1) and (C2), we obtain

lxy — unll = 0,n — oo. (3.17)

Page 9 of 15
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For v € §, using Lemma 2.5, we obtain

D ey Ty
< (Fr%n — E v, %0 — v)

<(yn—v,xa —v)

1
o Uy = oI+ T =01 = i =)

and

IA

Iy = o[> < lw — vI% = 20 = ya| > (3.18)

Therefore, from (3.1), the convexity of -1 (3.2) and (3.18), we get

2
lne1 — vl = ”lxn)/f(xn) +8nxn + [(1 — 8n)] — anB] T, yn — V”

= (1 = 8) (T, — v) + 80w — v) + etn(¥f (%) — BT, pa) |
< ||(1 —8n) (T, yn — V) + 8p(x — V) ||2 + 20 (yf(xn) — BT, Yns Xna1 — u)
< (1=38)] (n = )| + 8| (%0 = v)||* + 2t L?

and hence
(1= 8) | (n = 0)[|* < 8] (e = )| = || (1 — 0) || + 202 (3.19)
So, we have ||y, - v| = 0 as # — co. Consequently, from (3.16) and (3.18), we obtain
[tn — || < llun — xnll + | %0 — yu| > 0 as n — oo.
Step 3. We will show that

limsup ((yf — B)z, x, — z) < 0. (3.20)

n—oo

Let Q = Pg, and since, Q( - B + yf) is contraction on H into C (see also [[25], pp.
18]) and H is complete. Thus, by Banach Contraction Principle, then there exist a
unique element z of H such that z = Q(/ - B + )z

We choose subsequence {x;,} of {x,} such that

limsup ((yf — B)z, X, —z) = lim (yfz — Bz, x,, — )
n—00 n—00

Since {xy,} is bounded, there exists a sequence {Xu;} of {x,,} and y € C such that
{xn;} = 7. Without loss of generality, we may assume that X», = ¥. Since C is closed
and convex it is weakly closed and hence y € C. Since x,, - y, = 0 as n — o we have
that ¥n; = V. Now, we show that y € §. Since y, = F;,, Lemma 2.5 and using (3.5), we
get

— X
(v = vu, Ayn) + <y " > >0, VyeC (3.21)

n
and

. — Xn:
{y = o Ayn ) + <y — Y . > >0, VyeC (3:22)
n;
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Set v, = tv + (1- t)y for all £ € (0,1] and v € C. Consequently, we get v; € C. From
(3.22), it follows that

(Ve = V) = (Ve = Yn AV) — (V0 — Yy Ave) — <Vt — r_ = >
n

. — Xn:
= <Ut — ynirAUl —Ayni> - <U[ - }’ni, yn, . nt>l
n

i

from the fact that y,, — x,, = 0 as i — o, we obtain that ! . ™ 5 0asi—> . Since

i

A is monotone, we also have that <v[ — Y AV — Ay,,l.> > 0. Thus, if follows that

0 < lim (v, — yn,, Avy) = (v — w, Avy),
1— 00
and hence (v —y,Ay;) >0, VveC.
If £ — 0, the continuity of A gives that

v—yA)=0 WeC
This implies that y € VI(C, A).
Furthermore, since u, = Ty, ¥n, Lemma 2.5 and using (3.12), we get

1
(y — Up,, Tum.) -, (y — Up,, (T, + D)up, — yml) <0, VyeC. (3.23)

n

Putz, =t(v) + (1 -t)y forall te (0,1] and v e C. Then, z; € C and from (3.23) and
pseudo-contractivity of T, we get

1
|, — 20 Tze|| = (un, — 20 Tae) + (= — v, Tus) — . (@ — s (1 + 7, — ¥,
n

1
= —(z — un, Tz)) — . (2 = tns un; — ) — (&0 — vy, Um,)
"

i

1

> |z — un|)* - . (2 = tns un; — i) — (&0 — vy, Um,)

i
Un; — Vn; >

= —(z — un, 2) — <zt — Up,,
ni

. . U —Vn; )
Thus, since u,, - y, — 0, as 7 — o we obtain that "’Tn_ " — 0 as i — 0. Therefore, as
1

i — oo, it follows that
(y—z.Tz) =y — 2 2)
and hence
—(v—y,Ta)=-(v—y,z), WweC.
Taking £ — 0 and since 7 is continuous we obtain
—(v—y.B)=—(v—y.y), WweC

Now, we get v = Ty. Then we obtain that y = Ty and hence y € F(T). Therefore, y €
F(T) n VI(C, A) and since z = Pz(I — B + yf)z, Lemma 2.2 implies that
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limsup ((yf — B)z, xn —2) = lim ((I — B+ yf)z — z,x,, — 2)
. =00 (3.24)
=((vf - B)ay -z =<0.

Step 4. Finally, we will show that x,, — z as n — oo, where z = Pz(I — B + 1f)z.
From (3.1) and (3.2) we observe that

%01 — 2l1% = {@nyf (xn) + 8uxn + [(1 — 82)] — 0tuB]| Ty, ¥n — 2 Xns1 — 2)

an (Vf(%n) — Bz, Xpe1 — 2) + 8 (X — 2, X1 — 2)

+([(1 = 8,)I — xB|(T;, — 2), %ns1 — 2)

any (f(xn) —f(2), xns1 — z) + oy, (yf(z) — Bz, xp41 — z)

+ 8 10 — 2 1xne1 — 2l + (1 = 8y — @) llzn — 2|l Ixne1 — zll
any K llxn — 2|l Ixne1 — 2l + i (vf(2) — Bz, Xni1 — 2)

+ 8 1xn — 2 1xner — 2l + (1 = 80 — @uB) llzn — 2|l lIxne1 — zll
= any K 1%y = 2ll [1%ne1 — 2]l + @ (v (2) — Bz, Xni1 — 2)

+ (1 = anpB) lIxn — 2l 1ne1 — 2l

IA

IA

A

= an(llan = zZll? + 1xns1 — 2I1%) + atn (vf (2) — Bz, Xn1 — 2)

+(1 = anB) (%0 — zll %041 — 211
k
< ”2 an ([0 — 21 + 1%ne1 — 212) + otn (v (2) — Bz, xne1 — 2)
(1 _an/é)
.
2 _
< 1 —au(B —ky)
- 2

(I1xn — 201 + 1001 — 211%)
2 1 2
n — + n+l — + 0y - 1 Xn+l — X},
lbn —2l1% +  llx z| vf(x) — Bz, x z

which implies that
%1 + 201> < [1 = an(B — ky)]lIxn — 2l1* + 20n (vf(2) — Bz, xns1 — 7).

By the condition (C1), (3.24) and using Lemma 2.3, we see that lim,, ,.. ||, - z|]| = 0.
This complete to proof. O

If we take flx) = u, Vx € H and y = 1, then by Theorem 3.1, we have the following
corollary:

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T: C — C be a continuous pseudo-contractive mapping and A : C — H be a con-
tinuous monotone mapping such that § := F(T)NVI(C,A) #0. let B: H — H be a
strongly positive linear bounded self-adjoint operator with coefficients B > Oand let {x,}
be a sequence generated by x, € H and

{Vn = Frnxn

3.25
Xn1 = ol + Spxn + [(1 — 8u)] — o B] Ty, vn, ( )

where {o,,} < [0,1] and {r,} € (0, =) such that

(C1) lim o, =0, > oy = 05;
n—od

n=1
o0

(C2) lim 8, =0, [8p41 — 8ul < 05
n—o00 =1

o0
(C3) liminfr, > 0, Y |rye1 — 1| < 00
n—00 n=1
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Then, the sequence {x,} converges strongly to z € §, which is the unique solution of the
variational inequality:

(B=flz,x—2)>0,Vx € 3. (3.26)

Equivalently, z = Pg(I — B + f)z.

If we take T = 0, then T;, = I (the identity map on C). So by Theorem 3.1, we obtain
the following corollary.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let A : C —> H be a continuous monotone mapping such that § := VI(C,A) # 0. Let f
be a contraction of H into itself and let B : H — H be a strongly positive linear
bounded self-adjoint operator with coefficients B > Oand let {x,} be a sequence gener-
ated by x; € H and

Xns1 = ¥ f (%) + nn + [(1 — 8,)] — e B]Fy, X, (3.27)

where {a,,} < [0,1] and {r,} € (0, ) such that

[o.¢]
(C1) lim o, =0, Y ay = 05
n—00 n=1

o0
(C2) im 8, =0, > [8p41 — 8ul < 05
n—-oo

n=1

o)
(C3) liminfr, > 0, Y [rpe1 — 1l < 00.
n—00 =1

Then, the sequence {x,} converges strongly to z € §, which is the unique solution of the
variational inequality:

(B=yflax—2)>0,¥x e (3.28)

Equivalently, z = Pz(I — B + yf)z.

If we take A =0, then F;, =1 (the identity map on C). So by Theorem 3.1, we obtain
the following corollary.

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T : C — C be a continuous pseudo-contractive mapping such that § = F(T) # @.
Let f be a contraction of H into itself and let B : H — H be a strongly positive linear
bounded self-adjoint operator with coefficients B > Oand let {x,} be a sequence gener-
ated by x; € H and

Xns1 = &V f (%) + SnXn + [(1 — 8n)] — onB| T}, X, (3.29)

where {o,,} < [0,1] and {r,} € (0, =) such that

o0
(C1) lim o, =0, > oy = o5;
n—o0o =1
o0
(C2) lim 8, =0, [8ps1 — 8ul < 05
n—00 =1

o0
(C3) liminfr, > 0, Y |1 — 1yl < o0,
n— 00 =1
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Then, the sequence {x,},=1 converges strongly to z € §, which is the unique solution of

the variational inequality:
(B—yflzx—2)>0Vxe3g. (3.30)

Equivalently, z = Pg(I — B + yf)z.

If we take C = H in Theorem 3.1, then we obtain the following corollary.

Corollary 3.5. Let H be a real Hilbert space. Let T,, : H — H be a continuous
pseudo-contractive mapping and A : H — H be a continuous monotone mapping such
that § := F(T) NA™Y(0) # 0. Let f be a contraction of C into itself and let B : H - H
be a strongly positive linear bounded self-adjoint operator with coefficients g > Oand let
{x,.} be a sequence generated by x, € H and

{yn = F, xy (3.31)
Xne1 = ¥ f (%) + Spxn + [(1 — 8u)] — BTy, yn

where {a,,} € [0,1] and {r,} € (0, ) such that

o0
(C1) lim o, =0, Y ay = o5
n—oo

n=1
00

(C2) lim 8, =0, [8p1 — 8] < 00
n— 00 n=1

o0
(C3) liminfr, > 0, Z [The1 — Tnl < 0.
n—00 n=1

Then, the sequence {x,} converges strongly to z € §, which is the unique solution of the

variational inequality:

(B=yfzx—2)>0,VxeF (3.32)

Equivalently, z = Pg(I — B + yf)z.

Proof. Since D(A) = H, we note that VI(H, A) = A™*(0). So, by Theorem 3.1, we
obtain the desired result. O

Remark 3.6. Our results extend and unify most of the results that have been proved
for these important classes of nonlinear operators. In particular, Theorem 3.1 extends
Theorem 3.1 of Iiduka and Takahashi [7] and Zegeye et al. [26], Corollary 3.2 of Su et
al. [27] in the sense that our convergence is for the more general class of continuous
pseudo-contractive and continuous monotone mappings. Corollary 3.4 also extends
Theorem 4.2 of liduka and Takahashi [7] in the sense that our convergence is for the
more general class of continuous pseudo-contractive and continuous monotone

mappings.
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