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Abstract

In this article, weakly compact subsets of real Banach spaces are characterized in
terms of the Cantor property for the Eisenfeld-Lakshmikantham measure of
nonconvexity. This characterization is applied to prove the existence of fixed points
for condensing maps, nonexpansive maps, and isometries without convexity
requirements on their domain.
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1. Introduction
Throughout this article, (X, ∥ · ∥) will denote a real Banach space.

Definition 1.1. The Eisenfeld-Lakshmikantham measure of nonconvexity (E-L mea-

sure of nonconvexity, for short) of a bounded subset A of X is defined by

μ(A) = sup
x∈coA

inf
a∈A

‖x − a‖ = H (A, coA) ,

where coA denotes the closed and convex hull of A and H(C, D) is the Hausdorff-

Pompeiu distance between the bounded subsets C and D of X.

The E-L measure of nonconvexity was introduced in [1]. The following properties of

μ can be derived in a fairly straightforward manner from its definition. Here, A, B ⊂ X

are assumed to be bounded and A denotes the closure of A.

(i) μ(A) = 0 if, and only if, A is convex.

(ii) μ(lA) = |l|μ(A) (l Î ℝ).

(iii) μ(A + B) ≤ μ(A)+μ(B).

(iv) |μ (A) - μ(B)| ≤ μ (A - B).

(v) μ(A) = μ(A) .

(vi) μ(A) ≤ δ(A), where

δ(A) = sup
x,y∈A

∥∥x − y
∥∥
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is the diameter of A.

(vii) |μ(A) - μ(B)| ≤ 2H(A, B).

The following result was obtained in [2].

Lemma 1.2 ([2, Lemma 2.4]). Let {An}∞n=1 be a decreasing sequence of nonempty,

closed, and bounded subsets of a Banach space X with

lim
n→∞ μ(An) = 0,

where μ is the E-L measure of nonconvexity of X, and let A∞ =
⋂∞

n=1 An . Then

A∞ =
⋂∞

n=1
coAn .

Definition 1.3. Let Y be a nonempty and closed subset of the Banach space X. The E-

L measure of nonconvexity μ of X is said to have the Cantor property in Y if for every

decreasing sequence {An}∞n=1 of nonempty, closed, and bounded subsets of Y such that

limn→∞μ(An) = 0 , the closed and bounded (and, by Lemma 1.2, convex) set

A∞ =
⋂∞

n=1 An is nonempty.

Theorem 1.4 ([2, Theorem 2.5]). For a Banach space X, the following statements are

equivalent:

(i) X is reflexive.

(ii) The E-L measure of nonconvexity of X satisfies the Cantor property in X.

In Section 2 below we prove a result (Theorem 2.1), more general than Theorem 1.4,

which characterizes weak compactness also in terms of the Cantor property for the E-L

measure of nonconvexity. As an application of this characterization, we show that the

convexity requirements can be dropped from the hypotheses of a number of fixed

point theorems in [3-5] for condensing maps (see Section 3.1), nonexpansive maps (see

Section 3.2) and isometries (see Section 4).

2. A characterization of weak compactness
Theorem 2.1. Let X be a Banach space with E-L measure of nonconvexity μ, and let C

be a nonempty, weakly closed, and bounded subset of X. The following statements are

equivalent:

(i) C is weakly compact.

(ii) The measure μ satisfies the Cantor property in coC .

(iii) For every decreasing sequence {An}∞n=1of nonempty and closed subsets of

coC such that limn→∞μ(An) = 0 , the set A∞ =
⋂∞

n=1 An is nonempty.

Proof. Part (iii) is just a rephrasement of part (ii).

Suppose (i) holds. By the Krein-Šmulian theorem [6, Theorem V.6.4], coC is weakly

compact. Let {An}∞n=1 be a decreasing sequence of nonempty and closed subsets of

coC with limn®∞ μ(An) = 0. By Lemma 1.2, A∞ =
⋂∞

n=1
coAn , where {coAn}∞n=1 is a
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decreasing sequence of nonempty closed, and convex subsets of the weakly compact

and convex set coC . The Šmulian theorem [6, Theorem V.6.2] then allows us to con-

clude that A∞ is nonempty.

Conversely, assume (iii). If we take any decreasing sequence {Cn}∞n=1 of nonempty,

closed, and convex subsets of the bounded and convex set coC , then μ(Cn) = 0 (n Î
N), and therefore C∞ �= ∅ . Appealing again to the Šmulian theorem [6, Theorem

V.6.2] we find that the convex set coC is weakly compact. Finally, being a weakly

closed subset of coC , the set C itself is weakly compact.

Note that Theorem 1.4 can be easily derived from Theorem 2.1. For the sake of

completeness, we give a proof of this fact.

Corollary 2.2. For a Banach space X with E-L measure of nonconvexity μ, the follow-

ing statements are equivalent:

(i) X is reflexive.

(ii) The closed unit ball BX of X is weakly compact.

(iii) For every decreasing sequence {An}∞n=1of nonempty and closed subsets of BX such

that limn®∞ μ(An) = 0, the set A∞ =
⋂∞

n=1 An is nonempty and convex.

(iv) The measure μ satisfies the Cantor property in X.

Proof. The equivalence of (i) and (ii) is well known [6, Theorem V.4.7]. To see that

(ii) and (iii) are equivalent, take C = BX in Theorem 2.1, bearing in mind that

coC = BX . For the proof that (iii) implies (iv), let {An}∞n=1 be a decreasing sequence of

nonempty, closed, and bounded subsets of X such that limn®∞ μ(An) = 0. Since A1 is

bounded and {An}∞n=1 is decreasing, there exists l > 0 such that

Bn = λAn ⊂ BX (n ∈ N) .

Now {Bn}∞n=1 is a decreasing sequence of nonempty, closed, and bounded subsets of

BX with

lim
n→∞ μ(Bn) = λ lim

n→∞ μ(An) = 0.

Therefore A∞ = λ−1B∞ �= ∅ , as asserted. Finally, it is apparent that (iv) implies (iii).

3. Fixed points for condensing and nonexpansive maps
Definition 3.1 ([2, Definition 4.3]). Let Y be a nonempty, closed, and bounded subset of

a Banach space X. A map f : Y ® Y is said to have property (C) if limn®∞ μ(Yn) = 0,

where μ is the E-L measure of nonconvexity in X and {Yn}∞n=1is the decreasing sequence

of nonempty, closed, and bounded subsets of X defined by

Y1 = f (Y), Yn+1 = f (Yn) (n ∈ N).

Proposition 3.2. Let Y be a nonempty and weakly compact subset of a Banach space

X, and let f : Y ® Y be a map with property (C). Then Y contains a nonempty, closed,

and convex (hence, weakly compact) set K such that f(K) ⊂ K.
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Proof. Let {Yn}∞n=1 be as above. Since f has property (C), we have

lim
n→∞ μ(Yn) = 0.

Theorem 2.1 yields that K = Y∞ =
⋂∞

n=1 Yn is nonempty, closed, and convex. Clearly,

f(K) ⊂ K. Closed convex sets are weakly closed [6, Theorem V.3.18] and therefore K is

weakly compact, as claimed.

As an application of Proposition 3.2, some fixed point theorems for condensing and

nonexpansive maps will be proved.

3.1. Condensing maps

Definition 3.3. Let Y be a nonempty and bounded subset of a Banach space X, and let

g denote some measure of noncompactness in X, in the sense of [7, Definition 3.2]. A

map f : Y ® Y is called g-condensing provided that

γ (f (B)) < γ (B)

for every B ⊂ Y with f(B) ⊂ B and g(B) > 0.

The following result is an extension of [3, Theorem 4]. It can be also viewed as a

version of Sadovskii’s theorem [8].

Theorem 3.4. Let g be a measure of noncompactness in a Banach space X and let Y

be a nonempty and closed subset of X such that coY is weakly compact. Assume that

the map f:Y ®Y is continuous, g-condensing and has property (C). Then f has at least

one fixed point in Y.

Proof. Arguing as in the proof of Proposition 3.2 we get a nonempty, closed, and

convex set K ⊂ Y such that f(K) ⊂ K. The required conclusion follows from [7, Corol-

lary 3.5].

3.2. Nonexpansive maps

Definition 3.5. Let A ⊂ X be bounded. A point x Î A is a diametral point of A pro-

vided that supyÎA ∥x - y∥ = δ(A). The set A is said to have normal structure if for each

convex subset B of A containing more than one point, there exists some x Î B which is

not a diametral point of B.

The following is a version of Kirk’s seminal theorem (cf. [4, Theorem 4.1]) which

does not require the convexity of the domain.

Theorem 3.6. Let Y be a nonempty and weakly compact subset of a Banach space X.

Suppose Y has normal structure. If f : Y ® Y has property (C) and is nonexpansive,

that is, satisfies∥∥f (x) − f (y)
∥∥ ≤ ∥∥x − y

∥∥ (x, y ∈ Y),

then f has a fixed point.

Proof. The asserted conclusion can be derived from Proposition 3.2 and [4, Theorem

4.1].

4. Fixed points for isometries
Definition 4.1. Let Y be a nonempty and weakly compact subset of a Banach space X.

We say that Y has the fixed point property, FPP for short, if every isometry f:Y ® Y has
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a fixed point. The set Y is said to have the hereditary FPP if every nonempty, closed,

and convex subset of Y has the FPP.

Definition 4.2. Given a nonempty, closed, and bounded subset Y of a Banach space

X, let

r(x) = r(x,Y) = sup
y∈Y

∥∥x − y
∥∥ (x ∈ X),

r(Y) = inf
x∈Y

r(x),

and

Ỹ = {x ∈ Y : r(x) = r(Y)}.

The number r(Y) and the members of Ỹ are respectively called Chebyshev radius and

Chebyshev centers of Y. Further, define

Ỹn =
{
x ∈ Y : r(Y) ≤ r(x) ≤ r(Y) +

1
n

}

=
⋂
y∈Y

[
y +

(
r(Y) +

1
n

)
BX

]
∩ Y (n ∈ N).

We say that Y has property (S) provided that limn®∞μ(Ỹn) = 0, where μ is the E-L

measure of nonconvexity in X.

Lemma 4.3. Let Y be a nonempty and weakly compact subset of a Banach space X. If

Y has property (S), then Ỹ is nonempty, closed, and convex.

Proof. Note that
{
Ỹn

}∞
n=1

is a decreasing sequence of nonempty and closed subsets of

Y, with limn®∞μ(Ỹn) = 0. From Theorem 2.1, the set of Chebyshev centers

Ỹ = Ỹ∞ =
∞⋂
n=1

Ỹn

is nonempty closed, and convex.

Theorem 4.4. Let Y be a nonempty and weakly compact subset of a Banach space X.

Assume further that Y has both property (S) and the hereditary FPP. Then every isome-

try f:Y ® Y such that f(Ỹ) ⊂ Ỹ has a fixed point in Ỹ.
Proof. From Lemma 4.3, Ỹ is nonempty, closed, and convex. It suffices to invoke the

hereditary FPP of Y.

Definition 4.5. Let Y be a nonempty, closed, and bounded subset of a Banach space

X. Given an isometry f:Y ® Y, let us consider

Rf ,0(x) = r(x,Y) = sup
z∈Y

‖x − z‖ (x ∈ X),

Rf ,m(x) = r(x,Ym) = sup
z∈Ym

‖x − z‖

= r
(
x, f m(Y)

)
= sup

y∈Y

∥∥x − f m(y)
∥∥ (x ∈ X, m ∈ N),
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Rf (x) = lim
m→∞Rf ,m(x) = inf

m∈Z+

Rf ,m(x) (x ∈ X),

Rf (Y) = inf
x∈Y

Rf (x),

and

Ŷf = {x ∈ Y : Rf (x) = Rf (Y)}.

The number Rf(Y) and the set Ŷf are respectively called asymptotic Chebyshev radius

and asymptotic Chebyshev center of {Ym}∞m=0 = {f m(Y)}∞m=0with respect to Y. Further,

define

Ŷf ,n =
{
x ∈ Y : Rf (Y) ≤ Rf (x) ≤ Rf (Y) +

1
n

}

=
⋂
m∈Z+

⋂
z∈Ym

[
z +

(
Rf (Y) +

1
n

)
BX

]
∩ Y (n ∈ N).

We say that f has property (A) provided that limn®∞μ(Ŷf,n) = 0, where μ is the E-L

measure of nonconvexity in X.

Lemma 4.6. Let Y be a nonempty and weakly compact subset of a Banach space X,

and let f:Y ® Y be an isometry with property (A). Then Ŷf is nonempty, closed, and

convex.

Proof. Note that {Ŷf ,n}∞n=1 is a decreasing sequence of nonempty and closed subsets of

Y, with limn→∞μ
(
Ŷf ,n

)
= 0 . From Theorem 2.1, the asymptotic Chebyshev center

Ŷf = Ŷf ,∞ =
∞⋂
n=1

Ŷf ,n

is nonempty closed, and convex.

Lemma 4.7. Let Y be a nonempty and weakly compact subset of a Banach space X,

and let f : Y ® Y be an isometry. Assume c Î Ŷf is such that f(c) = c. then c ÎỸ.
Proof. We argue as in the proof of [5, Theorem 2]. Since f is an isometry and f(c) = c,

we have

Rf ,m(c) = Rf ,m
(
f (c)

)
= Rf ,m−1(c) (m ∈ N),

whence

Rf ,m(c) = Rf ,0(c) (m ∈ N).

From Definition 4.5 and the hypothesis that c Î Ŷf, it follows that

r (c,Y) = Rf ,0(c) = lim
m→∞Rf ,m(c) = Rf (c) = Rf (Y).

Now, for any x Î Y we get

r (c,Y) = Rf (Y) ≤ inf
m∈Z+

Rf ,m(x) ≤ Rf ,0(x) = r(x,Y),

which proves that c Î Ỹ.
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Theorem 4.8. Let Y be a nonempty and weakly compact subset of a Banach space X.

Suppose Y has the hereditary FPP. Then every isometry f:Y ® Y with property (A) has a

fixed point in Ỹ.
Proof. Let f : Y ® Y be an isometry with property (A). From Lemma 4.6, Ŷf is none-

mpty, closed, and convex. Moreover, f(Ŷf) ⊂ Ŷf (cf. [5, Proposition 3]). The hereditary

FPP of Y then yields c Î Ŷf such that f(c) = c, and Lemma 4.7 ensures that c Î Ỹ.
Corollary 4.9 ([5, Theorem 2]). Let Y be a nonempty, weakly compact, and convex

subset of a Banach space X. Suppose Y has the hereditary FPP. Then every isometry f:Y

® Y has a fixed point in Ỹ.
Proof. Since Y is convex, every isometry f : Y ® Y has property (A). Theorem 4.8

completes the proof.

The following is an extension of Kirk’s theorem [4, Theorem 4.1] for isometries.

Theorem 4.10. Let Y be a nonempty and weakly compact subset of a Banach space

X. Assume further that Y has normal structure. Then every isometry f:Y ® Y with prop-

erty (A) has a fixed point in Ỹ.
Proof. Let f : Y ® Y be an isometry with property (A). From Lemma 4.6, Ŷf is none-

mpty, closed, and convex. Moreover, f(Ŷf) ⊂ Ŷf (cf. [5, Proposition 3]). Kirk’s theorem

[4, Theorem 4.1] along with Lemma 4.7 yield c Î Ỹ such that f(c) = c.

Corollary 4.11 ([5, Corollary 1]). Let Y be a nonempty, weakly compact, and convex

subset of a Banach space X. Assume further that Y has normal structure. Then every

isometry f:Y ® Y has a fixed point in Ỹ.
Proof. The convexity of Y guarantees that every isometry f : Y ® Y satisfies property

(A). The desired conclusion follows from Theorem 4.10.
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