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Abstract

In this article, we give the definition of a class of new operators, namely, convex-
power 1-set-contraction operators in Banach spaces, and study the existence of fixed
points of this class of operators. By using methods of approximation by operators,
we obtain fixed point theorems of convex-power 1-set-contraction operators, which
generalize fixed point theorems of 1-set-contraction operators in Banach spaces. By
using the fixed point theorem, the existence of solutions of nonlinear Sturm-Liouville
problems in Banach spaces is investigated under more general conditions than those
used in former literatures.
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0 Introduction
For the need of studying differential equations and integral equations, Sun and Zhang

[1] gave the definition of convex-power condensing operators and obtained the fixed

point theorem of this class of operators. Li [2] gave the fixed point theorem of semi-

closed 1-set-contraction operators.

In this article, by combinating the definitions of convex-power condensing operators

and 1-set-contraction operators, we give the definition of convex-power 1-set-contrac-

tion operators in Banach spaces and study the existence of fixed points of this class of

new operators. The results in this article generalize the ones in [1-3]. By using the

fixed point theorem, the existence of solutions of nonlinear Sturm-Liouville problems

in Banach spaces is investigated under more general conditions than those used in for-

mer literatures.

1 Preliminaries
Before providing the main results, we introduce some basic definitions and results (see

[1-6]).

In this article, we always assume that E is a Banach space, D ⊂ E, and a(S) denotes
the Kuratowski measure of noncompactness of a bounded set S ⊂ E.

Let A: D ® E be continuous. If there exists a constant k ≥ 0, such that for any

bounded subset S ⊂ D,

α (A (S)) ≤ kα (S) .
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Then A is said to be k-set-contraction in D.

Let A: D ® E be continuous and bounded. If there exist x0 Î D and a positive inte-

ger n0, such that for any bounded and nonprecompact subset S ⊂ D,

α
(
A(n0,x0) (S)

)
< α (S) ,

where A(1,x0)(S) = A(S) , A(n,x0) (S) = A
(
co

{
A(n−1,x0) (S) , x0

})
, n = 2, 3,....

Then A is said to be convex-power condensing.

Lemma 1.1 [1]. Let D ⊂ E be bounded, convex, and closed. Suppose that A: D ® D is

convex-power condensing, then A has at least one fixed point in D.

Definition 1.1 [2]. A: D ® E is said to be semi-closed if for any closed set F ⊂ D, (I -

A)F is closed.

Definition 1.2 [3]. Let A: D ® E, {xn} ⊂ D bounded, {xn -Axn} strongly convergent. A

is said to be semi-compact if {xn} has a strongly convergent subsequence.

2 Main results
Next, we will give the definition of convex-power 1-set-contraction operators in

Banach spaces.

Definition 2.1. Let A : D ® E be continuous and bounded. If there exist x0 Î D and

a positive integer n0, such that for any bounded subset S ⊂ D,

α
(
A(n0,x0) (S)

) ≤ α (S) ,

where A(1,x0)(S) = A(S) , A(n,x0) (S) = A
(
co

{
A(n−1,x0) (S) , x0

})
, n = 2, 3,....

Then A is said to be convex-power 1-set-contraction in Banach spaces.

Remark 2.1. Obviously, 1-set-contraction operators are convex-power 1-set-contrac-

tion operators. Convex-power 1-set-contraction operators are more general.

Now, we establish the main theorem as follows:

Theorem 2.1. Let E be a Banach space, D ⊂ E bounded, convex, and closed. Suppose

that A: D ® D is semi-closed and convex-power 1-set-contraction, then A has at least

one fixed point in D.

Proof. Since A is convex-power 1-set-contraction, there exist x0 Î D and a positive

integer n0, such that for any bounded subset S ⊂ D,

α
(
A(n0,x0) (S)

) ≤ α (S) .

∀x ∈ D, let Anx =
(
1 − 1

n

)
Ax +

1
n
x0 (n = 2, 3, . . .) , then An: D ® D. ∀y Î D - x0 =

{x - x0|x Î D}, let By = A(y + x0)-x0.

For any bounded subset S ⊂ D,

B(1,0) (S − x0) = B (S − x0) = A (S) − x0 = A(1,x0) (S) − x0,

A(1,x0)
n (S) = An (S) =

(
1 − 1

n

)
A (S) +

1
n
x0 =

(
1 − 1

n

)
A(1,x0) (S) +

1
n
x0;

B(2,0) (S − x0) = B
(
co

{
B(1,0) (S − x0) , 0

})
= B

(
co

{
A(1.x0) (S) − x0, 0

})
= A

(
co

{
A(1,x0) (S) − x0, 0

}
+ x0

) − x0

= A
(
co

{
A(1,x0) (S) , x0

}) − x0 = A(2,x0) (S) − x0,
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A(2,x0)
n (S) = An

(
co

{
A(1,x0)
n (S) , x0

})

= An

(
co

{(
1 − 1

n

)
B(1,0) (S − x0) + x0, x0

})

= An

(
co

{(
1 − 1

n

)
B(1,0) (S − x0) , 0

}
+ x0

)

⊂ An
(
co

{
B(1,0) (S − x0) , 0

}
+ x0

)
= An

(
co

{
B(1,0) (S − x0) + x0, x0

})

= An
(
co

{
A(1,x0) (S) , x0

})
=

(
1 − 1

n

)
A(2,x0) (S) +

1
n
x0;

and generally,

B(n0,0) (S − x0) = B
(
co

{
B(n0−1,0) (S − x0) , 0

})
= B

(
co

{
A(n0−1,x0) (S) − x0, 0

})
= A

(
co

{
A(n0−1,x0) (S) − x0, 0

}
+ x0

) − x0 = A(n0,x0) (S) − x0,

A(n0,x0)
n (S) = An

(
co

{
A(n0−1,x0)
n (S) , x0

})

⊂ An

(
co

{(
1 − 1

n

)
A(n0−1,x0) (S) +

1
n
x0, x0

})

= An

(
co

{(
1 − 1

n

)
B(n0−1,0) (S − x0) + x0, x0

})

⊂ An
(
co

{
B(n0−1,0) (S − x0) , 0

}
+ x0

)
= An

(
co

{
A(n0−1,x0) (S) , x0

})

=
(
1 − 1

n

)
A(n0,x0) (S) +

1
n
x0.

By the definition of the convex-power 1-set-contraction operator and the properties

of the measure of noncompactness, we have

α
(
A(n0,x0)
n (S)

) ≤
(
1 − 1

n

)
α

(
A(n0,x0) (S)

) ≤
(
1 − 1

n

)
α (S) < α (S) ,n = 2, 3, . . . .

Therefore, An : D ® D is convex-power condensing. By Lemma 1.1, An has a fixed

point xn in D, i.e., Anxn = xn (n = 2, 3,...). Since ||Ax − Anx|| = 1
n

||Ax − x0|| , ∀x Î D,

and A is bounded in D, then for any x Î D, ||Ax - Anx|| ® 0 (n ® +∞). Obviously,

||Axn − xn|| = ||Axn − Anxn|| → 0 (n → +∞) .

i.e., Axn - xn ® 0 (n ® +∞). Since A is semi-closed and D is closed, 0 Î (I - A)D.

Therefore, there exists x0 Î D, such that x0 = Ax0. The proof is completed.

Remark 2.2. In Theorem 2.1, let n0 = 1, the fixed point theorem of semiclosed 1-set-

contraction operators in [2]is obtained. Therefore, Theorem2.1. generalizes the fixed

point theorem of semi-closed 1-set-contraction operators.

Theorem 2.2. Let E be a Banach space, D ⊂ E bounded, convex and closed. Suppose

that A: D ® D is semi-compact and convex-power 1-set-contraction, then A has at

least one fixed point in D.
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Proof. ∀x ∈ D, let Anx =
(
1 − 1

n

)
Ax +

1
n
x0 (n = 2, 3, . . .) . By the proof of Theorem

2.1, An: D ® D has a fixed point xn, and {An} is uniformly convergent to A in D. By xn
Î D, then ||Anxn - Axn|| ® 0. i.e., ||xn - Axn|| ® 0. Therefore, (I - A)(xn) ® 0 (n ®
+∞).

Since A is semi-compact and {xn} ⊂ D is bounded, {xn} has a convergent subse-

quence
{
xni

}
. Let xni → x0 (ni → +∞) . Since D is closed, x0 Î D. Since A is continu-

ous in D, xni − Axni → x0 − Ax0 (ni → +∞) . By xni − Axni → 0 (ni → +∞) , we have

x0 - Ax0 = 0. The proof is completed.

3 Application
Let E be a Banach space. Consider the existence of solutions of nonlinear Sturm-Liou-

ville problems in E as follows:
{ − (Lx) (t) = f (t, x) , t ∈ (0, 1) ;
ax (0) − bx′ (0) = 0, cx (1) + dx′ (1) = 0

(3:1)

where (Lx)(t) = (p(t)x’)’+q(t)x, f Î C[I × E, E](I = [0, 1]).

Assume that

(H1)p (t) ∈ C1 [I,R] , p (t) > 0, q (t) ∈ C [I,R] , q (t) ≤ 0,

a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0, a2 + b2 
= 0, c2 + d2 
= 0,

and the homogeneous equations of (3.1)
{− (Lx) (t) = 0, t ∈ (0, 1) ;
ax (0) − bx′ (0) = 0, cx (1) + dx′ (1) = 0

(3:2)

has only zero solution in C2 [I, R].

Let G(t, s) be Green function of (3.2), i.e.,

G (t, s) =

⎧⎪⎨
⎪⎩

1
ρ
u (t) v (s) , 0 ≤ t ≤ s ≤ 1;

1
ρ
u (s) v (t) , 0 ≤ s ≤ t ≤ 1.

(3:3)

Lemma 3.1 [6]. Assume that (H1) holds, then Green function G(t, s) of (3.3) has the

following properties:

(i) G(t, s) is continuous and symmetric in [0, 1] × [0, 1];

(ii) u(t) Î C2[0, 1] is monotonically increasing, and u(t) > 0, t Î (0, 1];

(iii) v(t) Î C2[0, 1] is monotonically decreasing, and v(t) > 0, t Î [0, 1);

(iv) (Lu)(t) ≡ 0, u(0) = b, u’(0) = a;

(v) (Lv)(t) ≡ 0, v(0) = d, v’(0) = -c;

(vi) r is a positive constant.

Let

(Tx) (t) =
∫ 1
0 G (t, s) f (s, x (s)) ds, t ∈ [0, 1] , x ∈ C [I,E] ,

(Kϕ) (t) =
∫ 1
0 G (t, s) ϕ (s) ds, t ∈ [0, 1] , ϕ ∈ C [I,R] .
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We can prove that the solution in C2[I, E] of (3.1) is equivalent to the fixed point of

T (see [7]).

Since G(t, s) is continuous, it can be easily proved that K: C [I, R] ® C [I, R] is linear

and completely continuous. By Lemma 3.1, ∀t, s Î [0, 1],

u (s) v (s)
u (1) v (0)

G (t, t) ≤ G (t, s) ≤ G (t, t) .

Therefore, by Krein-Rutman Theorem [6], the first characteristic value of K is l1 > 0,

and l1 = (r(K))-1.

Now we give some conditions:

(H2) f Î C[I × E, E], for any bounded subset B in E, f is uniformly continuous in I ×

B, and there exists k Î [0, l1), such that

α
(
f (t,B (t))

) ≤ kα (B (t)) , ∀t ∈ [0, 1] ,

where l1 is the first characteristic value of K.

(H3) there exist M Î (0, l1) and h(t) Î C[I , R+], such that for any (t, x) Î I × E,

||f (t, x) || ≤ M||x|| + h (t) .

Theorem 3.1. Suppose that (H1), (H2), (H3) hold, then Sturm-Liouville problems (3.1)

has at least one solution in C2[I, E].

To prove Theorem 3.1, here we introduce some lemmas.

Lemma 3.2 [7]. For M < l1 as above, let K1 = M K, then there exists a norm

|| · ||∗C[I,R]which is equivalent to || · ||C[I, R] and satisfies:

(1)||K1ϕ||∗C[I,R] ≤ σ ||ϕ||∗C[I,R] , where σ =
M + λ1

2λ1
,

(2) if 0 ≤ �(t) ≤ ψ(t), ∀ t Î I, then ||ϕ||∗C[I,R] ≤ ||ψ ||∗C[I,R] , where ||�||C[I, R] =

maxtÎI|�(t)|.

Lemma 3.3 [7]. If B ⊂ C [I, E] is equicontinuous, u0 Î C[I, E], then co {B, u0} is also
equicontinuous in C[I, E].

Lemma 3.4 [7]. If B ⊂ C[I, E] is equicontinuous and bounded, then a(B) = maxtÎI a
(B(t)).

Lemma 3.5 [7]. If B ⊂ C[I, E] is equicontinuous and bounded, then a(B(t)) Î C[I, R
+], and

α

(∫ t

t0
B (s) ds

)
≤

∫ t

t0
α (B (s)) ds, ∀t ∈ I.

Proof of Theorem 3.1. Set R1 >
2λ1

λ1 − M
||Kh||∗C[I,R] , where (Kh) (t) =

∫ 1
0 G (t, s) h (s) ds .

Let D =
{
x ∈ C [I,E] |ϕ (t) = ||x (t) ||and||ϕ||∗C[I,R] ≤ R1

}
. Since ||·||C[I, R] is equivalent

to || · ||∗C[I,R] , D is bounded, convex, and closed in C[I, E].

First ∀x Î D, ||x||C[I, E] = maxtÎI ||x(t)|| = maxtÎI �(t) = maxtÎI |�(t)| = ||�||C[I, R],

then D is bounded.

Second, ∀xn Î D, xn®x0, n ® +∞. Therefore,

ϕn (t) = ||xn (t) ||, ||ϕn||∗C[I,R] ≤ R1, ||xn − x0||C[I,E] → 0 , i.e., maxtÎI ||xn(t) - x0(t)|| ® 0.
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Let ϕ̃n (t) = ||xn (t) − x0 (t) || , �0(t) = ||x0(t)||, then

ϕ0 (t) ≤ ϕ̃n (t) + ϕn (t) , ||ϕ̃n||C[I,R] → 0 . By Lemma 3.2,

||ϕ0||∗C[I,R] ≤ ||ϕ̃n + ϕn||∗C[I,R]

≤ ||ϕ̃n||∗C[I,R] + ||ϕn||∗C[I,R]

≤ ||ϕ̃n||∗C[I,R] + R1

Let n ® +∞, then ||ϕ0||∗C[I,R] ≤ R1 , i.e., x0 Î D, D is closed.

Finally, ∀x1, x2 Î D, 0 ≤ a ≤ 1. Let �i(t) = ||xi(t)||, i = 1,2; �3(t) = ||ax1(t)+(1-a)x2
(t)||. Obviously, �3 ≤ a�1(t)+(1-a)�2(2). By Lemma 3.2,

||ϕ3||∗C[I,R]|| ≤ α||ϕ1||∗C[I,R]|| + (1 − α) ||ϕ2||∗C[I,R] ≤ R1.

Then D is convex. Therefore, D is bounded, convex, and closed.

By (H2), f is uniformly continuous in I × D, then T: D ® C[I, E] is continuous.

First, we prove that T: D ® D. For any given x in D, let �(t) = ||Tx(t)||ψ(t) = ||x(t)||.

By (H3),

ϕ (t) = ||Tx (t) || = ||
∫ 1

0
G (t, s) f (s, x (s))ds||

≤
∫ 1

0
G (t, s) ||f (s, x (s)) ||ds

≤
∫ 1

0
G (t, s)Mψ (s) ds+

∫ 1

0
G (t, s) h (s) ds

= (K1ψ) (t) + (Kh) (t) .

By Lemma 3.2,

||ϕ||∗C[I,R] ≤ ||K1ψ + Kh||∗C[I,R]

≤ ||K1ψ ||∗C[I,R] + ||Kh||∗C[I,R]

≤ σ ||ψ ||∗C[I,R] + ||Kh||∗C[I,R]

≤ σR1 +
λ1 − M
2λ1

R1 = R1.

Therefore, T : D ® D is continuous

Next, we prove that T(D) is equicontinuous in C[I, E]. By (H2), ∃M1 > 0, ||f(t, x)|| ≤

M1, ∀(t, x) Î I × D. Then,

||Tx (t1) − Tx (t2) || ≤ M1

∫ 1

0
|G (t1, s) − G (t2, s) |ds, ∀t1, t2 ∈ I, x ∈ D.

Therefore, T(D) is equicontinuous.

Let F = coT (D) ⊂ D . Obviously, F is bounded, convex, and closed, and

T (coT (D)) ⊂ T (D) ⊂ coT (D) , i.e., T: F ® F. By Lemma 3.3, F is equicontinuous in C

[I, E].

Next, we prove that T: F ® F is convex-power 1-set-contraction. Obviously, T is

bounded and continuous. Set x0 Î F, we’ll prove that there exists n0, such that for any

bounded B ⊂ F,
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α
(
T(n0,x0) (B)

) ≤ α (B) .

By B ⊂ F ⊂ D, T (B) is equicontinuous. Then T(2,x0) (B) is equicontinuous from

T(2,x0) (B) = T (co {T (B) , x0}) ⊂ T (D) Generally, ∀ n Î N, T(n,x0) (B) is equicontinu-

ous. Since T(n,x0) (B) is bounded, By Lemma 3.4,

α
(
T(n,x0) (B)

)
= max

t∈I
α

((
T(n,x0) (B)

)
(t)

)
n = 2, 3, . . . . (3:4)

Since G(t, s) is continuous in I ×I, f is uniformly continuous in I ×D, then

||G (t, s1) f (s1, x (s1)) − G (t, s2) f (s2, x (s2)) ||
≤ ||G (t, s1) − G (t, s2) || ||f (s1, x (s1)) || + ||G (t, s2) || ||f (s1, x (s1)) − f (s2, x (s2)) ||

(∀s1, s2 ∈ I, x ∈ B)

Therefore G(t, s)f(s, B(s))(∀ s, t Î I) is equicontinuous in C[I, E]. By (H2), Lemmas

3.4 and 3.5,

α
((
T(1,x0) (B)

)
(t)

)
= α ((T (B)) (t))

= α

(∫ 1

0
G (t, s) f (s,B (s)) ds

)

≤
∫ 1

0
G (t, s) α

(
f (s,B (s))

)
ds

≤ k
∫ 1

0
G (t, s) α (B (s)) ds

≤ kα (B)

∫ 1

0
G (t, s) ds

= kα (B) · Kϕ0 (t)

where �0(t) ≡ 1, ∀ t Î I.

By the equicontinuity of T(1,x0) (B) = T (B) and the uniform continuity of f,

G (t, s) f
(
s, co

{(
T(1,x0) (B)

)
(s) , x0

})
(∀s, t ∈ I) is equicontinuous. Therefore,

α
((
T(2,x0) (B)

)
(t)

)
= α

(
Tco

{(
T(1,x0) (B)

)
(t) , x0

})

= α

(∫ 1

0
G (t, s) f

(
s, co

{(
T(1,x0) (B)

)
(s) , x0

})
ds

)

≤
∫ 1

0
G (t, s) α

(
f
(
s, co

{(
T(1,x0) (B)

)
(s) , x0

}))
ds

≤ k
∫ 1

0
G (t, s) α

(
co

{(
T(1,x0) (B)

)
(s) , x0

})
ds

= k
∫ 1

0
G (t, s) α

((
T(1,x0) (B)

)
(s)

)
ds

≤ k2α (B)

∫ 1

0
G (t, s)Kϕ0 (s) ds

= k2α (B) · K2ϕ0 (t) .

Generally,

α
((
T(n,x0) (B)

)
(t)

) ≤ knα (B) · Knϕ0 (t)
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We have r (kK) = kr (K) = k · λ−1
1 < λ1 · λ−1

1 = 1 . By the definition of spectral radius,

let ε =
1 − r (kK)

2
, then ∃ m0 > 0, when n >m0,

maxt∈I|knKnϕ0 (t) | = ||knKnϕ0||
≤ ||knKn|| ||ϕ0|| = ||knKn||

≤ (r (kK) + ε)
n =

(
1 + r (kK)

2

)n

< 1.

Set n0 >m0, then ∀t Î I,

α
((
T(n0,x0) (B)

)
(t)

) ≤ kn0α (B) · Kn0ϕ0 (t)

≤ ||kn0 · Kn0ϕ0||α (B)

≤
(
1 + r (kK)

2

)n0

α (B) ≤ α (B) .

By (3.4), α
(
T(n0,x0) (B)

) ≤ α (B) . Therefore, T: F ® F is convex-power 1-set-contrac-

tion. Since f is uniformly continuous, T is semi-closed. By Theorem 2.1, T has one

fixed point in C[I, E], i.e., Sturm-Liouville problems (3.1) has at least one solution in

C2[I, E].
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