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Abstract
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study the approximation problems arising in nonexpansive semigroup, variational
inclusions and equilibrium problem.
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1 Introduction
Definition 1.1 Let (X, d) be a metric space and let S: X ® X be a mapping. S is said to

be ψ- weakly contractive (weak contraction, for short) [1], if there exists a continuous

and strictly increasing function ψ: [0, +∞) ® [0, +∞) with ψ(t) >0, ∀t Î (0, +∞) and

ψ(0) = 0 such that

d
(
Sx, Sy

) ≤ d
(
x, y

) − ψ
(
d
(
x, y

))
, ∀x, y ∈ X. (1:1)

From Definition 1.1, it is easy to see that if ψ (t) = (1 - h)t, h Î (0, 1), then S is a

contractive mapping with the contractive constant h.

In 2001, Rhoades [2] proved the following interesting fixed point theorem:

Theorem 1.2 (Rhoades [2]) Let (X, d) be a complete metric space and let T: X ® X

be a weakly contractive mapping. Then T has a unique fixed point in X. Moreover, for

any given x Î X, the iterative sequence {Tnx} converges strongly to this fixed point.

This theorem is one of the generalization of Banach contraction Theorem.

Let E be a Banach space and let C be a nonempty, closed and convex subset of E.

A mapping T: C ® C is said to be nonexpansive, if

‖ Tx − Ty ‖ ≤ ‖ x − y ‖, for all x, y ∈ C. (1:2)

Denote by F(T) the fixed point set of T. It is well-known that if E is uniformly

smooth C is bounded and T: C ® C is nonexpansive then F(T) is nonempty (see,

Göhde [3]).

Recently, many convergence theorems to fixed points of nonexpansive mappings

have been established.
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In 1967, Browder [4] and Halpern [5] proved some strong convergence theorems in

Hilbert spaces for implicit and explicit iteration, respectively. Later these theorems

have been extended in several directions. In 1980, Reich [6] proved the following:

Theorem 1.3 (Reich [6]) Let E be a uniformly smooth Banach space, C be a

bounded, closed and convex subset of E and let T: C ® C be a nonexpansive mapping.

Fix u Î C and define a net {yt} in C by

yt = tu + (1 − t) Tyt, t ∈ (0, 1) . (1:3)

Then {yt} converges strongly to Pu as t ® 0+, where P is the unique sunny nonex-

pansive retraction from C onto F(T). (The relative definitions are given in Section 2.)

In the sequel, this theorem is called Reich’s convergence theorem.

In 2004 Xu [7] proved the following

Theorem 1.4 (Xu [7]) Let E be a uniformly smooth Banach space and let C be a

bounded, closed and convex subset of E. Let T: C ® C be a nonexpansive mapping

with F (T) ≠ Ø, P be the unique sunny nonexpansive retraction from C onto F (T) and

let f: C ® C be a contractive mapping with a contractive constant h Î (0, 1). Let {xt}

be the net in C which is defined by

xt = tf (xt) + (1 − t) Txt, t ∈ (0, 1) . (1:4)

Then as t ® 0+, {xt} converges strongly to the unique point z Î C satisfying P ∇ f(z)

= z.

On the other hand, in 2002, Xu proved the following.

Theorem 1.5 (Xu [8,9]) Let E, C, T, P be as in Theorem 1.3. Let {yn} be the

sequence in C defined by y1 Î C and

yn+1 = αnu + (1 − αn)Tyn, ∀n ≥ 1, (1:5)

where {an} is a sequence in (0, 1) which satisfies the following conditions:

(C1) limn®∞ an = 0;

(C2)
∑∞

n=1 αn = ∞;

(C3) limn→∞ αn+1
αn

= 1.

Then {yn} converges strongly to Pu.

In the sequel, this theorem is called Xu’s convergence theorem.

Moreover, in 2000, Moudafi [10] introduced the concept of viscosity approximation

and proved the following result

Theorem 1.6 (Moudafi [10]) Let H be a real Hilbert space, C be a nonempty closed

convex subset of H, T: C ® C be a nonexpansive mapping with F(T) ≠ Ø and f: C ®
C be a contractive mapping. Let {xn} be the sequence defined by:

xn+1 = αnf (xn) + (1 − αn)Txn, ∀n ≥ 1. (1:6)

Then {xn} converge strongly to a fixed point of T in Hilbert space H.

In the sequel, this theorem is called Moudafi’s viscosity convergence theorem.

Moudafi’s viscosity convergence theorem is very important, because it can be applied

to convex optimization, linear programming, monotone inclusions and elliptic differen-

tial equations (see [11]).
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In 2004, Xu [7] extended Moudafi’s results to a uniformly smooth Banach space.

Song and Chen [12-14] also obtained some strong convergence theorems about viscos-

ity approximations in more general Banach space. More recently, Suzuki [11] and

Petrusel and Yao [15] replace a contraction f in (1.6) by a Meir-Keeler contraction [16]

and a generalized contraction [15], respectively, to approximate a common fixed point

for an infinite family of nonexpansive mappings.

The purpose of this article is to study the equivalence between some kinds of impli-

cit and explicit iterative approximations approximations. As applications, we utilize our

results to study some approximation problems arising in nonexpansive semigroup,

variational inclusions and equilibrium problems.

2 Preliminaries
In this section, we give some preliminaries which will be needed in proving our main

results.

Throughout this article, we assume that E is a real Banach space, E* is the dual of E.

The space E is said to be smooth or said to have a Gâteaux differentiable norm, if the

limit limt→0
‖x+ty‖−‖x‖

t
exists for each x, y Î U = {x Î E: ||x|| = 1}. The space E is said

to have a uniformly Gâteaux differentiable norm, if for each y Î U, the limit is attained

uniformly in x Î U. The space E is said to be uniformly smooth or said to have a uni-

formly Fréchet differentiable norm, if the limit is attained uniformly in x, y Î U.

Let C and K be subsets of E. Recall that A mapping P: C ® K is called sunny, if P(Px

+ t(x - Px)) = Px for any x Î C with Px + t(x - Px) Î C and t ≥ 0.

Let C be a convex subset of E and K be a subset of C. A mapping P: C ® K is called

retraction from C onto K, if P2 = P .

Lemma 2.1 (Reich [17]) Let E be a smooth Banach space, and J: E ® E* be the nor-

malized duality mapping. Let C be a convex subset of E, K be a subset of C and let P

be a retraction from C onto K. Then the following are equivalent:

(1) 〈x - Px, J(Px - y)〉 ≥ 0, ∀x Î C and y Î K;

(2) P is sunny and nonexpansive.

Hence there is at most one sunny nonexpansive retraction from C onto K.

Remark 2.2 We note that if E is a real Hilbert space and K is a closed and convex

subset of C, then the metric projection and the sunny nonexpansive retraction from C

onto K coincide, i.e., when T: C ® C is a nonexpansive mapping, the sunny nonexpan-

sive retraction from C onto F(T) is the metric projection.

Proposition 2.3 (Suzuki [11]) Let E be a smooth Banach space and let C be a closed

and convex subset of E. Let K be a subset of C and let P be the unique sunny nonex-

pansive retraction from C onto K. Let f: C ® C be a mapping and z Î K be a point.

Then the following statements are equivalent:

(1) z is a fixed point of P ∇ f;

(2) z is a solution to the following variational inequality:〈
fz − z, J(z − y)

〉 ≥ 0, ∀v ∈ K.

Proposition 2.4 (Song [14]) Let E be a Banach space and let C be a convex subset of

E. Let T: C ® C be a nonexpansive mapping and let g: C ® C be a weakly contractive

mapping. Then the following conclusions hold:

(1) T ∇ g is weakly contractive;
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(2) for each t Î (0, 1), the mapping x a tg(x) + (1 - t)Tx is weakly contractive and

the net {xt} defined by

xt = tg(xt) + (1 − t)Txt

is well-defined.

Lemma 2.5 (Alber and Guerre-Delabriere [1]) Let {ln} and {bn} be two sequences of

nonnegative real numbers and let {an} be a sequence of positive numbers satisfying the

conditions
∑∞

n=1 αn = ∞ and limn→∞ βn
αn

= 0. Let the recursive inequality

λn+1 ≤ λn − αnψ(λn) + βn, ∀n ≥ 1

be given where ψ: [0, +∞) ® [0, +∞) is a continuous and strictly increasing function

with ψ(0) = 0. Then {ln} converges to 0 as n ® ∞.

3. Equivalence between some implicit and explicit iterative schemes
We first give the following result.

Theorem 3.1 Let E be a uniformly smooth Banach space and let C be a bounded,

closed and convex subset of E. Let T: C ® C be a nonexpansive mapping with F (T) ≠

Ø, P be the unique sunny nonexpansive retraction from C onto F (T) and let g: C ® C

be a ψ-weakly contractive mapping. Let {xt} be the net in C defined by

xt = tg(xt) + (1 − t)Txt , t ∈ (0, 1) . (3:1)

Then {xt} converges strongly to the unique point z Î C satisfying P ∇ g(z) = z as t ®
0+.

Proof. Since P is nonexpansive and g is ψ-weakly contractive, by Proposition 2.4 (1),

P ∇ g: C ® C is ψ-weakly contractive. From Theorem 1.2, there exists a unique z Î C

such that z = P ∇ g(z).

Now we define a net {yt} as follows:

yt = tg (z) + (1 − t)Tyt , t ∈ (0, 1) .

By virtue of Theorem 1.3, yt ® P ∇ g(z) = z, as t ® 0+. Moreover, for each t Î (0, 1),

we have

‖ xt − yt ‖ ≤ t ‖ g(xt) − g(yt) + g(yt) − g (z) ‖ + (1 − t) ‖ Txt − Tyt ‖
≤ t{‖ xt − yt ‖ −ψ(‖ xt − yt ‖)}
+ t{‖ yt − z ‖ −ψ(‖ yt − z ‖)} + (1 − t) ‖ xt − yt ‖

=‖ xt − yt ‖ −tψ(‖ xt − yt ‖) + t{‖ yt − z ‖ −ψ(‖ yt − z ‖)}.

This implies that

ψ(‖ xt − yt ‖) + ψ(‖ yt − z ‖) ≤‖ yt − z ‖→ 0 as t → 0 + .

Since ψ is continuous and strictly increasing, we have

‖ xt − yt ‖ → 0, ‖ yt − z ‖ → 0 as t → 0 + . (3:2)

Therefore we have

‖ xt − z ‖ ≤ ‖ xt − yt ‖ + ‖ yt − z ‖ → 0, as t → 0 + .

This completes the proof of Theorem 3.1.
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Theorem 3.2 Let E, C, T, P, g be the same as in Theorem 3.1. Then Theorems 1.3,

1.4, and 3.1 are equivalent.

Proof. Theorem 1.3 ⇒ Theorem 3.1 has been proved in Theorem 3.1. Now we

proved that Theorem 3.1 ⇒ Theorem 1.4 ⇒ Theorem 1.3.

In fact, in Theorem 3.1 take g: C ® C to be a contractive mapping, then the conclu-

sion of Theorem 1.4 can be obtained from Theorem 3.1. As well as in Theorem 1.4

take f as a constant valued mapping, then the conclusion Theorem 1.3 can be obtained

from Theorem 1.4 immediately. This completes the proof of Theorem 3.2.

Remark 3.3 From Theorems 3.1 and 3.2, it follows that the convergence of the

implicit iterative sequences defined by (1.3), (1.4), and (3.1) are equivalent.

Next we consider the equivalence between some explicit iterative sequences

In 2004, Xu [7] proved the following result:

Theorem 3.4 (Xu [7]) Let E be a uniformly smooth Banach space and let C be a

bounded, closed and convex subset of E. Let T: C ® C be a nonexpansive mapping

with F (T) ≠ Ø, P be the unique sunny nonexpansive retraction from C onto F(T) and

let f: C ® C be a contractive mapping. Let {xn} be the sequence in C which is defined

by

xn+1 = αnf (xn) + (1 − αn)Txn, ∀n ≥ 1, (3:3)

where {an} is a sequence in (0, 1) satisfying the conditions (C1), (C2) and (C3) in

Theorem 1.5. Then {xn} converges strongly to the unique point z Î C satisfying P ∇ f

(z) = z.

It is easy to see that Theorem 3.4 is a generalization of Moudafi’s Theorem 1.6.

Now we give the following result.

Theorem 3.5 Let E, C, T , P be the same as in Theorem 3.4. Let g: C ® C be a

ψ-weakly contractive mapping. Let {xn} be the sequence in C which is defined by

xn+1 = ang(xn) + (1 − an)Txn, ∀n ≥ 1, (3:4)

where {an} is a sequence in (0, 1) satisfying the conditions (C1), (C2), and (C3) in

Theorem 1.5. Then {xn} converges strongly to the unique point z Î C satisfying P ∇ g

(z) = z;

Proof. Since P is nonexpansive and g is a ψ-weak contraction, by Proposition 2.4 (1),

P ∇ g: C ® C is weakly contractive. From Theorem 1.2, there exists a unique z Î C

such that z = P ∇ g(z).

Now we define a sequence {yn} as follows:

yn+1 = αng (z) + (1 − αn)Tyn, ∀n ≥ 1.

By Theorem 1.5, yn ® P ∇ g(z) = z, as n ® ∞. Moreover, for each n ≥ 1, we have

‖ xn+1 − yn+1 ‖ ≤ αn ‖ g(xn) − g(yn) + g(yn) − g (z) ‖ +(1 − αn) ‖ Txn − Tyn ‖
≤ αn{‖ xn − yn ‖ −ψ(‖ xn − yn ‖)}
+ αn{‖ yn − z ‖ −ψ(‖ yn − z ‖)} + (1 − αn) ‖ xn − yn ‖

=‖ xn − yn ‖ −αnψ(‖ xn − yn ‖) + αn{‖ yn − z ‖ − ψ(‖ yn − z ‖)}.

(3:5)

Letting ln = ||xn-yn||, bn = an{||yn-z||-ψ(||yn-z||)} in Lemma 2.5, from the assump-

tions, we know that all the conditions in Lemma 2.5 are satisfied. It follows from

Lemma 2.5 and (3.5) that
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lim
n→∞ ‖ xn − yn ‖ = 0.

Therefore we have

‖ xn − z ‖ ≤ ‖ xn − yn ‖ + ‖ yn − z ‖ → 0, as n → ∞.

The conclusion of Theorem 3.5 is proved.

Theorem 3.6 Let E, C, T, P, g be the same as in Theorem 3.5. Then Theorems 3.5,

3.4, and 1.5 are equivalent.

Indeed, the conclusion that Theorem 1.5 ⇒ Theorem 3.5 has been proved in Theo-

rem 3.5. Now we proved that Theorem 3.5 ⇒ Theorem 3.4 ⇒ Theorem 1.5. In fact, in

Theorem 3.5 take g: C ® C to be a contractive mapping, the conclusion of Theorem

3.4 can be obtained from Theorem 3.5 immediately. Again in Theorem 3.4 take f: C ®
C to be a constant-valued mapping, the conclusion of Theorem 1.5 can be obtained

from Theorem 3.4 immediately.

Remark 3.7 From Theorem 3.5, it follows that the convergence of the explicit itera-

tive sequences defined by (1.5), (3.4), and (3.3) are equivalent.

4. Equivalence between some more general implicit and explicit iterative
schemes
In this section we study the equivalence between some more general implicit and

explicit iterative schemes. Following Suzuki [11], we introduce the following concepts.

Definition 4.1 (1) Let E be a Banach space and let C be a nonempty, closed and

convex subset of E. Let {Sn}: C ® C be an infinite family of nonexpansive mappings

and {an} be a sequence in (0, 1) satisfying the condition (C1) in Theorem 1.5. The

tuple (E, C, {Sn}, {an}) is said to have Browder’s property, if for each u Î C the implicit

iterative sequence {yn} defined by

yn = αnu + (1 − αn)Snyn, n ≥ 1, (4:1)

converges strongly.

(2) Let {an} be a sequence in (0, 1) satisfying the conditions (C1) and (C2) in Theo-

rem 1.4 Then the tuple (E, C, {Sn}, {an}) is said to have Halpern’s property, if for each

u Î C the explicit iterative sequence {yn} defined by y1 Î C and

yn+1 = αnu + (1 − αn)Snyn, n ≥ 1, (4:2)

converges strongly.

It is well known that if E is a Hilbert space, C is a bounded subset of E and {Sn} = {S}

is a constant sequence of nonexpansive mappings, then the tuple (E, C, {Sn}, { 1n }) has
both Browder’s and Halpern’s property.

Lemma 4.2 (Suzuki [11])

(1) Let (E, C, {Sn}, {an}) have the “Browder’s property”. For each u Î C, let {yn} be

the sequence in C defined by (4.1). Denote Pu = limn®∞ yn, then P is a nonexpansive

mapping from C to C;

(2) Let (E, C, {Sn}, {an}) have the “Halpern’s property”. For each u Î C, let {yn} be the

sequence in C defined by (4.2). Denote Pu = limn®∞ yn, then the following hold:

(i) Pu does not depend on the initial point y1 Î C;

(ii) P is a nonexpansive mapping from C into C.
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Theorem 4.3 Let (E, C, {Sn}, {an}, P) has the “Browder’s property”. Let g: C ® C be a

ψ-weakly contractive mapping. Define a sequence {xn} in C by

xn = αng(xn) + (1 − αn)Snxn, n ≥ 1. (4:3)

Then {xn} converges strongly to the unique point z Î C satisfying P ∘ gz = z.

Proof. By Proposition 2.4, the existence and uniqueness of {xn} and z = P ∘ gz are

assured. Define a sequence {yn} in C by

yn = αng (z) + (1 − αn)Snyn n ≥ 1.

By the assumptions, yn ® P ∘ fz which equals to z. And for each n ≥ 1, we have

‖ xn − yn ‖ ≤ αn{‖ g(xn) − g(yn ‖ + ‖ g(yn) − g (z) ‖} + (1 − αn) ‖ Snxn − Snyn ‖
≤ αn{‖ xn − yn ‖ −ψ(‖ xn − yn ‖)}
+ αn{‖ yn − z ‖ −ψ(‖ yn − z ‖)} + (1 − αn) ‖ xn − yn ‖ .

Simplifying it, we have

ψ(‖ xn − yn ‖ +ψ(‖ yn − z ‖) ≤ ‖ yn − z ‖ → 0 as n → ∞.

In view of the property of ψ, this implies that limn®∞ ||xn - yn|| = 0. Hence we have

‖ xn − z ‖ ≤ ‖ xn − yn ‖ + ‖ yn − z ‖ → 0 as n → ∞.

This completes the proof of Theorem 4.3.

Remark 4.4 It follows from Theorem 4.3 that the implicit iterative sequences (4.1)

and (4.3) are equivalent.

Theorem 4.5 Let (E, C, {Sn}, {an}, P) have the “Halpern’s property”. Let g: C ® C be

a ψ-weakly contractive mapping. Define a sequence {xn} in C by x1 Î C and

xn+1 = αng(xn) + (1 − αn)Snxn, n ≥ 1. (4:4)

Then {xn} converges strongly to the unique point z Î C satisfying P ∘ gz = z.

Proof. By Proposition 2.4 (1), P ∘ g is a ψ-weak contraction from C to C. Hence

there exists a unique z Î C such that z = P ∘ gz. Now we define a sequence {yn} by

yn+1 = αng (z) + (1 − αn)Snyn, ≥ 1. (4:5)

By Lemma 4.2

yn → P ◦ g (z) = z.

Hence we have

‖ xn+1 − yn+1 ‖ ≤ αn ‖ g(xn) − g(yn) + g(yn) − g (z) ‖ + (1 − αn) ‖ Snxn − Snyn ‖
≤ αn{‖ xn − yn ‖ −ψ(‖ xn − yn ‖)}
+ αn{‖ yn − z ‖ −ψ(‖ yn − z ‖)} + (1 − αn) ‖ xn − yn ‖

=‖ xn − yn ‖ −αnψ(‖ xn − yn ‖) + αn{‖ yn − z ‖ −ψ(‖ yn − z ‖)}.

Taking ln = ||xn - yn||, bn = an{||yn - z|| - ψ(||yn - z||)} in Lemma 2.5 and from the

assumptions, we know that all the conditions in Lemma 2.5 are satisfied, and therefore

we have

lim
n→∞ ‖ xn − yn ‖ = 0,

Chang et al. Fixed Point Theory and Applications 2012, 2012:55
http://www.fixedpointtheoryandapplications.com/content/2012/1/55

Page 7 of 13



which implies that

‖ xn − z ‖ ≤ ‖ xn − yn ‖ + ‖ yn − z ‖ → 0, as n → ∞.

This completes the proof of Theorem 4.5.

Remark 4.6 From the above arguments, we get that the explicit iterative sequences

(4.2) and (4.4) are equivalent.

5 Applications
In this section, we will utilize Theorems 4.3 and 4.5 to study some approximation pro-

blems and to state several deduced theorems.

5.1 Application to nonexpansive semigroup problems

Theorem 5.1 Let E be a uniformly convex Banach space having a weakly

continuous normalized duality mapping J: E ® E*, C be a closed and convex subset

of E and let T := {T(t) : t ≥ 0} : C → C be a nonexpansive semigroup with

F(T ) :=
⋂

t≥0 F(T(t)) 
= ∅ . Let g: C ® C be a ψ-weakly contractive mapping and let

{xn} be the implicit iterative sequence defined by:

xn = αng(xn) + (1 − αn)T(tn)xn, ∀n ≥ 1, (5:1)

where {an} and {tn} are sequences of real numbers such that an Î (0, 1) and tn >0

for all n ≥ 1 and limn→∞tn = limn→∞( αn
tn
) = 0 . Then xn ® z = P ∘ gz, where P is the

sunny nonexpansive retraction from C onto F(T ) .

Proof. It follows from [[18], Theorem 3.3] that (E, C, {Sn}, {an}, P) has the “Browder’s

property”, where Sn = T (tn), for any n ≥ 1. Hence the conclusion of Theorem 5.1 can

be obtained immediately from Theorem 4.3.

Theorem 5.2 Let H be a real Hilbert space, C be a nonempty, closed and convex

subset of H, T := {T(t) : t ≥ 0} : C → C be a nonexpansive semigroup with

F(T ) :=
⋂

t≥0 F(T(t)) 
= ∅ and the mapping t a ||T(t)x - y||2 is measurable for each

x Î C and y Î H. Let {sn}: [0, ∞) ® [0, ∞) be a sequence of measurable functions

such that
∫ ∞
0 σn(t)dt = 1 for each n ≥ 1, limn®∞ sn(t) = 0 for almost every t ≥ 0,

limn→∞
∫ ∞
0 |σn (t + s) − σn (t) |dt = 0 , for all s ≥ 0 and there exists β ∈ L1loc [0, ∞)

such that supn sn(t) ≤ b(t) for almost every t ≥ 0, where β ∈ L1loc [0, ∞) means a

restriction of b on [0, s] belongs to L1[0, s] for each s >0. Let g: C ® C be a weakly

contractive mapping, {an} be a real sequence in (0, 1] such that an ® 0 and let {bn} be

a sequence in 0[1] such that bn ® 0 and
∑∞

n=0 βn = ∞. Let x and y0 be points of C

and let {xn} and {yn} be the sequences which are defined by

xn = αng(xn) + (1 − αn)

∞∫
0

σn(t)T(t)xndt, n ≥ 1, (5:2)

and

yn+1 = βng(xn) + (1 − βn)

∞∫
0

σn(t)T(t)yndt, n ≥ 1, (5:3)
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respectively. Then both {xn} and {yn} converge strongly to z = P ∘ gz, where P is the

metric projection from C onto F(T ) .

Proof. By the assumption that T := {T(t) : t ≥ 0} : C → C is a nonexpansive semi-

proup, hence for each n ≥ 1, Sn :=
∫ ∞
0 σn(t)T(t)dt : C → C is a nonexpansive mapping.

From [[19], Theorem 10], we know that (H, C, {Sn}, {an}, P) and (H, C, {Sn}, {bn}, P)
have the Browder’s and Halpern’s property, respectively. Hence the conclusions of

Theorem 5.2 follow immediately from Theorems 4.3 and 4.5.

Definition 5.3 Let rE: [0, ∞) ® [0, ∞) be the modulus of smoothness of a Banach

space E defined by

ρE(t) = sup
{
1
2
(‖ x + y ‖ + ‖ x − y ‖) − 1 : x ∈ S(E), ‖ y ‖ ≤ t

}

where S(E) = {x Î E: ||x|| = 1}.

A Banach space E is said to be uniformly smooth if ρE(t)
t → 0 as t ® 0. Let q >1.

A Banach space E is said to be q-uniformly smooth, if there exists a fixed constant c >0

such that rE(t) ≤ ctq. It is well-known that E is uniformly smooth if and only if the

norm of E is uniformly Fréchet differentiable. If E is q-uniformly smooth, then q ≤ 2

and E is uniformly smooth.

Lemma 5.4 (Xu [20]) Let E be a real 2-uniformly smooth Banach space with the best

smooth constant K. Then the following inequality holds:

‖ x + y ‖2 ≤ ‖ x ‖2 + 2〈y, J(x)〉 + 2‖ Ky ‖2,

for any x, y E, where K is a positive constant. The minimal positive constant K satis-

fying the above inequality is said to be the best smooth constant.

5.2 Application to a system of variational inclusions

Theorem 5.5 Let E be a uniformly convex and 2-uniformly smooth Banach space with

the best smooth constant K. Let Mi: E ® 2E be maximal monotone mappings and let

Ai: E ® E be gi-inverse-strongly accretive mappings, i = 1, 2. Let T: E ® E be a l-strict

pseudocontraction with a fixed point. Define a mapping S by Sx = (1 − λ
K2 )x + λ

K2Tx ,

for all x Î E. Let g: E ® E be a ψ-weak concraction. Assume that Ω = F(T) ∩ F(Q) ≠

Ø, where Q: E ® E is a mapping which is defined by

Q (x) = J(M1, ρ1) (I − ρ1A1) J(M2, ρ2) (I − ρ2A2) x, x ∈ E,

and J(Mi,ρi) : E → E is the resolvent operator associated with Mi defined by

J(Mi,ρi)(x) = (I + ρiM)−1(x) , x Î E, where r is any positive number and I is the identity

mapping. Let x1 = u and {xn} be a sequence defined by

xn+1 = αng(xn) + βnxn + (1 − βn − αn)[μSxn + (1 − μ)Qxn], ∀n ≥ 1, (5:4)

where μ Î (0, 1), ρi ∈ (0, γi
K2 ) , i = 1, 2, and {an} and {bn} are sequences in (0, 1). If

the following conditions are satisfied:

(i) 0 <lim infn®∞ bn ≤ lim supn®∞ bn <1;

(ii) limn®∞ an = 0 and
∑∞

n=1 αn = ∞,
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then {xn} converges strongly to x* = PΩg(x*), where PΩ is the sunny nonexpansive

retraction from E onto Ω and (x*, y*), where y∗ = J(M2,ρ2)(x
∗ − ρ2A2x∗) is a solution of

the following system of quasivariational inclusions:

{
0 ∈ x∗ − y∗ + ρ1(A1y

∗ +M1x
∗),

0 ∈ y∗ − x∗ + ρ2(A2x∗ +M2y∗).
(5:5)

Proof. By the assumptions, we know that the mappings S and Q are nonexpansive on

E. From [21], the mapping U: = μS + (1 -μ)Q is also nonexpansive on E. Since

βnxn+(1−βn−αn)
[
μSxn + (1 − μ)Qxn

]
= (1−αn)

(
βnI

1 − αn
+

(
1 − βn

1 − αn

)
U

)
(xn),

where βnI
1−αn

+ (1 − βn
1−αn

)U is a nonexpansive on C (see [21]), hence (4.4) can be

rewritten as follows:

xn+1 = αng(xn) + (1 − αn)
(

βnI
1 − αn

+
(
1 − βn

1 − αn

)
U

)
(xn), ∀n ≥ 1. (5:6)

From [[22], Theorem 2.1], (E, C, {Sn}, {an}), PΩ) has the “Halpern’s property”, where

Sn =
βnI

1 − αn
+

(
1 − βn

1 − αn

)
U, n ≥ 1.

Hence for any u Î E the sequence {yn} defined by y1 = u Î E and

yn+1 = αnu + (1 − αn)Snyn, ∀n ≥ 1,

converges strongly to x* = PΩu and (x*, y*), where y∗ = JM2,ρ2(I − ρ2A2)x∗ , is a solu-

tion to the system of quasivariational inclusions (5.5). Hence from Theorem 4.3, we

know that xn ® x* = PΩg(x*), and (x*, y*), where y∗ = JM2,ρ2(I − ρ2A2)x∗ , is a solution

to the system of quasivariational inclusions (5.5).

This completes the proof of Theorem 5.5.

5.3 Application to equilibrium problem

Let H be a real Hilbert space, C be a nonempty, closed and convex subset of H and let

G : C × C → R be an equilibrium function, i.e., G(u, u) = 0, for any u Î C. The equi-

librium problem is to find x* Î C such that G(x*, y) ≥ 0, for all y Î C. The solution

set of equilibrium problem is denoted by EP(G).

For solving equilibrium problem of a function G : C × C → R , let us assume that G

satisfies the following conditions:

(A1) G(x, x) = 0;

(A2) G(x, y) + G(y, x) ≤ 0, ∀x, y Î C;

(A3) for each x, y, z Î C, lim supt®0 G(tz + (1 - t)x, y) ≤ G(x, y);

(A4) for each x Î C, y ↦ G(x, y) is convex and lower semi-continuous.

Let {Ti} be an infinite family of nonexpansive mappings on C and let {li} be a real

sequence in 0[1]. Following Shimoji and Takahashi [23], for any n ≥ 1, we define a

mapping
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Wn: C ® C by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un,n+1 = I,

Un,n = λnTnUn,n+1 + (1 − λn)I,

...

Un,k = λkTkUn,k+1 + (1 − λk)I,

...

Un,2 = λ2T2Un,3 + (1 − λ2)I,

Wn = Un,1 = λ1T1Un,2 + (1 − λ1)I.

(5:7)

Lemma 5.6 (Combettes and Hirstoaga [24]) Let G : C × C → R be an equilibrium

function which satisfies the conditions (A1)-(A4). For r >0 and x Î H define the map-

ping Sr: H ® C by

Sr(x) =
{
z ∈ C : G(z, y) +

1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C
}
,

then Sr is well defined and the following hold: (1) Sr is single-valued; (2) Sr is firmly

nonexpansive, i.e., ||Srx - Sr||
2 ≤ 〈Srx - Sr, x - y〉, for all x, y Î H; (3) F(Sr) = EP(G); (4)

EP(G) is closed and convex.

Theorem 5.7 Let H be a real Hilbert space, {Ti}: H ® H be an infinite family of non-

expansive mappings, Gk: H × H ® R, k = 1, 2,..., N be functions which satisfy condi-

tions (A1)-(A4) such that F :=
(∩N

k=1EP(Gk) ∩ ∩∞
n=1F(Tn)

) 
= ∅ , A: H ® H be a strongly

positive bounded linear operator with coefficient γ̄ > 0 and F: H ® H be a ψ-weak

contraction. Moreover, let {rk,n}Nk=1 be positive sequences, {an} be a sequence in 0[1],

and g be a real number such that 0 < γ < γ̄ . Assume that

(i) limn®∞ an = 0;

(ii) limn→∞rk,n = r̂k for each k = 1, 2,..., N.

Let {xn} be the sequence defined by

xn = αnγ	(xn) + (I − αnA)WnS
1
r1,nS

2
r2,n . . . SNrN ,nxn, n ≥ 1, (5:8)

where Wn is the mapping generated by {Ti} and {ln} as in (5.7), and for each k = 1,

2,..., N and each n ≥ 1, Skrk ,n is the mapping generated by Gk and rk, n as in Lemma 5.6.

Then {xn} converges strongly x∗ = PF (I − (A − γ	))x∗ .

Proof. Since for each n ≥ 1 and for each k = 1, 2,..., N the mappings Wn and Skrk ,n all

are nonexpansive on H. Define a mapping Vn: H ® H by:

Vnx := αnγ	(x) + (I − αnA)WnS
1
r1,nS

2
r2,n . . . SNrN ,nx.

It is easy to see that for each n ≥ 1, Vn is a ψ-weakly contractive mapping. Hence

there exists a unique xn Î H such that xn = Vnxn. This shows that the sequence {xn}

defined by (5.8) is well-defined. By the similar method as in [[25], Theorem 8], we can

prove that xn ® x*, where x* is the unique solution of the variational inequality

〈(A − γ	)x∗, x − x∗〉 ≥ 0, ∀x ∈ F ,
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that is x∗ = PF(I − (A − γ	))x∗ , or, equivalently x* is the unique solution of the

minimization problem:

min
x∈F

1
2

〈Ax, x〉 + h(x)

where h is the potential function for gF.
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