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1 Introduction
The advancement and the rich growth of fixed point theorems in metric spaces has

important theoretical and practical applications. This developments in the last three

decades were tremendous. For most of them, their reference result is the Banach con-

traction theorem, which states that if X is a complete metric space and T : X ® X a

contractions mapping on X (i.e., d(Tx, Ty) ≤ ld(x, y) for all x, y Î X, where 0 <l < 1),

then T has a unique fixed point in X (see also [1], Lemma 1]). This theorem looks sim-

ple but plays a fundamental role in fixed point theory [2]. Jungck [3] studied coinci-

dence and common fixed points of commuting mappings and improved the Banach

contraction principle. The coincidence and common fixed points generalizations were

further studied by many authors (e.g., see [4-6]). In addition, see Kirk [7], Murthy [8],

Park [9,10], and Rhoades [11,12], for a survey of this subject. Currently Aydi et al. [13]

established some coincidence and common fixed point results for three self-mappings

on a partially ordered cone metric space satisfying a contractive condition and proved

an existence theorem of a common solution of integral equations. In the same way,

Shatanawi et al. [14] studied some new real generalizations on coincidence points for

weakly decreasing mappings satisfying a weakly contractive condition in an ordered

metric space.

On the other hand Haghi et al. [15] showed that some coincidence point and com-

mon fixed point generalizations for two mappings in fixed point theory are not real

generalizations and they obtained some coincidence and common fixed point results

for two self mappings from their corresponding fixed point theorems.

In the present article, we prove the existence of a coincidence point of a mapping

and a relation under a contractive condition which is an innovative and real generaliza-

tion of the Banach contraction theorem. Moreover, a result is deduced on existence of

a unique coincidence point for two nonself mappings under a contractive condition.
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As applications, we achieve an existence and uniqueness theorem of solution for a

class of nonlinear integral equations.

2 Preliminaries
Let A and B be arbitrary nonempty sets. A relation R from A to B is a subset of A × B

and is denoted by R : A ⇝ B. The statement (x, y) Î R is read “x is R-related to y“,

and is denoted by xRy. A relation R : A ⇝ B is called left-total if for all x Î A there

exists a y Î B such that xRy. R is called right-total if for all y Î B there exists an x Î
A such that xRy. R is known as functional, if xRy, xRz implies that y = z, for x Î A and

y, z Î B. A mapping T : A ® B is a relation from A to B which is both functional and

left-total. For R : A ⇝ B, E ⊂ A we define

R (E) = {y ∈ B : x Ry for some x ∈ E}.
dom (R) = {x ∈ A : R({x}) �= φ},

Range (R) = {y ∈ B : y ∈ R({x}) for some x ∈ dom (R)}.

For convenience, we denote R ({x}) by R {x}. The class of relations from A to B is

denoted by R (A,B) .. Thus the collection M (A,B) of all mappings from A to B is a

proper sub collection of R (A,B) .. An element w Î A is called coincidence point of T :

A ® B and R : A ⇝ B if Tw Î R {w}. In the following, we always suppose that X is none-

mpty set and (Y, d) is a metric space. For R : X ⇝ Y and u, υ Î dom (R), we define

D (R {u} ,R {v}) = inf
uRx,vRy

d
(
x, y

)
A function Ψ : [0, ∞) ® [0,1) is said to have property (p) [16-18] if for t > 0, there

exists δ(t) > 0, s(t) < 1 such that

0 ≤ r − t < δ(t) ⇒ � (r) ≤ s (t) .

3 Coincidence points
Theorem 3.1 Let X be a nonempty set and (Y, d) be a metric space. Let T : X ® Y, R :

X ⇝ Y be such that R is left-total, Range (T) ⊆ Range (R) and Range (T) or Range (R)

is complete. If there exists a non-decreasing function Ψ : [0, ∞) ® [0, 1) having property

(p) such that for all x, y Î X

d(Tx,Ty) ≤ �(D(R{x},R{y}))D(R{x},R{y}). (1)

Then there exists w Î X such that Tw Î R {w}.

Proof. Let x0 be an arbitrary, but fixed element of X. We shall construct sequences

{xn} ⊂ X, {yn} ⊂ Range (R). Let y1 = Tx0, using the fact that Range (T) ⊆ Range (R), we

may choose x1 Î X such that

x1Ry1.

Let y2 = Tx1, if

� (D (R {x0} ,R {x1}))D (R {x0} ,R {x1}) = 0,

then by assumptions Tx0 = Tx1. It implies that

x1Ry2.
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Then x1 is the point of X we are looking for. If

� (D (R {x0} ,R {x1} )D (R {x0} ,R {x1}) �= 0,

then using inequality (1) we have

d (Tx0,Tx1) ≤ � (D (R {x0} ,R {x1}))D (R {x0} ,R {x1}) �= 0.

Choose x2 Î X such that x2Ry2. In the case

� (D (R {x1} ,R {x2}))D (R {x1} ,R {x2}) = 0,

x2 is the required point in X. If

� (D (R {x1} ,R {x2}))D (R {x1} ,R {x2}) �= 0,

then inequality (1) implies that

d (Tx1,Tx2) ≤ � (D (R {x1} ,R {x2}))D (R {x1} ,R {x2}) �= 0,

By induction we produce sequences {xn} ⊂ X and {yn} ⊂ Range (R) such that yn =

Txn-1, xnRyn and

d
(
yn, yn+1

) ≤ � (D (R {xn−1} ,R {xn})D (R {xn−1} ,R {xn}) �= 0, n = 1, 2, 3, . . . .

Since xnRyn, xn+1 Ryn+1 therefore, by definition of D, we have

D (R {xn} ,R {xn+1}) ≤ d
(
yn, yn+1

)
.

Thus,

d
(
yn+1, yn+2

) ≤ �
(
d
(
yn, yn+1

)
d
(
yn, yn+1

)
.

It follows that

d
(
yn+1, yn+2

)
< d

(
yn, yn+1

)
,n = 1, 2, 3, . . . .

Thus,

lim
n→∞ d

(
yn, yn+1

)
= inf

{
d
(
yn, yn+1

)
: n ≥ 0

}
.

Assume that

lim
n→∞ d

(
yn, yn+1

)
= t.

We claim t = 0. Otherwise by property (p) of Ψ, there exists δ(t) >0, s(t) < 1, such

that

0 ≤ r − t < δ (t) ⇒ � (r) ≤ s (t) < 1.

For this δ(t) > 0, there exists a natural number N such that

0 ≤ d
(
yn, yn+1

) − t < δ (t) , whenever n ≥ N.

Hence,

�
(
d
(
yn, yn+1

)) ≤ s (t) , whenever n ≥ N.
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Then inequality (1) implies that

d
(
yn, yn+1

) ≤ max
{
�

(
d
(
y0, y1

))
,�

(
d
(
y1, y2

))
, . . . ,�

(
d
(
yN−1, yN

))
, s (t)

}
d
(
yn−1, yn

)
.

Assume that

M = max
{
�

(
d
(
y0, y1

))
,�

(
d
(
y1, y2

)
, . . . ,�

(
d
(
yN−1, yN

))
, s (t)

}
.

Then M < 1 and

d
(
yn, yn+1

) ≤ M d
(
yn−1, yn

)
for n = 1,2,3, . . .

Hence

d
(
yn, yn+1

) ≤ Mnd
(
y0, y1

) → 0 as n → ∞,

this contradicts the assumption that t > 0. Consequently

lim
n→∞ d

(
yn, yn+1

)
= 0.

Now we prove that {yn } is a Cauchy sequence. Assume that {yn } is not a Cauchy

sequence. Then there exists a positive number t* and subsequences {n(i)}, {m(i)} of the

natural numbers with n(i) <m(i) such that

d
(
yn(i), ym(i)

) ≥ t∗, d
(
yn(i), ym(i)−1

)
< t∗,

for i = 1, 2, 3, .... Then

t∗ ≤ d
(
yn(i), ym(i)

)
≤ d

(
yn(i), ym(i)−1

)
+ d

(
ym(i)−1, ym(i)

)
.

Letting i ® ∞ and using the fact that d(yn(i), ym(i)-1) <t*, we obtain

lim
n→∞ d

(
yn(i), ym(i)

)
= t∗.

For this t* > 0, by property (p) of Ψ there exists δ (t*) > 0, s(t*) < 1, such that

0 ≤ r − t∗ < δ
(
t∗

) ⇒ � (r) ≤ s
(
t∗

)
< 1.

For this δ(t*) >0, there exists a natural number N0 such that

0 ≤ d
(
yn(i), ym(i)

) − t∗ < δ
(
t∗

)
, whenever i ≥ N0.

Hence

i ≥ No ⇒ �
(
d
(
yn(i), ym(i)

)) ≤ s (t∗) .

Now, inequality (1) yields

d
(
yn(i), ym(i)

) ≤ d
(
yn(i), yn(i)+1

)
+ d

(
yn(i)+1, ym(i)+1

)
+ d

(
ym(i)+1, ym(i)

)
≤ d

(
yn(i), yn(i)+1

)
+ �

(
d
(
yn(i), ym(i)

))
d
(
yn(i), ym(i)

)
+ d

(
ym(i)+1, ym(i)

)
≤ d

(
yn(i), yn(i)+1

)
+ �

(
d
(
yn(i), ym(i)

))
d
(
yn(i), ym(i)

)
+ d

(
ym(i)+1, ym(i)

)
.

Thus

d
(
yn(i), ym(i)

) ≤ d
(
yn(i), yn(i)+1

)
+ s

(
t∗

)
d
(
yn(i), ym(i)

)
+ d

(
ym(i)+1, ym(i)

)
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Letting i ® ∞, we get

t∗ ≤ s
(
t∗

)
t∗ < t∗,

a contradiction. Hence {yn} is a Cauchy sequence in Range (R). By completeness of

this space there exists an element z Î Range (R) such that yn ® z. It further implies

that wRz for some w Î X. Now,

d (z,Tw) ≤ d
(
z, yn

)
+ d

(
yn,Tw

)
≤ d

(
z, yn

)
+ d (Txn−1,Tw)

≤ d
(
z, yn

)
+ � (D (R {xn−1}) ,R {w})D (R {xn−1} ,R {w})

< d
(
z, yn

)
+D (R {xn−1} ,R {w})

< d
(
z, yn

)
+ d

(
yn−1, z

)
.

Letting n ® ∞, we have d(z, Tw) = 0. It follows that z = Tw. Hence Tw Î R{w}. In

the case when Range (T) is complete. The fact Range (T) ⊆ Range (R) implies that

there exists an element z* Î Range (R) such that yn ® z*. The remaining part of the

proof is same as in previous case.

Example 3.2 Let X = Y = R, d(x, y) = |x - y|. Define T : R ® R, R : R ⇝ R as follows:

Tx =

{
1 if x ∈ Q

0 if x ∈ Q′,

R = (Q × [0, 4]) ∪ (
Q′ × [7, 9]

)
Then Range (T) = {0, 1} ⊂ Range (R) = [0, 4] ∪ [7, 9]. For � (t) =

1
3
, all conditions of

the above theorem are satisfied.

From Theorem 3.1, we deduce the following result immediately.

Theorem 3.3 Let X be nonempty set and (Y, d) be a metric space. Let T : X ® Y, R :

X ⇝ Y be such that R is left-total, Range (T) ⊆ Range (R) and Range (T) or Range (R)

is complete. If there exists l Î [0, 1) such that for all x, y Î X

d(Tx,Ty) ≤ λD(R{x},R{y}).

Then there exists w Î X such that Tw Î R{w}.

In the following theorem, we prove the existence of a unique coincidence point of a

pair of nonself mappings under a contractive condition.

Theorem 3.4 Let X be a nonempty set and (Y, d) be a metric space. T, S : X ® Y be

two mappings such that Range (T) ⊆ Range (S) and Range (T) or Range (S) is complete.

If there exists a l Î [0, 1) such that for all x, y Î X

d(Tx,Ty) ≤ λd(Sx, Sy),

Then S and T have a coincidence point in X. Moreover, if either T or S is injective,

then S and T have a unique coincidence point in X.

Proof. By Theorem 3.1, we obtain that there exists w Î X such that Tw = Sw, where,

Sw = lim
x→∞ Sxn = lim

x→∞Txn−1, x0 ∈ X.

For uniqueness, assume that w1, w2 Î X, w1 ≠ w2, Tw1 = Sw1, and Tw2 = Sw2. Then

d(Tw1, Tw2) ≤ ld(Sw1, Sw2). If S or T is injective, then
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d(Sw1, Sw2) > 0

and

d(Sw1, Sw2) = d(Tw1,Tw2) ≤ λd(Sw1, Sw2),

a contradiction.

Remark 3.5 If in the above theorem we choose X = Y, and S = I (the identity map-

ping on X), we obtain the Banach contraction theorem.

4 Integral equations
The purpose of this section is to study the existence and uniqueness of solution of a

general class of Fredholm integral equations of 2nd kind under various assumptions on

the functions involved. Theorem 3.4 coupled with a function space (C [a, b], ℝ) and a

contractive inequality are used to establish the result. Consider the integral equation:

fx(t) − μ

b∫
a

K(t, s)hx(s)ds = g(t) (2)

were, x : [a, b] ® ℝ is unknown, g : [a, b] ® ℝ and h, f : ℝ ® ℝ are given, μ is a

parameter. The kernel K of the integral equation is defined on [a, b] × [a, b]. If f = h

= I (the identity mapping on ℝ), then (2) is Known as Fredholm integral equation of

2nd kind (see also [19] and the references cited therein).

Theorem 4.1 Let K, f, g, h be continuous. Let c Î R such that, for all t, s Î [a, b]∣∣K(t, s)∣∣ ≤ c

and for each x Î (C[a, b], ℝ) there exists y Î (C[a, b], ℝ) such that

(fy)(t) = g(t) + μ

b∫
a

K(t, s) hx (s)ds.

If f is injective, there exists L Î R such that for all x, y Î R∣∣hx − hy
∣∣ ≤ L

∣∣fx − fy
∣∣

and {fx : x Î (C[a, b], ℝ)} is complete. Then, for μ ∈
(

− 1
c(b − a)L

,
1

c(b − a)L

)
, there

exists w Î (C[a, b], ℝ) such that for x0 Î (C[a, b], ℝ),

fw(t) = lim
x→∞ f xn(t) = lim

x→∞

⎡
⎣g(t) + μ

b∫
a

K(t, s)hxn−1(s)ds

⎤
⎦ , (3)

and w is the unique solution of (2).

Proof. Let X = Y = (C[a, b], ℝ) and d(x, y) = max
t∈[a,b]

∣∣x(t) − y(t)
∣∣ for all x, y Î X. Let T,

S : X ® X be defined as follows:

(Tx)(t) = g(t) + μ

b∫
a

K(t, s)(hx)(s)ds, Sx = fx.
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Then by assumptions SX = {Sx : x Î X} is complete. Let x* Î TX, then x* = Tx for x

Î X and x* (t) = Tx (t). By assumptions there exists y Î X such that Tx (t) = fy (t),

hence TX ⊆ SX. Since,

∣∣(Tx)(t) − (Ty)(t)
∣∣ = |μ|

∣∣∣∣∣∣
b∫

a

[K(t, s)(hx)(s)]ds −
b∫

a

[K(t, s)(hy)(s)]ds

∣∣∣∣∣∣
≤ |μ|

b∫
b

c
∣∣(hx)(s) − (hy)(s)

∣∣ ds

≤ L |μ| c
b∫

b

∣∣(fx)(s) − (fy)(s)
∣∣ ds

≤ L |μ| c
b∫

b

∣∣(Sx)(s) − (Sy)(s)
∣∣ ds

≤
(
sup
t∈[a,b]

∣∣(Sx)(t) − (Sy)(t)
∣∣) L |μ| c

∣∣∣∣∣∣
b∫

a

ds

∣∣∣∣∣∣
≤ L |μ| c(b − a)d(Sx, Sy).

Therefore, for any μ ∈
(

− 1
c(b − a)L

,
1

c(b − a)L

)
, all conditions of Theorem 3.4 are

satisfied. Hence, there exists a unique w Î X such that

fw(t) = lim
x→∞ Sxn(t) = lim

x→∞ Txn−1(t) = T(w)(t), x0 ∈ X

for all t, which is the unique solution of (2).

Example 4.2 Consider the integral equation:

[3x(t)]3 = sin t + μ

π
2∫

0

[√
tx(s)

]3
ds (4)

Let X = Y = (C[0, π
2 ],R), d(x, y) = max

t∈C[0, π2 ]

∣∣x(t) − y(t)
∣∣
for all x, y Î X. Since,

∣∣K(t, s)∣∣ = ∣∣∣∣t 32 s0
∣∣∣∣ ≤

(π

2

) 3
2

and

∣∣x3(t) − y3(t)
∣∣ ≤ 1

27

∣∣∣[3x(t)]3 − [3y(t)]3
∣∣∣

for all x, y Î R, therefore all conditions of Theorem 4.2 are satisfied for

c =
(π

2

) 3
2 , h(x) = x3, f (x) = 27x3, g(x) = sin x, L = 1

27
Hence for μ ∈

⎛
⎝− 27

(π
2 )

5
2

,
27

(π
2 )

5
2

⎞
⎠,

there exists a unique solution of (4). We approximate the solution, by constructing the

iterative sequences:
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Sxn = Txn−1, x0 ∈ X,n = 1, 2, 3 . . .

in connection with the mappings S, T : X ® X defined as follows:

(Tx)(t) = sin t + μ

π
2∫

0

[√
tx(s)

]3
ds, (Sx)(t) = 27x3(t).

Let x0 : [0, π
2 ] → Rbe defined as x0 (t) = 0. Then

(Tx0)(t) = sin t = (Sx1)(t).

It follows that

x1(t) =
1
3
(sin t)

1
3 .

Now

(Tx1)(t) = sin t + μ

π
2∫

0

[√
t
1
3
(sin s)

1
3

]3

ds

= sin t + μ
1
27

π
2∫

0

t
3
2 sin sds

= sin t +
1
27

μt
3
2 = (Sx2)(t).

It implies that

x2(t) =
1
3

[
sin t +

1
27

μt
3
2

] 1
3
.

Similarly,

(Txn)(t) = sin t +
n∑
j=1

t
3
2

1

27j
μj

(
2
5

)(j−1)(π

2

)(j−1) 52 = (Sxn+1)(t).

As μ ∈
⎛
⎝− 27

(π
2 )

5
2

,
27

(π
2 )

5
2

⎞
⎠, the series

∞∑
j=1

t
3
2

1

27j
μj

(
2
5

)(j−1)(π

2

)(j−1) 52
is convergent and

lim
x→∞ Sxn(t) = sin t +

⎛
⎝ 1

27μt
3
2

1 − 1
27μ 2

5(
π
2 )

5
2

⎞
⎠ = Sw(t).

Hence,

1
3

⎡
⎣sin t +

⎛
⎝ 1

27μt
3
2

1 − 1.2
27.5 (

π
2 )

5
2

⎞
⎠

⎤
⎦

1
3

= w(t)

is the required solution.
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