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Abstract

The purpose of this article is to introduce two iterative algorithms for finding the
least norm fixed point of nonexpansive mappings. We provide two algorithms, one
implicit and another explicit, from which strong convergence theorems are obtained
in Hilbert spaces. Then we apply these algorithms to solve some convex optimization
problems. Furthermore, we use them to solve some split feasibility problems. The
results of this article extend and improve several results presented in the literature in
the recent past.
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1 Introduction

Throughout, H is a real Hilbert space with inner product (,-) and induced norm ||||
Let C be a nonempty closed convex subset of H. Then, a mapping 7, from C into itself
is said to be a nonexpansive mapping if

|75 =T < flx -y

’

for any x, y € C. Fix(T) denotes the fixed point set of 7, that is Fix(7) = {x € C: Tx
= x}. Iterative methods for finding fixed points of nonexpansive mappings are an
important topic in the theory of nonexpansive mappings and have wide applications in
a number of applied areas, such as, image reconstruction in computerized tomography
[1], optics and neural networks [2], collective sensing [3], and image denoising and
deblurring [4] etc. However, the Picard sequence {T"x}.2, often fails to converge even
in the weak topology. To overcome the difficulties, the Krasnoselskii-Mann iteration
algorithm become prevail. This algorithm generates from an arbitrary initial guess xg €
C and a sequence {x,} by the recursive formula

Xpe1 = ApXp + (1 —ay) Txy,n > 0, (1.1)

where {¢,,} is a sequence in (0, 1). Reich [5] proved that if X is a uniformly convex
Banach space with a Fréchet differential norm and if {&,} is chosen such that
Yoo (1 — ap) = +00, then the sequence {x,} defined by (1.1) converges weakly to a
fixed point of 7. On the other hand, Maingé [6] proposed the so-called inertial Krasno-
selskii-Mann-type algorithm as follows
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X1 = [(1 — o) [+ anT] vy, (1.2)
Uy = Xp +0p (Xn — Xp—1), N> 1,

where I : H — H is the identity operator, xo, x; € H, {#,} < [0, 1], {a,,} < (0, 1) are
relaxation factor. The proposed algorithm unifies Krasnoselskii-Mann iteration and
inertial type extrapolation. He established some weak convergence theorems of the
sequence {x,} generated by (1.2). It is clear that if ,= 0 for all n, then the algorithm
(1.2) reduces to the Krasnoselskii-Mann iteration (1.1). The sequence {v,,} is intended
to speed up the convergence of algorithms. As a matter of fact, the above algorithms
(1.1) and (1.2) have only weak convergence except in a finite dimensional space. To
obtain strong convergence in the setting of an infinite dimensional Hilbert or Banach
spaces, there exist several iterative algorithms to nonexpansive mappings (e.g., Viscosity
iteration algorithm [7], Hybrid projection algorithm [8], Hybrid steepest descent algo-
rithm [9], Halpern-type iteration algorithm [10,11], Shrinking projection algorithm
[12], etc.). In general, the nonexpansive mapping may have more than one fixed point.
Without loss of generality, we may assume that Fix (T) # 0 (otherwise, C is additionally
bounded), then Fix(7) is closed and convex (It is worth mentioning that Ferreira [13]
proved that Fix(7) is closed and convex even in a strictly convex Banach space which
includes Hilbert spaces as a special case). So there exists a unique x* € Fix(7) satisfies:

[«*|| = min {llx]| : x € Fix (T)}.

That is, x* is the minimum-norm fixed point of 7. In other words, x* is the metric
projection of the origin into Fix(7), i.e., x* = Pgi(7y0. It is an interesting thing to con-
struct iterative sequence to find the minimum-norm fixed point of a nonexpansive
mapping 7, i.e., the minimum-norm solutions of x = Tx. Recently, Yao and Xu [14]
and Cui and Liu [15] independently introduced two iterative methods (one implicit
and one explicit) for finding the minimum-norm fixed point of nonexpansive mapping
which is defined on a closed convex subset C of H. The proposed algorithms are based
on the well-known Browder’s iterative method [16] and Halpern’s iterative method
[17]. We next briefly recall the Browder’s iterative method and the Halpern’s iterative
method. Browder [16] introduced an implicit scheme as follows. Let # € C and t € (0,
1), x;be the unique fixed point in C of the contraction T,from C into C:

Tix=tu+(1—1t)Tx,x e C. (1.3)

Browder proved that the strong limit of {x;} as ¢ — 0" is the fixed point of T which
is nearest from Fix(T) to u, i.e., lim,o, %,= Prix(r4. Besides, Halpern [17] introduced
an explicit scheme. Let xg € C, define a sequence {x,;} by the following:

Xpe1 = ol + (1 — ay) Txy,n > 0, (1.4)

where {o,} © (0, 1). It is known that the sequence {x,} generated by (1.4) converges
in norm to the same limit P 7y# as Browder’s implicit scheme (1.3) if the sequence
{o,,} satisfies the following conditions:

(C1) lim,, .. &,= 0;

(C2) Y02 oy = +00;

(C3) either Y "0°_ ; loatne1 — an| < +00 orlimy_ o0 (an/ozn+1) =1
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It is noticed that the Browder’s and the Halpern’s iterative methods do find the mini-
mum-norm fixed point x* of T'if 0 € C. However, if 0 ¢ C, then neither Browder’s nor
Halpern’s methods works to find the minimum-norm element x*. The reason is simple:
if 0 ¢ C, we cannot take u = 0 either in (1.3) or (1.4) since the contraction Ty = (1 - )
Tx is no longer a self-mapping of C or the point (1 - «,,) Tx,may not belong to C and
consequently, {x,,;} may be undefined. In order to overcome this difficulties caused by
possible exclusion of the origin from C, Yao and Xu [14] and Cui and Liu [15] put for-
ward the improvement strategy to impose the metric projection Pcon the right side of
the (1.3) and (1.4) when u = 0. The role of the metric projection Pcis to pull the sub-
stituted sequence back to C, then the iterative sequences are well-defined.

Motivated and inspired by the above studies, the purpose of this article is to consider
another way to ensure the well defined of the iterative sequence. That is, we replace
the closed convex subset C by a closed convex cone C (C is said to be a closed convex
cone if (i) C is closed and convex; (ii) ox € C, for all o > 0 and x € C; (iii) C = {0}).
We present new strongly convergent methods for approximating minimum-norm fixed
point of nonexpansive mappings. The proposed algorithms consist of two types and
generated by the following. For each A € (0, 1), (i) The implicit method

=1 =t)ATx, + (1 —A)xy). (1.5)
(ii) The explicit method
Xne1 = (1 —ap) AWTxy + (1 = M) xn),n >0, (1.6)

where {o,,} < (0, 1).

We prove that the sequence {x,} generated by (1.5) and (1.6) converge strongly to
the element of minimal norm fixed point of nonexpansive mappings. As applications,
we provide iterative processes for solving the constrained convex optimization pro-
blem. And we use them to solve some split feasibility problems which attracted great
attention in recent years. Our results improve and generalize the corresponding results
of Cui and Liu [15], Yao and Xu [14], and Wang and Xu [18] et al.

2 Preliminaries
Let H be a Hilbert space with inner product (--) and norm ||||, and let C be a none-
mpty closed convex subset of H.

We use the following notions in the sequel:

(i) - for weak convergence and — for strong convergence;

(ii) wy (xn) = {x : Ix,, — x} denotes the weak o-limit set of {x,}.

Recall that the orthogonal projection Pcx of x onto C is defined by the following

Pex = argr}l/leiél |x =] .

The orthogonal projection has the following well-known properties. For a given x €
H,

(i) {x - Pex, z - Pex) < 0, for all ze C;
(ii) "ch - Pcy||2 < (Pcx - Pcy, x - y), for all x, y e H.
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We shall make use of the following results.

Lemma 2.1. (Demiclosedness principle of nonexpansive mapping) Let T : C — C a
non-expansive mapping with Fix (T) #0. If x,, = x and (I - T)x,— 0, then x = Tx.

Lemma 2.2. (see, [19]) Let {x,} and {y,} be bounded sequences in a Banach space E
and let {B,} be a sequence in [0, 1] with 0 < lim inf B, < lim sup B, < 1. Suppose x,.,
=By, + (L -B)x, for all n > 0 and

limsup (|[yne1 — yu| — %01 — xall) < 0.

Then lim,,_,.. Ily,,— Xy II =0.
Lemma 2.3. (see, [20]) Let {a,} be an nonnegative real sequences satisfying the follow-
ing inequality:

ane1 < (1 = yp) an + Yubp,n > 0,

where {y,} € (0, 1) such that y oo, Yn = +00, and lim sup,, ,.. 3,< 0. Then lim,, ,.. a,=
0.

3 Main results
First, we prove the following strong convergence theorem by using the implicit method
(1.5) for finding the minimum-norm fixed point of a nonexpansive mapping 7.
Theorem 3.1. Let C be a closed convex cone of a real Hilbert space H. Let T : C — C
be a nonexpansive with Fix (T) # 0. For each t € (0, 1), let x, be the unique fixed point
in C of the contraction T) : = (1 - )(AT + (1 - M)I), where h € (0, 1) is a constant.
Then x, converges strongly to the minimum-norm fixed point of T as t — 0.
Proof. Take p € Fix(T), from (1.5), we have

| —p] = (@ =0 OTx + (1 —2)x) —p]
=@ =0 (A =2 (x —p) +2(Tx. —p)) — 1|
< @A =0 (@ =2 [lx—p|+21]x—pl)+|p]
=1 =0 fx—p|+efp

’

that is,

|z —p| < |p|, forallt e (0, 1).

Hence, {x; is bounded and so is {Tx;}. Next, we prove that ||xt— Txt"—) 0ast— 0.
In fact, from (1.5), we have

e — Toxell = 1(1 — ) (ATxe + (1 — A) x) — Tl
Q=16 ATx + (1 — ) x — Txp) — tTx||
Q=0 Q= 2) llxg = Tl + | Toxe |,

IA

that is,

llox, — Toe|| <

T 0, ast 0", .
S —pa_p Tul 0 st~ (3.1)

Next we show that {x;} is relatively norm-compact as ¢ — 0. Since {x;} is bounded,
there exists a null sequence {z,} < (0, 1) such that x,, = X. By Lemma 2.1 and (3.1),
then x € Fix (T).
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For any X € Fix (T), we deduce that
||xt - .7‘2”2 = <xt - J—é,xt - .7‘2')
=(1 -0 ATx + (1 =N x) — % x —X)
=(1 =0 (1 =2 (x — %) + A (Tx, — X)) — 1%, x, — &)
= (=0 (=) = &7+ A (Tx = %o = 7)) + ¢(~Fx
<=0 |x—F]+t(~%x —5).
It turns out that
| = %% < (% x — &) (3.2)

Since x € Fix (T), we may substitute x for x and ¢,for ¢ in (3.2) to obtain that x,, — X.
Hence, {x,} is indeed relatively compact (as £ — 0) in the norm topology.
Observe that (3.2) is equivalent to

2 ~
[l < (x¢, X) .
Hence,

x|l < |%

, t€(0,1),xeFix(T).
This implies that

%) < |

, forall x € Fix (T) .

Therefore, x = x*, where x* is the minimum-norm fixed point of T, and we conclude
that x,—~ x* as £ — 0". This completes the proof. O

Now, we are in the position to prove the strong convergence of the explicit method
(1.6). Our proofs of this theorem closely follows proofs given in [11] for some related
results.

Theorem 3.2. Let C be a closed convex cone of a real Hilbert space H. Let T : C — C
be a nonexpansive mapping and Fix(T) is nonempty. Assume that the sequence {a,} <
(0, 1) satisfies the following conditions:

(@) lim,,_,.. o,= 0;

(ii) Y_p2g an = +00.

Then the sequence {x,} generated by the algorithm (1.6) strongly converges to a fixed
point of T which is of minimal norm.

Proof. First we prove that the sequence {x,} is bounded. Let p € Fix(T). By (1.6), we
have

(1 =) T+ (1 = ) 20) —

[ (1= en) (1= 2) (%0 = p) + 2 (T — p)) — ]
< (=) v = p[ + e o]

< max {|x, —p|, o[}

a1 =]

IA

By induction,

|2 — p|| < max{|xo —p

’

b

for all # > 0. Then {x,,} is bounded. Therefore, {Tx,} is also bounded.

|
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1 —oay,) ATx
Let y, = ( n) " | then the iterative sequence (1.6) is equivalent to
oy + (1 —oy) A
Xpe1 = (@ + (L —ap) M) Yn+ (1 — oy — (1 — o) A) X (3-3)

Observe that lim,,_,..(c,+ (1 - ¢,)A) = A, then
- (1 = o) ATxy — aup — (1 — o) 29|
yn =Pl = oy + (1 —oy) A
_ (T =an)a ]z —pf + e o]
- op+ (1 — o) A

SO S N | R
_ot,,+(1—ozn))» P+ on+ (1 —ay) A n =P
plt-

’

< max{ v, — p

Thus, {y,} is bounded. Consequently, we have

||Yn+l - )’n” - ||xn+1 7xn||
(1 = apy1) ATxns1 (1 — ap) ATxy
= - = IXne1 — Xl
ape1 + (1 —api1) A ap + (1 —ap) A
1—o A 1—oap)A
( n+1) ( n) ‘ ||Txn||

11—« A
A=) b o~ T + -
ape1 + (1 —apy1) A an+ (1 —oap) A

<
ape1 + (1 —apy1) A
— llxpe1r — xull
(1 — ape1) X (1 —aps1) A 1 —ay) A
< ( " = 1) ne1 = %l + " - ! [T
U1 + (1 —ap) A g1+ (1 —op)) A o+ (1 —ap) A

From the fact that {x,} and {Tx,} are bounded sequences and lim,,_,.. a,,= 0, then

limsup (||Yn+1 _Yn” - ||xn+1 _xn”) <0

With the help of Lemma 2.2, we obtain that lim,, ,.. " V- Xy " = 0. Therefore,

lim (|41 — %4l = lim (etp + (1 — atn) A) ”)/n — Xn ” =0. (3.4)
n—oo n—oo
On the other hand,
llxy — Txpll < N0 — Xnat |l + %01 — Tl
= %0 — Xna1 Il + 11 — ) ATxn + (1 — 2) xn) — Toxn |
< xn = Xpea ll + (1 = o) (L= 2) [[(xn = Tx) || + ot [ Txnll -
From the above inequality, and (3.4), we obtain
an
| Tx,|| = Oasn — oo.

1

—T < —
[l Xnll < 1—(1—ay) (-2 [l2¢1 xn+1||+l — (1 =) (1—2)

Next, we prove that lim sup,_,.. (x* - x,, x*) < 0. To achieve this, we take a subse-

quence {x,,i} of {x,} such that

lim sup <x* — xn,x*> = lim (x* — Xn,, x*)
n—ooi =00

Since {x,} is bounded, without loss of generality, we may assume that x,, — x’. Con-

sequently,

lim sup (x* — x,, x*) = (x* — &/, x*).
n— o0
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Notice that lim,,_,.. "xn— Tx, " = 0. By the demiclosedness principle of nonexpansive
mapping 7T, we have x” € Fix(T). Since x* = Pgix(1)0. It follows from the properties of
Projection operator that

lim sup (x* — x,, x*) = {(x* — &', x*) < 0. (3.5)
n— o0

By (1.6), we have

L

= (1 = @) 0Ty + (1= 2)x) = (1 = ) 2|

) (3.6)
= [|(1 = ap) (ATp + (1 = 1) x — x¥) |
<1 —ay) |xn —x* “2
Observe that
mel — (1 —ap)x* H2
= ||xne1 — x* Hz — 200 (—x*, Xpu1 — &%) + 0 | x* ||2 (3.7)
> [tner — 6| — 20 (2%, 201 — 2).
Therefore, by (3.6) and (3.7), we get
(B ||2 < (1 —ayp) |xn —x* ||2 + 20t (%", X — Xpp1) (3.8)

By the condition of (ii) and the inequality (3.5), we can apply Lemma 2.3 to (3.8) and
conclude that {x,} converges strongly to x* as n — oo, that is, the minimum-norm fixed
point of 7. This completes the proof. O

Remark 3.1. (i) If the closed convex cone C in Theorems 3.1 and 3.2 are replaced by
closed convex C with 0 € C, then Theorems 3.1 and 3.2 are still true because of the
iterative sequence (1.5) and (1.6) are well-defined now.

(i) Theorem 3.2 also improve the [[14], Theorem 3.2] and [[15], Theorem 3.3], in

which the restrictions ” Y oo lotn1 — an| < +00 orlimy_, cotn/ans1 = 17 are removed.

4 Some applications

From now on, we apply the proposed methods for approximating the minimum-norm
solution of convex function and to split feasibility problems. Let’s recall that the stan-
dard constrained convex optimization problem as follows:

findx* € C, suchthatf (x*) = miélf (x), (4.1)
xe

where f: C — R is a convex, Fréchet differentiable function, C is closed convex sub-
set of H.
It is known that the above optimization problem is equivalent to the following varia-

tional inequality:
findx* € C, such that{v — x*, Vf(x*)) > 0, forallv € C, (4.2)

where Vf: H — H is the gradient of f.
It is well-known that the optimality condition (4.2) is equivalent to the following

fixed point problem:

Page 7 of 10
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x* =P (x* — uVf (x*)),

where Pcis the metric projection onto C and g > 0 is a positive constant. Based on
the fixed point problem, we deduce the projected gradient method.

JC()EC,

Xni1 = Pc (xn — uVf (%0)) ,n > 0. (4.3)

Using Theorems 3.1 and 3.2, we immediately obtain the following result.

Theorem 4.1. Suppose that the solution set of (4.1) is nonempty. Let the objective
function f be convex, fréchet differentiable and its gradient Vf is Lipschitz continuous
with Lipschitz constant L. In addition, if 0 € C or C is closed convex cone. Let yu € (0,
2/L),

(i) For each t € (0, 1), let x; be the unique solution of the fixed point equation
xe=(1—6) (APc (I = uVf)x + (1 —2)x,). (4.4)

Then {x;} converges in norm as t — 0" to the minimum-norm solution of the minimi-
zation (4.1)

(ii) Define a sequence {x,} by the following
X1 = (1 — o) (APc (I — wVf) (%) + (1 = X) x) ,n > 0,

where A € (0, 1) and the sequence {a,} < (0, 1) satisfies conditions in Theorem 3.2.
Then the sequence {x,} converges strongly to the minimum-norm solution of the minimi-
zation (4.1).

Proof. Since Vf'is Lipschitz continuous with Lipschitz constant L, then the Pc(I - uVf)
is nonexpansive mapping (see [[21], Sect. 4). Replace the mapping T in (1.5) and (1.6)
with Pc(I - uVf). Therefore, the conclusion of Theorem 4.1 follows from Theorems 3.1
and 3.2 immediately. O

Next, we give an application of Theorem 4.1 to the split feasibility problem (say SFP,
for short) which was introduced by Censor and Elfving [22].

findx € C, such thatAx € Q, (4.5)

where C and Q are nonempty closed convex subset of Hilbert space H; and Hj,
respectively. A : H; — H, is a bounded linear operator.

It is clear that x* is a solution to the split feasibility problem (4.5) if and only if x* €
C and Ax* - PoAx* = 0. We define the proximity function f by

2

’

1
fo= |Ax — PqAx
and consider the convex optimization problem
1 2
i = mi Ax — PoAx||”. 4.6
rj{lelgf(x) 1}1€1an|| x — PoAx| (4.6)

Then, x* solves the split feasibility problem (4.5) if and only if x* solves the minimi-
zation (4.6) with the minimize equal to 0. Byrne [21] introduced the so-called CQ algo-
rithm to solve the (SFP).

Page 8 of 10
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Xne1 = Po (I — pA* (I = Pq) A) xy,n > 0, (4.7)

where 0 <y < 2/p(A*A) and where Pcdenotes the projection onto C and p(A*A) is the
spectral radius of the self-adjoint operator A*A. He obtained that the sequence {x,}
generated by (4.7) converges weakly to a solution of the (SEP).

In order to obtain strong convergence iterative sequence to solve the (SFP), Xu [23]
investigated the following algorithm:

Xne1 = il + (1 — o) Po (% — pA* (I = Pq) Axn),n > 0, (4.8)

where 0 <y < 2/p(A*A). He showed that when the sequence {0} satisfies the condi-
tions (C1)-(C3), then {x,} converges strongly to the projection of # onto the solution
set of the (SFP). In particular, if # = 0 in the algorithm (4.8), then the corresponding
algorithms converges strongly to the minimal norm solution of the (SFP). Lately,
Wang and Xu [18] introduced a modification of CQ algorithm (4.7) with strong con-
vergence by introducing an approximating curve for the (SFP) in infinite dimensional
Hilbert space, and obtained the minimum-norm solution of the (SFP) as the strong
limit of the approximating curve. The sequence {x,} is generated by the iterative algo-
rithm

Xni1 = Pe[(1 — an) (I = pA* (I = Pq) A)] xn,n > 0, (4.9)

where {o,,} € (0, 1) such that (C1)-(C3).

Applying Theorem 4.1, we obtain the following result which improve the corre-
sponding results of Xu [23] and Wang and Xu [18].

Theorem 4.2. Assume that the split feasibility problem (4.5) is consistent. In addition,
if 0 € Cor Cis closed convex cone. Let the sequence {x,} be generated by

Xne1 = (1 — an) (APC (%0 — pA* (I = PQ) Axy) + (1 — 1) x,) , 1 > 0, (4.10)

where the sequence {c,; < (0, 1) satisfies the conditions: (i) lim ,_,.., o,= 0, (ii)
o tn =+00,A € (0,1), L € (0, 1) and u e (0, 2/p(A*A)), where p(A*A) denotes the
spectral radius of the self-adjoint operator A*A. Then the sequence {x,} converges
strongly to the minimum-norm solution of the split feasibility problem (4.5).

Proof. By the definition of the proximity function f, we have

Vf (x) = A* (I — Pq) Ax,
and Vfis Lipschitz continuous (Lemma 8.1 of [21]), i.e.,

[Vi @ =vf ()| =L]x—vy

where L = p(A*A). Then the iterative scheme (4.10) is equivalent to
X1 = (1= an) (APe (I = wVf) () + (1 = 1) ) -

Due to Theorem 4.1, we have the conclusion immediately. O

Remark 4.1. Theorem 4.2 extends the corresponding results of Wang and Xu [18]
and Xu [23] by discarding the assumption “Y 12, |ap1 — oyl < +00 or lim,, , .. (ot,/0r,
+1) =1"

Page 9 of 10
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