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Abstract

In this article, we obtain some fixed and common fixed point theorems for a class of
maps on normed Boolean vector spaces satisfying the property (E.A) without using
continuity. Our results extend and unify some known results.
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1 Introduction and preliminaries
Fixed point theory of Boolean functions has many potential applications to error-

correcting codes, to switching circuits and to the relationship between the consistency

of a Boolean equation, cryptography, convergence of some recursive parallel array pro-

cesses in Boolean arrays and many others. However, there are only a limited number

of results available in literature dealing with fixed point theory for Boolean valued

functions (see, for instance, Ghilezan [1] and Rudeanu [2]). In addition, most of these

results are in finite dimensional spaces. Recently, Rao and Pant [3] obtained some

fixed and common fixed point theorems for asymptotically regular maps on finite

dimensional normed Boolean vector spaces (for details of Boolean vector spaces, we

refer to Subrahmanyam [4,5]). The purpose of this article is to obtain some coinci-

dence and common fixed point theorems in infinite dimensional normed Boolean vec-

tor spaces for certain classes of maps without using continuity conditions. These maps

satisfy the property (E.A) introduced and studied by Aamri and Moutawakil [6] for the

first time. It is interesting to note that the above property presents a nice generaliza-

tion of non-compatible maps. Results obtained herein extend certain results of [6,7]

among others to normed Boolean vector spaces.

Definition 1.1. [6] Let X be a metric space and S, T : X ® X. Then the maps S and

T are said to satisfy the property (E.A) if there exits a sequence {xn} in X such that

lim
n→∞ Sxn = lim

n→∞ Txn = t, for some t ∈ X.

When T = I, the identity map on X, we obtain the corresponding definition for a sin-

gle map satisfying the property (E.A) (see [7]).

Example 1.2. [6]. Let X = [0, ∞) endowed with the usual metric. Define S, T : X ® X

by Sx =
x

4
and Tx =

3x
4

for all x Î X. Consider a sequence xn =
1
n
. Clearly

lim
n→∞ Sxn= lim

n→∞Txn=0, and S and T satisfy the property (E.A).
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There are maps which do not satisfy the property (E.A).

Example 1.3. [6]. Let X = [2, ∞) endowed with the usual metric. Define S, T : X ® X

by Sx = x+1 and Tx = 2x+1, for all x Î X. Suppose S and T satisfy the property (E.A),

then there exists a sequence {xn} in X satisfying lim
x→∞ Sxn = lim

x→∞ Txn = t, for some t Î X.

Therefore lim
x→∞ xn = t − 1 and lim

x→∞ xn =
t − 1
2

. Then t = 1, which is a contradiction since

1 ∉ X. Hence S and T do not satisfy the property (E.A).

The class of maps satisfying property (E.A) contains the class of the well-known

compatible maps (see Jungck [8]) as well as the class of non-compatible maps. The

property (E.A) is very useful in the study of fixed points of nonexpansive maps. In fact

the property (E.A) ensure the existence of a coincidence point for a pair of nonexpan-

sive type maps in a metric space [7].

For the completeness, we recall the certain definitions and examples from [4].

Definition 1.4. [4]. Let V = (V, +) be an additive abelian group and B = (B, +, .,′ ) a
Boolean algebra. The set V with two operations namely ‘addition’ and ‘scalar multipli-

cation’ is said to be a Boolean vector space over B (or simply, a B − vector space) if

for all x, y ∈ V and a, b ∈ B,

(i) a(x + y) = ax + ay;

(ii) (ab)x = a(bx) = b(ax);

(iii) 1x = x; and

(iv) if ab = 0, then (a + b)x = ax + bx.

The elements of V and B will be denoted respectively, by x, y, z and a, b, c (with or

without indices); the zero of V and also null-element of B will both be denoted by 0,

while the universal element (= 0’) of B will be denoted by 1.

Example 1.5. [4]. Let B be any Boolean algebra and V be the additive group of the

corresponding Boolean ring; then V is a B − vector space if we define: For a ∈ B and

x ∈ V, ax = the (Boolean) product of a and x in B.

Example 1.6. [4]. Let R be any Ring with unity element 1 and let B denotes the set

of all the central idempotents of R; then it is known that (B,∪,∩,′ ) is a Boolean alge-

bra, where, by definition, a ∪ b = a + b - ab, a ∩ b = ab and a’ = 1 - a. If V is the

additive group of the ring R, and for a ∈ B and x ∈ V, ax = the product of a and x in

R, then V is a Boolean vector space over (B,∪,∩,′ ).
Definition 1.7. [4]. A Boolean vector space V over a Boolean algebra B is said to be

B-normed (or simply, normed) if and only if there exists a map ║.║ (called norm):

V → B such that

(i) ║x║ = 0 if and only if x = 0, and

(ii) ║ax║ = a║x║ for all a ∈ B and x ∈ V.

In view of [[4], Corollary 3.2] we note the following.

Let V be a B-normed vector space and V × V → B then d(x, y) = ║x - y║ defines a

Boolean metric on V, i.e.,

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) and

(iii) d(x, z) <d(x, y) + d(y, z).

Definition 1.8. [4]. Let B be a s-complete (= countably complete) Boolean algebra.

If {an} is a sequence of elements of B, we define:
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lim inf an = ∪k≥1∩n≥kan; and lim sup an = ∩k≥1∪n≥kan;

and if

lim inf an = a = lim sup an,

then we say that an converges to a, and will be written as an ® a. A sequence {an}

in B is a Cauchy sequence if and only if d*(an, am) ® 0, where d* is the Boolean

metric on B defined by d*(a, b) = a’b + ab’.

Definition 1.9. [4]. If {xn} is a sequence of elements of V, we say that xn ® x

(x ∈ V) if and only if ║xn - x║ ® 0; and a sequence {xn} in V is Cauchy if and only

if ║xn - xm║ ® 0.

The following definition is the consequence of Definitions 1.1 and 1.4.

Definition 1.10. Let V be a normed Boolean vector space and S,T : V → V. Then

the maps S and T are said to satisfy the property (E.A) if there exits a sequence {xn}

in V such that

lim
n→∞ Sxn = lim

n→∞ Txn = t, for some t ∈ V.

2 Main results
Let V be a normed Boolean vector space and T : V → V. A point z ∈ V is called a

fixed point of T, if Tz = z. The point z is called a coincidence point of S,T : V → V, if

Sz = Tz and a common fixed point, if z = Sz = Tz.

For the sake of brevity, we shall use the following denotations:

d
(
x, y

)
:=

∥∥x − y
∥∥ ;

m
(
x, y

)
:= max

{
d
(
x, y

)
, d (x,Tx) , d

(
y,Ty

)
, d(x,Ty), d

(
y,Tx

)}
;

M
(
x, y

)
:= max

{
d
(
Tx,Ty

)
, d (Tx, Sx) , d

(
Ty, Sy

)
, d

(
Tx, Sy

)
, d

(
Ty, Sx

)}

g
(
x, y

)
:= d

(
x, y

)
+ d (x, Sx) + d

(
y, Sy

)

G
(
x, y

)
:= d

(
Sx, Sy

)
+ d (Sx,Tx) + d

(
Sy,Ty

)
.

Let F denotes the class of all functions ψ : B → B satisfying:

(i) ψ is continuous;

(ii) ψ(a) <a’.

Example 2.1. Let A be a non-empty set and B the class of all subsets of A with three

set operation ∩, ∪, ‘ (union, intersection, and complement). Then B defines a Boolean

algebra. Now, let ϕ : B → B be the function defined by

ϕ(a) = a − 1for all a ∈ B,
where 1 denotes the universal element of B. Then � Î F.

Now we obtain a coincidence theorem for a pair of self-maps on a normed Boolean

vector space.

Theorem 2.2. Let Vbe a normed Boolean vector space and S,T : V → Vsuch that

(A) SV ⊆ TV
(B) the maps S and T satisfy the property (E.A);

(C) d(Sx, Sy) = ψ(M(x, y)) for all x, y ∈ V, where ψ Î F.

If SV or TV is a complete subspace of V then S and T have a coincidence in V.
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Further, S and T have a unique common fixed point provided that SSu = Su and S

and T commute at the coincidence point.

Proof. Since the maps S and T satisfy the property (E.A) there exits a sequence {xn} in

V such that

lim
n→∞ Sxn = lim

n→∞ Txn = t, for some t ∈ V.

Suppose TV is a complete subspace of V then there exists a point u ∈ V such that

Tu = t.

Using (C), we get

d(Sxn, Su) = ϕ(M(xn, u))

= ψ(max
{
d (Txn,Tu) , d (Txn, Sxn) , d(Tu, Su), d (Txn, Su) , d (Tu, Sxn)

}
).

Making n ® ∞, we obtain d(Su, Tu) = ψ(d(Su, Tu)) < (d(Su, Tu))’. Which follows

that Su = Tu and u is a coincidence point of S and T.

Further, if SSu = Su, and the maps S and T commute at their coincidence point u

then Su = STu = TSu and Su is a common fixed point of S and T.

The case in which SV is a complete subspace of V, the condition SV ⊆ TV implies

that there exists a point u ∈ V such that Tu = t and the previous proof works.

To prove the uniqueness of common fixed point, we suppose z1, z2 are two common

fixed points of S and T. Then Sz1 = Tz1 = z1 and Sz2 = Tz2 = z2. Using the condition (C)

d (z1, z2) = d (Sz1, Sz2) = ψ (M (z1, z2)) < (d (z1, z2))
′.

Which follows that z 1 = z2. □
Corollary 2.3. Let V be a complete normed Boolean vector space and S : V → V

such that

(I) S satisfies the property (E.A)

(II) d(Sx, Sy) = ψ(m(x, y)) for all x, y ∈ V, where ψ Î F.

Then S has a unique fixed point.

Proof. This comes from Theorem 2.2 when T is an identity map on V. □
Theorem 2.4. Let Vbe a normed Boolean vector space and S,T : V → Vsuch that

(A) SV ⊆ TV
(B) the maps S and T satisfy the property (E.A);

(C) d(Sx, Sy) = ψ(G(x, y)) for all x, y ∈ V, where ψ Î F.

If SV or TV is a complete subspace of V then S and T have a coincidence in V.

Further, S and T have a unique common fixed point provided that SSu = Su and S

and T commute at the coincidence point.

Proof. Since the maps S and T satisfy the property (E.A) there exits a sequence {xn} in

V such that

lim
n→∞ Sxn = lim

n→∞ Txn = t, for some t ∈ V.

Suppose TV is a complete subspace of V then there exists a point u ∈ V such that

Tu = t.

Using (C), we get

d (Sxn, Su) = ψ (G (xn, u))

= ψ (d (Txn,Tu) + d (Txn, Sxn) + d (Tu, Su)) .
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Making n ® ∞, we obtain d(Su, Tu) = ψ(d(Su, Tu)) < (d(Su, Tu))’. Which follows

that Su = Tu and u is a coincidence point of S and T.

Further, if SSu = Su, and the maps S and T commute at their coincidence point u

then Su = STu = TSu and Su is a common fixed point of S and T.

The case in which SV is a complete subspace of V, the condition SV ⊆ TV implies

that there exists a point u ∈ V such that Tu = t and the previous proof works.

To prove the uniqueness of common fixed point, we suppose z1, z2 are two common

fixed points of S and T. Then Sz1 = Tz1 = z1 and Sz2 = Tz2 = z2. Using the condition

(C)

d (z1, z2) = d (Sz1, Sz2) = ψ (G (z1, z2)) < (d (z1, z2))
′.

Which follows that z1 = z2. □
Corollary 2.5. Let V be a complete normed Boolean vector space and S : V → V

such that

(I) S satisfies the property (E.A);

(II) d(Sx, Sy) = ψ(g(x, y)) for all x, y ∈ V, where ψ Î F.

Then S has a unique fixed point.

Proof. This comes from Theorem 2.4 when T is an identity map on V. □
Now we present an example to illustrate our results.

Example 2.6. Let A be a non-empty set and B the class of all subsets of A. Then the

class B with three set operation +, •, ‘ (union, intersection, and complement) defines a

Boolean algebra. Further, this class B with the set operation “exclusive-or addition” ⊕
(symmetric difference of sets) defines a Boolean ring. Let V = (V,⊕) be the additive

abelian group of this Boolean ring. For a in B and x in V, we define ax = a • x (the

Boolean) product of a and x in B. Then V is a Boolean vector space over B.

Let S,T : V → V be self-maps defined by

Tx = x and Sx = ξ for all x ∈ V (ξ is some element in?) .

Let ψ : B → B defined by �(a) = a - 1 for all a ∈ B, where ‘1’ is the universal ele-

ment of B.

Now there exists a sequence {xn} in V defined by xn = ξ for all n = 1, 2,..., such that

lim
n→∞ Sxn = lim

n→∞ Txn = ξ .

Further, SV ⊂ TV and
∥
∥Sx − Sy

∥
∥ = ‖0‖ = ψ

(
M

(
x, y

))
,

where ║•║ is any norm defined on V. Thus all the hypotheses of Theorem 2.2 are

satisfied and ξ is a common fixed point of S and T.

Acknowledgements
The authors would like to thank the referees for their constructive comments and useful suggestions.

Author details
1Department of Mathematics, Walter Sisulu University, Mthatha 5117, South Africa 2Department of Mathematics, Pure
& Applied, Rhodes University, Grahamstown 6140, South Africa

Authors’ contributions
All authors contributed, read and approved the final manuscript.

Mishra et al. Fixed Point Theory and Applications 2012, 2012:47
http://www.fixedpointtheoryandapplications.com/content/2012/1/47

Page 5 of 6



Competing interests
The authors declare that they have no competing interests.

Received: 16 July 2011 Accepted: 23 March 2012 Published: 23 March 2012

References
1. Ghilezan, C: Some fixed point theorems in Boolean Algebra. Publ Inst Math (Beograd). 28(42), 77–82 (1980)
2. Rudeanu, S: Boolean transformations with unique fixed points. Math Slovaca. 57, 1–10 (2007). doi:10.2478/s12175-007-

0010-y
3. Rao, DPRVS, Pant, R: Fixed point theorems in Boolean vector spaces. Nonlinear Anal. 74, 5383–5387 (2011). doi:10.1016/j.

na.2011.05.021
4. Subrahmanyam, NV: Boolean vector spaces-I. Math Z. 83, 422–433 (1964). doi:10.1007/BF01111003
5. Subrahmanyam, NV: Boolean vector spaces-II. Math Z. 87, 401–419 (1965). doi:10.1007/BF01111721
6. Aamri, M, Moutawakil, DEl: Some new fixed point theorem under strict contractive conditions. J Math Anal Appl. 270,

181–188 (2002). doi:10.1016/S0022-247X(02)00059-8
7. Pant, RP: Fixed points of nonexpansive mappings and a generalized notion of compactness. Bull Cal Math Soc. 99(1),

45–52 (2007)
8. Jungck, G: Compatible mappings and common fixed points. Internat J Math Math Sci. 9(4), 771–779 (1986). doi:10.1155/

S0161171286000935

doi:10.1186/1687-1812-2012-47
Cite this article as: Mishra et al.: Fixed point theorems for a class of maps in normed Boolean vector spaces.
Fixed Point Theory and Applications 2012 2012:47.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Mishra et al. Fixed Point Theory and Applications 2012, 2012:47
http://www.fixedpointtheoryandapplications.com/content/2012/1/47

Page 6 of 6

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction and preliminaries
	2 Main results
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

