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Abstract

Best proximity point theorems unravel the techniques for determining an optimal
approximate solution, designated as a best proximity point, to the equation Tx = x
which is likely to have no solution when T is a non-self mapping. This article
presents best proximity point theorems for new classes of non-self mappings, known
as generalized proximal contractions, in the setting of metric spaces. Further, the
famous Banach’s contraction principle and some of its generalizations and variants
are realizable as special cases of the aforesaid best proximity point theorems.
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1 Introduction
Fixed point theory focusses on the strategies for solving non-linear equations of the

kind Tx = x in which T is a self mapping defined on a subset of a metric space, a

normed linear space, a topological vector space or some pertinent framework. But,

when T is not a self-mapping, it is plausible that Tx = x has no solution. Subsequently,

one targets to determine an element x that is in some sense close proximity to Tx. In

fact, best approximation theorems and best proximity point theorems are suitable to

be explored in this direction. A well known best approximation theorem, due to Fan

[1], ascertains that if K is a non-empty compact convex subset of a Hausdorff locally

convex topological vector space E and T : K ® E is a continuous non-self mapping,

then there exists an element x in such a way that d(x, Tx) = d(Tx, K). Several authors,

including Prolla [2], Reich [3] and Sehgal and Singh [4,5], have accomplished exten-

sions of this theorem in various directions. Moreover, a result that unifies all such best

approximation theorems has been obtained by Vetrivel et al. [6].

Despite the fact that the best approximation theorems are befitting for furnishing an

approximate solution to the equation Tx = x, such results may not afford an approxi-

mate solution that is optimal. On the other hand, best proximity point theorems offer

an approximate solution that is optimal. Indeed, a best proximity point theorem details

sufficient conditions for the existence of an element x such that the error d(x, Tx) is

minimum. A best proximity point theorem is fundamentally concerned with the global

minimization of the real valued function x ® d(x, Tx) that is an indicator of the error

involved for an approximate solution of the equation Tx = x. Because of the fact that,
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for a non-self mapping T : A ® B, d(x, Tx) is at least d(A, B) for all x in A, a best

proximity point theorem ensures global minimum of the error d(x, Tx) by confining

an approximate solution x of the equation Tx = x to comply with the condition that d

(x, Tx) = d(A, B). Such an optimal approximate solution of the equation Tx = x is said

to be a best proximity point of the non-self mapping T : A ® B. Moreover, it can be

seen that best proximity point theorems emerge as a natural extension of fixed point

theorems, since a best proximity point boils down to a fixed point when the underlying

mapping turns out to be a self-mapping.

A best proximity point theorem for contraction has been explicated in [7]. The exis-

tence of a best proximity point for proximal pointwise contractions has been probed

by Anuradha and Veeramani [8]. Furthermore, many best proximity point theorems

for several variants of contractions have been analyzed in [9-15]. Anthony Eldred et al.

[16] have established a best proximity point theorem for relatively non-expansive map-

pings, a different treatment to which has been furnished in [17]. A best proximity

point theorem for contractive mappings has been presented in [18]. Some interesting

common best proximity point theorems have been explored in [19,20]. Also, best

proximity point theorems for various kinds of multi-valued mappings have been

accomplished in [21-31].

The primary objective of this article is to provide best proximity point theorems for

generalized proximal contractions of the first and the second kinds in the setting of

complete metric spaces, thereby ascertaining an optimal approximate solution to the

equation Tx = x, where T : A ® B is a generalized proximal contraction of the first

kind or a generalized proximal contraction of the second kind. It is remarked that the

preceding best proximity point theorems include the well-known Banach’s contraction

principle and some of its generalizations and variants as special cases.

2 Preliminaries
Given non-void subsets A and B of a metric space, this section recalls the following

notations and notions that will be used in the sequel.

d(A,B) := inf
{
d(x, y) : x ∈ A and y ∈ B

}
A0 :=

{
x ∈ A : d(x, y) = d(A,B) for some y ∈ B

}
B0 :=

{
y ∈ B : d(x, y) = d(A,B) for some x ∈ A

}
If A and B are closed subsets of a normed linear space such that d(A, B) > 0, then A0

and B0 are contained in the boundaries of A and B respectively [26].

Definition 2.1. A mapping T : A ® B is said to be a generalized proximal contrac-

tion of the first kind if there exist non-negative numbers a, b, g, δ with a + b + g + 2δ

< 1 such that the conditions

d(u1,Tx1) = d(A,B) and d(u2,Tx2) = d(A,B)

imply the inequality that

d(u1, u2) ≤ αd(x1, x2) + βd(x1, u1) + γ d(x2, u2) + δ
[
d(x1, u2) + d(x2, u1)

]
for all u1, u2, x1, x2 in A.

If T is a self-mapping on A, then the requirement in the preceding definition reduces

to the condition that
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d(Tx1,Tx2) ≤ αd(x1, x2) + βd(x1,Tx1) + γ d(x2,Tx2) + δ
[
d(x1,Tx2) + d(x2,Tx1)

]
Definition 2.2. A mapping T : A ® B is said to be a generalized proximal contrac-

tion of the second kind if there exist non-negative numbers a, b, g, δ with a + b + g +
2δ <1 such that the conditions

d(u1,Tx1) = d(A,B) and d(u2,Tx2) = d(A,B)

imply the inequality

d(Tu1,Tu2) ≤ αd(Tx1,Tx2) + βd(Tx1,Tu1) + γ d(Tx2,Tu2)

+δ
[
d(Tx1,Tu2) + d(Tx2,Tu1)

]
for all u1, u2, x1, x2 in A.

It is easy to see that a mapping that is a generalized proximal contraction of the sec-

ond kind is not necessarily a generalized proximal contraction of the first kind. For

instance, consider the space R2 with Euclidean metric.
Let A :=

{
(−1, x) : x ∈ R

}
Let B :=

{
(1, x) : x ∈ R

}
Let T : A ® B be defined as

T((−1, x)) =
{
(1, 1) if x is rational
(1,−1) otherwise

Then, T is a generalized proximal contraction of the second kind but not a general-

ized proximal contraction of the first kind. Further, it can be observed that the general-

ized proximal contractions are not necessarily continuous.

Definition 2.3. The set B is said to be approximatively compact with respect to A if

every sequence {yn} of B satisfying the condition that d(x, yn) ® d(x, B) for some x in

A has a convergent subsequence.

It is obvious that any compact set is approximatively compact, and that any set is

approximatively compact with respect to itself. Further, if A is compact and B is

approximatively compact with respect to A, then it is ensured that A0 and B0 are non-

empty. In the setting of reflexive Banach spaces, if A is a non-void, closed, bounded

and convex subset and B is a non-void, closed and convex subset, then it is guaranteed

that A0 and B0 are non-void [24].

3 Generalized proximal contractions
The following main result is a best proximity point theorem for non-self generalized

proximal contractions of the first kind, which are not necessarily continuous.

Theorem 3.1. Let A and B be non-void, closed subsets of a complete metric space

such that B is approximatively compact with respect to A. Also, suppose that A0 and

B0 are non-void. Let T : A ® B satisfy the following conditions:

(a) T is a generalized proximal contraction of the first kind.

(b) T(A0) is contained in B0.

Then, there exists a unique element x in A such that

d(x,Tx) = d(A,B)
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Further, for any fixed element x0 Î A0, the sequence {xn}, defined by

d(xn+1,Txn) = d(A,B),

converges to the best proximity point x.

Proof. Let us select an element x0 in A0. On account of the fact T(A0) is contained

in B0, it is guaranteed that there is an element x1 in A0 satisfying the condition that

d(x1,Tx0) = d(A,B).

Further, since Tx1 is a member of T(A0) which is contained in B0, it follows that

there is an element x2 in A0 such that

d(x2,Tx1) = d(A,B).

This process can be continued further. Having chosen xn in A0, it is ascertained that

there exists an element xn+1 in A0 satisfying the condition that

d(xn+1,Txn) = d(A,B),

for every non-negative integer n because of the hypothesis that T(A0) is contained in

B0. In view of the fact T is a generalized proximal contraction of the first kind, we

have that

d(xn, xn+1) ≤ αd(xn−1, xn) + βd(xn−1, xn) + γ d(xn, xn+1) + δd(xn−1, xx+1)

≤ αd(xn−1, xn) + βd(xn−1, xn) + γ d(xn, xn+1)

+ δ
[
d(xn−1, xn) + d(xn, xn+1)

]
As a consequence, we get

d (xn, xn+1) ≤ kd (xn−1, xn)

where the constant k =
(α + β + δ)
(1 − γ − δ)

is strictly less than 1. Therefore, {xn} is a Cauchy

sequence. Because the space is complete, the sequence {xn} converges to some element

x in A.

Furthermore, d(x,B) ≤ d(x,Txn) ≤ d(x, xn+1) + d(xx+1,Txn)

= d(x, xn+1) + d(A,B)

≤ d(x, xn+1) + d(x,B).

Therefore, d(x, Txn) ® d(x, B). In light of the fact that B is approximatively compact

with respect to A, the sequence {Txn} has a subsequence
{
Txnk

}
converging to some

element y in B. So, it results that

d(x, y) = lim
n→∞ d(xnk+1,Txnk) = d(A,B),

and hence x must be a member of A0. Because of the fact that T(A0) is contained in

B0,

d(u,Tx) = d(A,B)

for some element u in A. Since T is a generalized proximal contraction of the first

kind, it follows that
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d(u, xn+1) ≤ αd(x, xn) + βd(u, x) + γ d(xn, xn+1) + δ
[
d(x, xn+1) + d(xn, u)

]
.

Letting n ® ∞,

d(u, x) ≤ (β + δ)d(u, x),

which in turn necessitates that x and u must be identical. Thus, it follows that

d(x,Tx) = d(u,Tx) = d(A,B).

Suppose that there is another best proximity point x* of the mapping T so that

d(x∗,Tx∗) = d(A,B).

As T is a generalized proximal contraction of the first kind,

d(x, x∗) ≤ (α + 2δ)d(x, x∗).

Consequently, x and x* must be identical. Hence, T has a unique best proximity

point. This completes the proof of the theorem.

The preceding best proximity point theorem subsumes the following result which

serves as a non-self mapping analogue of the famous Banach’s contraction principle.

Corollary 3.2. Let A and B be non-empty, closed subsets of a complete metric space

such that B is approximatively compact with respect to A. Further, assume that A0 and

B0 are non-void. Let T : A ® B satisfy the following conditions:

(a) There exists a non-negative real number a < 1 such that, for all u1, u2, x1, x2 in

the domain A,

d(u1,Tx1) = d(A,B)

d(u2,Tx2) = d(A,B)

}
⇒ d(u1, u2) ≤ αd(x1, x2).

(b) T(A0) ⊆ B0.

Then, there exists a unique element x Î A such that

d(x,Tx) = d(A,B)

Further, for any fixed element x0 Î A0, the sequence {xn}, defined by

d(xn+1,Txn) = d(A,B),

converges to the best proximity point x.

The best proximity point Theorem 3.1 includes the following fixed point theorem as

a special case.

Corollary 3.3. Let T be a self-mapping on a complete metric space. Further, let us

assume that there exist non-negative real numbers a, b, g, δ with a + b + g + 2δ < 1

such that

d(Tx1,Tx2) ≤ αd(x1, x2) + βd(x1,Tx1) + γ d(x2,Tx2) + δ
[
d(x1,Tx2) + d(x2,Tx1)

]
(3)
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for all x1, x2 in the domain of the mapping T. Then the mapping T has a unique

fixed point.

The following main result is a best proximity point theorem for non-self generalized

proximal contractions of the second kind.

Theorem 3.4. Let A and B be non-void, closed subsets of a complete metric space

such that A is approximatively compact with respect to B. Also, suppose that A0 and

B0 are non-void. Let T: A ® B satisfy the following conditions:

(a) T is a continuous generalized proximal contraction of the second kind.

(b) T(A0) is contained in B0.

Then, there exists an element x in A such that

d(x,Tx) = d(A,B),

and the sequence {xn} converges to the best proximity point x, where x0 is any fixed

element in A0 and d(xn+1, Txn) = d(A, B) for n ≥ 0.

Further, if x* is another best proximity point of T, then Tx = Tx*, and hence T is a

constant on the set of all best proximity points of T.

Proof. Proceeding as in Theorem 3.1, it is possible to find a sequence {xn} in A0 such

that

d(xn+1,Txn) = d(A,B)

for all non-negative integral values of n. In view of the fact that T is a generalized

proximal contraction of the second kind,

d(Txn,Txn+1) ≤ αd(Txn−1,Txn) + βd(Txn−1,Txn) + γ d(Txn,Txn+1)

+δd(Txn−1,Txn+1)

≤ αd(Txn−1,Txn) + βd(Txn−1,Txn) + γ d(Txn,Txn+1)

+δ
[
d(Txn−1,Txn) + d(Txn,Txn+1)

]
.

As a result,

d(Txn,Txn+1) ≤ kd(Txn−1,Txn)

where the constant k =
(α + β + δ)
(1 − γ − δ)

is strictly less than 1. Eventually, {Txn} is a Cau-

chy sequence. Since the space is complete, the sequence {Txn} converges to some ele-

ment y in B.

Moreover, d(y,A) ≤ d(y, xn+1) ≤ d(y,Txn) + d(Txn, xn+1)

= d(y,Txn) + d(A,B)

≤ d(y,Txn) + d(y,A).

Thus, d(y, xn) ® d(x,B). In view of the fact that A is approximatively compact with

respect to B, the sequence {xn} has a subsequence
{
xnk

}
converging to some element x

in A. Since T is a continuous mapping,

d(x,Tx) = lim
n→∞ d(xn+1,Txn) = d(A,B).
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Let us assume that there is another best proximity point x* in A so that

d(x∗,Tx∗) = d(A,B).

Because T is a generalized proximal contraction of the second kind,

d(Tx,Tx∗) ≤ (α + 2δ)d(Tx,Tx∗),

which mandates that Tx = Tx*. This completes the proof of the theorem.

The preceding best proximity point theorem contains the following result which

serves as a non-self mapping analogue of the famous Banach’s contraction principle.

Corollary 3.5. Let A and B be non-empty, closed subsets of a complete metric space

such that A is approximatively compact with respect to B. Further, assume that A0 and

B0 are non-void. Let T : A ® B satisfy the following conditions:

(a)There exists a non-negative real number a < 1 such that, for all u1, u2, x1, x2 in

the domain A,

d(u1,Tx1) = d(A,B)

d(u2,Tx2) = d(A,B)

}
⇒ d(Tu1,Tu2) ≤ αd(Tx1,Tx2)

(b)T is continuous.

(c)T(A0) ⊆ B0.

Then, there exists an element x Î A such that

d(x,Tx) = d(A,B)

If x* is another best proximity point of T, then Tx = Tx*.

sFurther, for any fixed element x0 Î A0, the sequence {xn}, defined by

d(xn+1,Txn) = d(A,B),

converges to a best proximity point of the mapping T.

The following best proximity point theorem is for non-self mappings which are gen-

eralized proximal contractions of the first kind as well as generalized proximal contrac-

tions of the second kind without the assumption of approximatively compactness of

the domains or the co-domains of the mappings.

Theorem 3.6. Let A and B be non-void, closed subsets of a complete metric space.

Also, suppose that A0 and B0 are non-void. Let T : A ® B satisfy the following condi-

tions:

(a)T is a generalized proximal contraction of the first kind as well as a generalized

proximal contraction of the second kind.

(b)T(A0) is contained in B0.

Then, there exists a unique element x in A such that

d(x,Tx) = d(A,B),
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and the sequence {xn} converges to the best proximity point x, where x0 is any fixed

element in A0 and d(xn+1, Txn) = d(A, B) for n ≥ 0.

Proof. Proceeding as in Theorem 3.1, it is possible to find a sequence {xn} in A0 such

that

d(xn+1,Txn) = d(A,B)

for all non-negative integral values of n. As in Theorem 3.1, it can be shown that the

sequence {xn} is a Cauchy sequence and hence converges to some element x in A.

Further, as in Theorem 3.4, it can be asserted that the sequence {Txn} is a Cauchy

sequence and hence converges to some element y in B. Therefore, it follows that

d(x, y) = lim
n→∞ d(xn+1,Txn) = d(A,B).

Eventually, x becomes an element of A0. In light of the fact that T(A0) is contained in

B0,

d(u,Tx) = d(A,B)

for some element u in A. Since T is a generalized proximal contraction of the first

kind, it can be seen that

d(u, xn+1) ≤ αd(x, xn) + βd(u, x) + γ d(xn, xn+1) + δ
[
d(x, xn+1)d(xn, u)

]
.

Letting n ® ∞, d(u, x) ≤ (b + δ)d(u, x), which implies that x and u must be identical.

Thus, it follows that

d(x,Tx) = d(u,Tx) = d(A,B).

Also, the uniqueness of the best proximity point of the mapping T follows as in The-

orem 3.1. This completes the proof of the theorem.
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