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Abstract

In this article, the solvability of generalized vector equilibrium problem (GVEP) with
set-valued mapping in reflexive Banach spaces is considered. Under suitable
conditions, we establish a link between SK and SDK,loc for the GVEP. Furthermore, new
sufficient conditions are provided for the nonemptiness and boundedness of the
solution set of the GVEP if it is strictly feasible in the strong sense. The new results
extend and improve some existence theorems for vector equilibrium problem in
some sense.
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1 Introduction
Let X be a real reflexive Banach space and U be a metric space, and K ⊆ X, D ⊆ U be

two nonempty and closed sets. Let T: K ®2D be a nonempty-compact-valued mapping,

i.e., T(x) is a nonempty compact subset for any x Î K, and upper semicontinuous on

K. Let F:D × K × K × Y bea vector-valued map, where Y is a real normed space with

an ordered cone C, that is, a proper, closed and convex cone such that int C �=� 0 . The
generalized vector equilibrium problem [1], abbreviated by GVEP, is to find x̄ ∈ K

and ū ∈ T(x̄) such that

(GVEP) F(ū, x̄, y) /∈ −int C, ∀y ∈ K.

The GVEP includes vector optimization problem, vector variational inequality pro-

blem, vector complementarity problem, vector Nash equilibrium problem, and fixed

point problem, which has made notable influence in several branches of pure and

applied sciences.

For the GVEP, its dual problem is to find x̄ ∈ K such that

(DGVEP) F(υ, y, x̄) /∈ int C, ∀y ∈ K, υ ∈ T(y).

Throughout this article, we denote the solution set of the GVEP and the solution set

of the DGVEP by SK and SDK , respectively.
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According to the definition of local solution of the dual problem for the equilibrium

problem introduced in [2], we use

SDK,loc =
{
x ∈ K : ∃r > 0, F(υ, y, x) /∈ int C, ∀y ∈ K, υ ∈ T(y),

∥∥y − x
∥∥ < r

}
to denote the local solutions of the DGVEP. Obviously,

SDK ⊆ SDK,loc.

It is well known that the solvability of the (vector) equilibrium problem is an impor-

tant issue. Based on the coercivity assumption, the existence of solution for (vector)

equilibrium problem received much attention of researchers, see e.g., [1-8]. For the

vector equilibrium problem, Bianchi discussed the existence of solution under the con-

dition that F is pseu-domonotone or quasimonotone [3]. Later, Gong established the

existence of the solution for strong vector equilibrium problem via the separation theo-

rem for convex sets [6]. Recently, Long considered the existence, connectedness, and

compactness of the solutions for vector equilibrium problem [8-10]. In this article,

motivated by the work of Bianchi for equilibrium problem [2], we establish the relation

between SK and SDK,loc for the GVEP.

It should be noted that for the vector equilibrium problem, the existence of solution

can also be established on the strict feasibility condition which was originally used in

scalar variational inequality and vector variational inequality [11-14], and this can be

extended to the scalar equilibrium problem by establishing solvability of a scalar

monotone equilibrium problem when it is strictly feasible [15]. On other way, Hu and

Fang [16] generalized the concept of strict feasibility to the vector equilibrium problem

and established the nonemptiness and boundedness of the solution set for C-pseudo-

monotone vector equilibrium problem under suitable conditions. In this article, we

establish the nonemptiness and boundedness of the solution set for the GVEP under a

relatively weaker condition.

In summary, in this article, we first establish the relation SK and SDK,loc for the GVEP

under suitable conditions, and then establish the equivalence between solution set of

the GVEP and solution set of the DGVEP. In addition, some new sufficient conditions

are presented for the nonemptiness and boundedness of the solution set for the GVEP

are proposed under the condition that it is strictly feasible in the strong sense.

2 Notations and preliminaries
In this section, we mainly give some notations and some preliminary results needed in

the following.

Definition 2.1 Let K be a nonempty convex subset of X and C be a closed convex

cone in real normed space Y.

(i) The mapping F: K ® Y is said to be C-convex if

αF(x) + (1 − α)F(y) ∈ F(αx + (1 − α)y) + C, ∀x, y ∈ K, α ∈ [0, 1].
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(ii) The mapping F: K ® Y is said to be C-quasiconvex if the set {x Î K | F(x) Î a-

C} is convex for any a Î Y.

The mapping F: K ® Y is said to be C-explicitly quasiconvex if F is quasiconvex and

F(y) − F(x) ∈ int C ⇒ F(y) − F(tx + (1 − t)y) ∈ int C, ∀x, y ∈ K, t ∈ (0, 1).

(iii) [3]The mapping F: K ® Y is said to be C-lower semicontinuous if the set {x Î K

| F(x) -a ∉ int C} is closed on K for any a Î Y. F is said to be weakly C-lower semi-

continuous if F is C-lower semicontinuous with respect to the weak topology of X.

The map F is said to be weakly lower semicontinuous on K if it is weakly lower

semicontinuous onK.

(iv) The mapping F: D × K × K®Y is said to be generalized hemicontinuous if the

map t ® F(ut, x + t(y-x),y) is continuous at 0+ for any x,yÎ K and ut Î T(x + t(y-

x)).

(v) The mapping F: D × K × K®Y is said to be C-pseudomonotone if for all x,yÎ K,

uÎ T(x),vÎ T(y),

∃u ∈ T(x) such that F(u, x, y) /∈ −int C ⇒ ∀υ ∈ T(y) such that F(υ, y, x) /∈ int C,

or equivalently,

∃υ ∈ T(y) such that F(υ, y, x) ∈ int C ⇒ ∀u ∈ T(x) such that F(u, x, y) ∈ −int C.

(vi) The asymptotic cone K∞ and barrier cone barr(K) of K are, respectively defined

by

K∞ =
{
d ∈ X|∃tk → +∞, ∃xk ∈ K with

xk
tk

⇀ d
}

and

barr(K) =
{
x∗ ∈ X∗|supx∈K

〈
x∗, x

〉
< +∞}

,

where X* denotes the dual space of X and ⇀ stands for the weak convergence.

Remark 2.1 The explicit quasiconvexity of the function F(.) implies that [3]

(a) for all c ∉ C, the set {y Î K | F(y) ≤C c} is convex;

(b) if F(z) - F(y) Î int C and F(z) ∉ int C, then F(z) - F(zt) Î int C, for z = ty + (1 -

t)z,tÎ (0,1).

The asymptotic cone K∞ has the following useful properties [3,17].

Lemma 2.1 Let K ⊂ X be nonempty and closed. Then the followings hold:

(i) K∞ is a closed cone;

(ii) if K is convex, then K∞ = {d Î X | K + d ⊂ K} = {d Î X | x + td Î K, ∀ t >0},

where x Î K is arbitrary point;
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(iii) if K is convex cone, then K∞ = K.

Lemma 2.2 Let a,bÎY be such that a Î-int C and b ∉ C. Then, the set of upper

bounds of a and b is nonempty and intersects with Y\C.

Definition 2.2 The GVEP is said to be strictly feasible in the strong sense if � +
s �=� 0,

where

� +
s =

{
x ∈ K|F(u, x, x + y) ∈ int C, ∀y ∈ K∞\ {0} , u ∈ T(x)

}
.

Definition 2.3 [18]A set-valued map F: E ® 2X is said to be KKM mapping if

co� ⊆ ∪n
i=1F(xi)(xi) for each finite set Λ = x1,..., xn ⊆ E, where co(.) stands for the con-

vex hull.

The main tools for proving our results are the following well-known KKM theorems.

Lemma 2.3 [19]For topological vector space X, let E ⊆ X be a nonempty convex and

F: E ® 2X be a KKM mapping with closed values. If there is a subset X0 contained in a

compact convex subset of E such that ∩xÎX0
F(x) is compact, then ∩x∈EF(x) �= � 0 .

Definition 2.4 [20,21]Let K be a nonempty, closed and convex subset of a real reflex-

ive Banach space X with its dual X*. K is said to be well-positioned if there exist x0 Î
X and gÎX* such that〈

g, x − x0
〉 ≥ ‖x − x0‖ , ∀x ∈ K.

Lemma 2.4 [20,21]Let K be a nonempty, closed and convex subset of a real reflexive

Banach space X with its dual X*. Then K is well-positioned if and only if the barrier

cone barr(K) of K has a nonempty interior. Furthermore, if K is well-positioned then

there is no sequence {xn} ⊆ K with ║xn║® +∞ such that origin is a weak limit of{
xn

‖xn‖
}
.

Lemma 2.5 [22]Let X and Y be two metric spaces and T: X ® 2Y be a nonempty-

compact-valued mapping and upper semicontinuous at x*. Then, for any sequences xn

® x* and un Î T(xn), there exist a subsequence
{
unk

}
of {un} and some u* ® T (x*)

such that unk → u∗ .

3 Feasibility-solvability theorems for the GVEP

In this section, we mainly establish a link between SK and SDK,locof the GVEP. First, we

make the following assumptions.

Assumption 3.1 The mapping F: D × K × K®Y is such that

(i) for all xÎ K, F(u, x,x) = 0, ∀uÎ T (x);

(ii) F is generalized hemicontinuous.

Lemma 3.1 Suppose that Assumption 3.1 holds andF(u,x,.) is C-convex for all x Î K,

u Î T(x) and SDK,loc �=� 0 . Then, SDK,loc ⊆ SK .

Proof. Take x̄ ∈ SDK,loc and y Î K. From the definition of SDK,loc , there exists r >0

such that

F(υ,w, x̄) /∈ int C, ∀w ∈ K, υ ∈ T(w), ‖x̄ − w‖ < r.
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Take any ȳ ∈ (x̄, ȳ] with
∥∥x̄ − ȳ

∥∥ < r , and set yt = (1 − t)x̄ + tȳ for t Î (0,1).

Obviously,

F(υ, yt, x̄) /∈ int C, ∀υ ∈ T(yt).

Since F(u,x,.) is C-convex for all x Î K,u Î T(x), it holds that

(1 − t)F(υ, yt, x̄) + tF(υ, yt, ȳ) ∈ F(υ, yt, yt) + C.

Furthermore, it follows from F(u,x,x) = 0 that

tF(υ, yt, ȳ) ∈ −(1− t)F(υ, yt, x̄)+F(υ, yt, yt)+C ⊆ −(1− t)F(υ, yt, x̄)+C ⊆ Y\− int C.

Hence,

F(υ, yt, ȳ) /∈ −int C, ∀υ ∈ T(yt).

Letting t ® 0+, we obtain by generalized hemicontinuity of F(.,.,y) and Lemma 2.5

that there exists ū ∈ T(x̄) such that

F(ū, x̄, ȳ) /∈ −int C.

Now, we show that F(ū, x̄, y) /∈ −int C by contradiction. On the contrary, suppose

that F(ū, x̄, y) ∈ −int C , then by the C-convexity of F(u,x,.),

tF(ū, x̄, x̄) + (1 − t)F(ū, x̄, y) ∈ F(ū, x̄, tx̄ + (1 − t)y) + C, ∀t ∈ (0, 1).

It follows from F(ū, x̄, x̄) = 0 and int C + C ⊆ int C that

F(ū, x̄, tx̄+(1−t)y) ∈ tF(ū, x̄, x̄)+(1−t)F(ū, x̄, y)−C ⊆ (1−t)F(ū, x̄, y)−C ⊆ −int C,

that is,

F(ū, x̄, tx̄ + (1 − t)y) ∈ −int C, ∀t ∈ (0, 1).

Since ȳ ∈ (x̄, y] , there exists t0 such that ȳ = (1 − t0)x̄ + t0y with

F(ū, x̄, ȳ) ∈ −int C which contradicts F(ū, x̄, ȳ) /∈ −int C . So, F(ū, x̄, y) /∈ −int C .

By the arbitrariness of y Î K, we have x̄ ∈ SK and SDK,loc ⊆ SK .

Lemma 3.2 Suppose that Assumption 3.1 holds and F(u,x,.) is C-explicitly quasicon-

vex for allxÎ K,u Î T(x) and SDK,loc �=� 0 . Then, SDK,loc ⊆ SK .

Proof. Take x̄ ∈ SDK,loc and y Î K. From the definition of SDK,loc , there exists r >0

such that

F(υ,w, x̄) /∈ int C, ∀w ∈ K, υ ∈ T(w), ‖x̄ − w‖ < r.

Take any ȳ ∈ (x̄, y] with
∥∥x̄ − ȳ

∥∥ < r r, and set yt = (1 − t)x̄ + tȳ for t Î (0,1).

Obviously,

F(υ, yt, x̄) /∈ int C, ∀υ ∈ T(yt).

Now we show that F(υ, yt, ȳ) /∈ −int C, ∀υ ∈ T(yt). by contradiction. On the

contrary, suppose the conclusion does not hold, then there exists t̄ ∈ (0, 1), ū ∈ T(yt̄)

such that
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F(ū, yt̄ , ȳ) ∈ −int C.

We will break the arguments into two cases.

Case 1. If F(ū, yt̄ , x̄) ∈ ∂C ⊆ C , then

F(ū, yt̄ , x̄) − F(ū, yt̄ , ȳ) ∈ C + int C ⊆ int C,

where ∂C is the boundary of C. Since F(u,x,.) is C-explicitly quasiconvex, we have

F(ū, yt̄, x̄) − F(ū, yt̄, yt̄) ∈ int C.

It follow from F(ū, yt̄ , yt̄) = 0 that

F(ū, yt̄, x̄) ∈ int C,

which contradicts the assumption that F(ū, yt̄ , x̄) ∈ ∂C .

Case 2. If F(ū, yt̄ , x̄) /∈ C , then by Lemma 2.2, there exists p ∉ C such that

F(ū, yt̄, x̄) ≤ cp, F(ū, yt̄ , ȳ) ≤ cp.

By the quasiconvexity of F(u,x,.), one has

F(ū, yt̄ , yt̄) ≤ cp.

Noticing F(ū, yt̄ , yt̄) = 0 , we obtain that p Î C, which contradicts p ∉ C.

From Cases (1) and (2), it holds that F(υ, yt, ȳ) /∈ −int C, ∀υ ∈ T(yt). Letting t Î
0+, we obtain by generalized hemicontinuity of F(.,.,y) and Lemma 2.5 that there exists

ū ∈ T(x̄) such that

F(ū, x̄, ȳ) /∈ −int C.

Now we show that F(ū, x̄, y) /∈ −int C . Suppose on the contrary,

F(ū, x̄, y) ∈ −int C , then from the facts that F(ū, x̄, x̄) = 0, F(ū, x̄, y) ∈ −int C. , it fol-

lows that

F(ū, x̄, x̄) − F(ū, x̄, y) ∈ int C.

By the C-explicitly quasiconvexity of F(u,x,.), one has

0 − F(ū, x̄, tx̄ + (1 − t)y) ∈ int C, ∀t ∈ (0, 1).

That is,

F(ū, x̄, tx̄ + (1 − t)y) ∈ −int C, ∀t ∈ (0, 1).

Since ȳ ∈ (x̄, y]], there exists t0 such that ȳ = (1 − t0)x̄ + t0y with

F(ū, x̄, ȳ) ∈ −int C which contradicts F(ū, x̄, ȳ) /∈ −int C . So, F(ū, x̄, ȳ) /∈ −int C .

By the arbitrariness of y Î K, we have x̄ ∈ SK and SDK,loc ⊆ SK .

By virtue of C-pseudomonotonity of F, the equivalence between solution set of the

GVEP and that of the DGVEP can be established.

Theorem 3.1 Let K ⊂ X be a nonempty and convex closed bounded set and suppose

Assumption 3.1 holds. If F:D × K × K®Y satisfies the followings

(i) F is C-pseudomonotone;
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(ii) F(u,x,.) is C-convex and weakly lower semicontinuous for x Î K,u Î T(x), then

SK = SDK �=� 0 .

Proof. For any y Î K, set

�(y) =
{
x ∈ K|F(v, y, x) /∈ int C, ∀υ ∈ T(y)

}
.

We claim that Γ is a KKM mapping with closed values. Suppose on the contrary, it

does not hold, then there exists a finite set {x1,..., xn} ⊆ K and z Î co{x1,..., xn} such that

z �∈ ∪n
i=1�(xi), where co{x1,..., xn} denotes the convex hull generated by x1,..., xn. Thus,

there exists vi Î T(xi), such that F(vi, xi, z) Î int C. Since F is C-pseudomonotone, it fol-

lows that

F(w, z, xi) ∈ −int C, ∀w ∈ T(z), i = 1, 2, . . . ,n.

So,
∑n

1 tiF(w, z, xi) ∈ −int C , where
∑n

1
ti = 1, ti ≥ 0, i = 1, 2, . . . ,n For

z =
∑n

1 tixi , due to that the function F(u,x,.) is C-convex, we have

n∑
1

tiF(w, z, xi) ∈ F(w, z, z) + C ⊂ C ⊂ Y\ − int C,

which contradicts
∑n

1 tiF(w, z, xi) ∈ −int C . So, {Γ(y) |y Î K} satisfies the finite-

intersection property. In combination with the assumption in (ii), we know that Γ is a

KKM mapping with closed values. Since K ⊂ X is a nonempty and convex closed

bounded set, we deduce that K is weakly compact. From Lemma 2.3, there exists x* Î

K such that x∗ ∈ ∩y∈K�(y) = SDK . It follows from Lemma 3.1 that SDK ⊆ SDK,loc ⊆ SK .

Furthermore, SK ⊆ SDK due to the C-pseudomonotonity of the F. Thus, SK = SDK =� 0
and the proof is completed.

Theorem 3.2 Let K ⊂ X be a nonempty and convex closed bounded set and assume

Assumption 3.1 holds. If F:D × K × K®Y satisfies that

(i) F is C-pseudomonotone;

(ii) F(u, x,.) is C-explicitly quasiconvex and weakly lower semicontinuous for x Î K,

u Î T(x),

then SK = SDK =� 0 .
Proof. For any y Î K, set

�(y) =
{
x ∈ K|F(v, y, x) /∈ int C, ∀v ∈ T(y)

}
.

We claim that Γ is a KKM mapping. Suppose on the contrary, it does not hold. Then

there exists a finite set {x1,..., xn} ⊆ K and z Î co{x1,..., xn} such that z �∈ ∪n
i=1�(xi).

Thus, there exists vi Î T(xi), such that F(vi, xi, z) Î int C. Since F is C-pseudomono-

tone, it follows that

F(w, z, xi) ∈ −int C, ∀w ∈ T(z), i = 1, 2, . . . ,n.
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By the quasiconvexity of F(w,z,.), we deduce the set {y Î K | F(w,z,y) Î -int C} is

convex. For z =
∑n

1 tixi,
∑n

1 ti = 1, ti ≥ 0, i = 1, 2, . . . ,n i = 1, 2,...,n, one has

F(w, z, z) ∈ −int C,

which contradicts F(w, z, z) = 0. So, {Γ(y) | y Î K} satisfies the finite-intersection

property. By the assumption (ii), we conclude that the Γ is closed value. Hence Γ is a

KKM mapping with closed values. Following the similar arguments in the proof of

Theorem 3.1, we can obtain the desired result.

In the sequel, we shall present some sufficient conditions for the nonemptiness and

bound-edness of the solution set of the GVEP provided that it is strictly feasible in the

strong sense.

Theorem 3.3 Let K be a nonempty, closed, convex and well-positioned subset of a

real reflexive Banach space X and Assumption 3.1 hold. If F: D × K × K®Y satisfies

the followings

(i) F is C-pseudomonotone;

(ii) F(u,x,.) is C-convex and weakly lower semicontinuous for x Î K,u Î T(x), then,

the GVEP has a nonempty bounded solution set whenever it is strictly feasible in

the strong sense.

Proof. Suppose that the GVEP is strictly feasible in the strong sense. Then there

exists x0 Î K such that x0ÎΨs
+, i.e.,

F(u, x0, x0 + z) ∈ int C, ∀u ∈ T(x0), z ∈ K∞.

Set

M =
{
x ∈ K|F(u, x0, x) /∈ int C

}
, ∀u ∈ T(x0).

By Assumption 3.1 and (ii), x0 Î M and M is weakly closed. We assert that M is

bounded. Suppose on the contrary it does not holds, then there exists a sequence {xn}

⊆ M with ║xn║ ® + ∞ as n ® +∞. Since X is a real reflexive Banach space, without

loss of generality, we may take a subsequence
{
xnk

}
of {xn} such that

1∥∥xnk − x0
∥∥ ∈ (0, 1), lim

k→+∞
xnk∥∥xnk∥∥ ⇀ z ∈ K∞

and

lim
k→+∞

xnk − x0∥∥xnk − x0
∥∥ = lim

k→+∞
xnk∥∥xnk∥∥ ⇀ z ∈ K∞.

Indeed, since limk→+∞
x0∥∥xnk − x0

∥∥ = 0, there holds

limk→+∞
xnk − x0∥∥xnk − x0

∥∥ = limk→+∞
xnk∥∥xnk − x0

∥∥ − limk→+∞
x0∥∥xnk − x0

∥∥
= limk→+∞

∥∥xnk∥∥∥∥xnk − x0
∥∥ . xnk∥∥xnk∥∥ .
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Noting that∥∥xnk∥∥ − ‖x0‖∥∥xnk∥∥ ≤
∥∥xnk − x0

∥∥∥∥xnk∥∥ ≤
∥∥xnk∥∥ + ‖x0‖∥∥xnk∥∥ ,

one has limk→+∞

∥∥xnk∥∥∥∥xnk − x0
∥∥ = 1, , which yields

lim
k→+∞

xnk − x0∥∥xnk − x0
∥∥ = lim

k→+∞
xnk∥∥xnk∥∥ ⇀ z ∈ K∞.

Since K is well-positioned, by Lemma 2.4, we have z ≠ 0. It follows from x0 Î Ψs+

that

F(u, x0, x0 + z) ∈ int C.

Noting that F is C-convex, we have

F

(
u, x0, x0 +

xnk − x0∥∥xnk − x0
∥∥
)
= F

(
u, x0,

(
1 − 1∥∥xnk − x0

∥∥
)
x0 +

xnk∥∥xnk − x0
∥∥
)

∈
(
1 − 1∥∥xnk − x0

∥∥
)
F(u, x0, x0) +

1∥∥xnk − x0
∥∥F(u, x0, xnk) − C.

It follows from F(u,x0,x0) = 0 that

F

(
u, x0, x0 +

xnk − x0∥∥xnk − x0
∥∥
)

∈ 1∥∥xnk − x0
∥∥F(u, x0, xnk) − C.

By virtue of F(u, x0, xnk) /∈ int C , one has F(u, x0, xnk) ∈ Y\int C . Consequently,

F

(
u, x0, x0 +

xnk − x0∥∥xnk − x0
∥∥
)

ε
1∥∥xnk − x0

∥∥F(u, x0, xnk) − C ⊆ Y\int C − C ⊆ Y\int C,

that is,

F(u, x0, x0 +
xn − x0

‖xn − x0‖) /∈ int C.

Taking into account that F(u,x,.) is weakly lower semicontinuous, we obtain

F(u, x0, x0 + z) /∈ int C,

which contradicts F(u, x0,x0 + z)Î int C. Thus, M is bounded and so it is weakly

compact. For each p Î K, set

Mp =
{
x ∈ M|F(υ, p, x) /∈ int C

}
, υ ∈ T(p).

We assert Mp �=� 0, ∀ p Î K,v Î T(p). Indeed, given p Î K,v Î T(p), set K0 = conv

(M∪p) ⊆ K, where conv means the convex hull of a set. Then K0 is nonempty, convex

and weakly compact. By Theorem 3.1, there exists x̄ ∈ K0 such that

F(υ, y, x̄) /∈ int C, ∀y ∈ K0, υ ∈ T(p).
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Since F(u, x0, x̄) /∈ int C implies x̄ ∈ M and F(v, p, x̄) /∈ int C implies x̄ ∈ Mp , we

obtain Mp =� 0. Obviously, Mp is nonempty and weakly compact.

Next we prove that {Mp | p Î K} has the finite intersection property. For any finite

set {pi|i = 1,2,...,n}⊆K, let K1 = conv{M∪{p1,p2,..., pn}}. Then K1 is nonempty, convex

and weakly compact. By Theorem 3.1, there exists x̂ ∈ K1 such that

F(υ, y, x̂) /∈ int C, ∀y ∈ K1, υ ∈ T(y).

In particular, we have

F(u, x0x̂) /∈ int C, F(υ, pi, x̂) /∈ int C, i = 1, 2, . . . ,n.

This means that x̂ ∈ ∩n
i=1Mpi . Thus {Mp | p Î K} has the finite intersection property.

Since M is weakly compact and Mp ⊆ M is weakly closed for all p Î K, v Î T(p), it fol-

lows that

∩
u∈K

Mp �= ∅.

Let x* Î∩uÎK Mp, then

F(υ, y, x∗) /∈ int C, ∀y ∈ K, υ ∈ T(y).

By Theorem 3.1, x* is a solution of the GVEP. As for the boundedness of the solu-

tion set of the GVEP, it follows from Theorem 3.1 that the solution set of the GVEP is

a subset of M.

Remark 3.1 The authors of [16]discuss a special case of the GVEP when T(x) is sin-

gleton. In general the GVEP, the condition that F is positively homogeneous with degree

a> 0 in [16], is not easily satisfied. Compared with [16], we remove the condition that

F is positively homogeneous with degree a > 0, when F(u,x,.) is C-convex rather than C-

explicitly quasiconvex. As an application of Theorem 3.3, we can obtain the solvability

of generalized vector variational inequality under strict feasibility in the strong sense.

In the sequel, we present the new solvability condition for the GVEP, when F(u,x,.) is

C-explicitly quasiconvex. First, we present a technical lemma.

Lemma 3.3 Suppose that a,bÎY, with a = 0 and b ∉ int C. Then, there exists c ∉ int

C such that a≤cc and b ≤c c.

Proof. Since int C �=� 0 , there exists d Î int C such that d - b Î C, see [23]. For t Î
[0,1], set dt = td+(1- t)b. Since C is closed and convex, there exists t0 Î (0,1) such that

dt ∈ C, ∀t ∈ [t0, 1].

Furthermore, there exists t* Î [t0,1] such that dt. Î ∂C. That is, dt* Î C and dt* ∉ int

C. Set c = dt*. We can verify c - b = t*(d - b) Î C and c - 0 = dt* Î C.

Theorem 3.4 Let K be a nonempty, closed, convex and well-positioned subset of a

real reflexive Banach space X and Assumption 3.1 hold. If F: D × K × KÎY satisfies the

followings

(i) F is C-pseudomonotone;

(ii) F(u, x,.) is C-explicitly quasiconvex and weakly lower semicontinuous for xÎK,uÎ
T(x);
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(iii) there exists b ∉ int C such that F(u,x0,m) ≤C b for m Î M, where M is defined

in Theorem 3.3, then, the GVEP has a nonempty bounded solution set whenever it

is strictly feasible in the strong sense.

Proof. Suppose that the GVEP is strictly feasible in the strong sense. Then there

exists x0 Î K such that x0ÎΨs
+, ]i.e.,

F(u, x0, x0 + z) ∈ int C, ∀u ∈ T(x0), z ∈ K∞.

Set

D = {x ∈ K|F(u, x0, x) /∈ int C}, ∀u ∈ T(x0).

By Assumption 3.1 and assumption (ii), x0 Î D and D is weakly closed. We assert

that D is bounded. Indeed, if it is not the case, there exists a sequence {xn} ⊆ D with

║xn║ ® +∞ as n ® +∞. Without loss of generality, we may take a subsequence
{
xnk

}
of {xn} such that

1∥∥xnk − x0
∥∥ ∈ (0, 1), lim

k→+∞
xnk − x0∥∥xnk − x0

∥∥ = lim
k→+∞

xnk∥∥xnk∥∥ ⇀ z ∈ K∞.

By Lemma 2.3, z ≠ 0 since K is well-positioned. It follows from x0 Î Ψs+ that

F(u, x0, x0 + z) ∈ int C.

Since F(u,x0,x0) = 0, ∀u Î T(x) and condition (iii) holds, i.e.,

F(u, x0, xnk)≤Cb, b /∈ intC , by Lemma 3.3, there exists c ∉ int C such that

0 = F(u, x0, x0)≤Cc, F(u, x0, xnk)≤Cc.

Taking into account that F(u,x,.) is C-explicitly quasiconvex, we obtain

F

(
u, x0, x0 +

xnk − x0∥∥xnk − x0
∥∥
)
= F

(
u, x0

(
1 − 1∥∥xnk − x0

∥∥
)
x0 +

xnk∥∥xnk − x0
∥∥
)

≤Cc.

Thus, F
(
u, x0, x0 +

xn − x0
‖xn − x0‖

)
/∈ int C . Since F(u,x,.) is weakly lower semicontinu-

ous, one has

F(u, x0, x0 + z) /∈ int C

This is a contradiction to F(u,x0,x0 + z) Î int C. Thus, D is bounded and it is weakly

compact. Following the similar arguments in the proof of Theorem 3.3, we can obtain

the desired result.

Remark 3.2 Compared with [16], we substitute the condition that F is positively

homogeneous by the condition (iii), when F(u,x,.) is C-explicitly quasiconvex.

Similar to [16], we can establish the existence of the solution of the GVEP, when F is

positively homogeneous with a > 0.

Theorem 3.5 Let K be a nonempty, closed, convex and well-positioned subset of a

real reflexive Banach space X and Assumption 3.1 hold. IfF: D × K × K ® Y satisfies

the followings
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(i) F is C-pseudomonotone;

(ii)F(u,x,.) is C-explicitly quasiconvex and weakly lower semicontinuous for x Î K,u

Î T(x);

(iii) F is positively homogeneous with degree a > 0, i.e., there exists a>0 such that

F(u, x, x + t(y − x)) = tαF(u, x, y), ∀x, y ∈ K, u ∈ T(x), t ∈ (0, 1),

then, the GVEP has a nonempty bounded solution set whenever it is strictly feasible in

the strong sense.

The following example shows that the converse of Theorem 3.3 is not true in

general.

Example 3.1 Let X = R, K = R, D = [0,1],Y = R, C = R2
+and

T(x) =

{
1, if x > 0

{0, 1} if x = 0.

Let F:D × K × K ® 2Y be defined by

F(u, x, y) =

{ 〈
u, y2 − x2

〉
, ∀x, y ∈ K, u ∈ T(x),〈

u, y − x
〉
, ∀x, y ∈ K, u ∈ T(x).

It is easy to see that K is well-positioned and F satisfies assumptions of Theorem 3.3.

It can be verified that the GVEP has a nonempty bounded solution set SK = SDK = {0} .
On the other hand, it can also be verified that � +

s = � 0 .
The following example illustrates the conclusion of Theorem 3.4.

Example 3.2 Let X = R, K = (-∞, -1], D = [0,1],Y = R, C = R2
+and

T(x) =

{
1, if x < −1

{0, 1}, if x = −1.

Let F:D × K × K® 2Y be defined by

F(u, x, y) =

⎧⎨
⎩

〈
u, y2 − x2

〉
, ∀x, y ∈ K, u ∈ T(x),〈

u,
1
y

− 1
x

〉
, ∀x, y ∈ K, u ∈ T(x).

For this problem, it can be verified that K is well-positioned and F satisfies assump-

tions (i) and (ii) of Theorem 3.4 and F(u,x,.) is not C-convex. However, Theorem 3.3 is

not applicable. Furthermore, we can verify that -1 Î Ψs
+ and M = {-1}. So, there exists

0 ∉ int C such that F(u,x0,x0) ≤c 0. This means that assumptions (iii) in Theorem 3.4

holds. In summary, all the assumptions of Theorem 3.4 are satisfied for this example.

Thus, the GVEP is solvable. In fact, x* = -1 is its a solution. However, F is not posi-

tively homogeneous with a 0. Thus, Theorem 3.5 is not applicable.
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