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Abstract

Using the fixed point method, we prove the Hyers-Ulam stability of the following mixed
additive and quadratic functional equation f (kx + y) + f(kx - y) = f(x + y) + f(x - y) + (k - 1)
[(k + 2) f(x) + kf(-x)] (k Î N, k ≠ 1) in b-Banach modules on a Banach algebra.
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1 Introduction
The study of stability problems for functional equations is related to a question of

Ulam [1] concerning the stability of group homomorphisms and affirmatively answered

for Banach spaces by Hyers [2]. The result of Hyers was generalized by Aoki [3] for

approximate additive mappings and by Rassias [4] for approximate linear mappings by

allowing the Cauchy difference operator CDf (x, y) = f (x + y) - [f(x) + f(y)] to be con-

trolled by �(∥x∥p + ∥y∥p). In 1994, a further generalization was obtained by Găvruţa [5],

who replaced �(∥x∥p + ∥y∥p) by a general control function �(x,y). Rassias [6,7] treated

the Ulam-Gavruta-Rassias stability on linear and nonlinear mappings and generalized

Hyers result. The reader is referred to the following books and research articles which

provide an extensive account of progress made on Ulam’s problem during the last

seventy years (cf. [8-33]).

The functional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y) (1:1)

is related to a symmetric biadditive function [15]. It is natural that such equation is

called a quadratic functional equation. In particular, every solution of the quadratic

Equation (1.1) is said to be a quadratic function. It is well known that a function f

between real vector spaces is quadratic if and only if there exists a unique symmetric

biadditive function B such that f (x) = B (x,x) for all x (see [15]). The biadditive func-

tion B is given by B(x, y) = 1
4

(
f (x + y) + f (x − y)

)
. In [34], Czerwik proved the Hyers-

Ulam stability of the quadratic functional Equation (1.1). A Hyers-Ulam stability pro-

blem for the quadratic functional Equation (1.1) was proved by Skof for functions f :

E1 ® E2, where E1 is a normed space and E2 a Banach space (see [35]). Cholewa [36]

noticed that the theorem of Skof is still true if the relevant domain E1 is replaced by

an Abelian group. Grabiec in [37] has generalized the above mentioned results. Park
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and Rassias proved the Hyers-Ulam stability of generalized Apollonius type quadratic

functional equation (see [18]). The quadratic functional equation and several

other functional equations are useful to characterize inner product spaces (cf.

[8,24,28,29,38]).

Now we consider a mapping f : X ® Y satisfies the following additive-quadratic (AQ)

functional equation, which is introduced by Eskandani et al. (see [11]),

f (kx + y) + f (kx − y) = f (x + y) + f (x − y) + (k − 1)[(k + 2)f (x) + kf (−x)] (1:2)

for a fixed integer with k ≥ 2. It is easy to see that the function f (x) = ax2 + bx is a

solution of the functional Equation (1.2). The main purpose of this article is to prove

the Hyers-Ulam stability of an AQ-functional Equation (1.2) in b-normed left Banach

modules on Banach algebras using the fixed point method.

2 Preliminaries
Let b be a real number with 0 <b ≤ 1 and let K denotes either ℝ or ℂ. Let X be a linear

space over K. A real-valued function ∥ · ∥b is called a b-norm on X if and only if it

satisfies

(bN1) ∥x∥b = 0 if and only if x = 0;

(bN2) ∥lx∥b = |l|b ⋅ ∥x∥b for all λ ∈ K and all x Î X;

(bN3) ∥x + y∥b ≤ ∥x∥b + ∥y∥b for all x, y Î X.

The pair (X, ∥ ⋅ ∥b) is called a b-normed space (see [39]). A b-Banach space is a com-

plete b-normed space.

For explicitly later use, we recall the following result by Diaz and Margolis [40].

Theorem 2.1 Let (Ω, d) be a complete generalized metric space and J : Ω ® Ω be a

strictly contractive mapping with Lipschitz constant L < 1, that is

d(Jx, Jy) ≤ Ld(x, y), ∀x, y ∈ �.

Then, for each given x Î Ω, either

d(Jnx, Jn+1x) = ∞, ∀n ≥ 0,

or there exists a non-negative integer n0 such that

(1) d(Jn x, Jn+1 x) < ∞ for all n ≥ n0;

(2) the sequence {Jn x} is converges to a fixed point y* of J;

(3) y* is the unique fixed point of J in the set �∗ =
{
y ∈ �|d (

Jn0x, y
)

< ∞}
;

(4) d(y, y∗) ≤ 1
1−L d(y, Jy)for all y Î Ω*.

The following Lemma 2.2 and Theorem 2.3 about solutions of Equation (1.2) have

been proved in [11].

Lemma 2.2 (1) If an odd mapping f : X ® Y satisfies (1.2) for all x, y Î X, then f is

additive.

(2) If an even mapping f : X ® Y satisfies (1.2) for all x, y Î X, then f is quadratic.

Theorem 2.3 A mapping f : X ® Y satisfies (1.2) for all x, y Î X if and only if there

exist a symmetric bi-additive mapping B : X × X ® Y and an additive mapping A: X ®
Y such that f (x) = B(x, x) + A(x) for all x Î X.

3 Main results
Throughout this section, let B be a unital Banach algebra with norm | ⋅ |, B1 := {b Î B|

|b| = 1}, X be a b-normed left B-module and Y be a b-normed left Banach B-module,
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and let k Î N, k ≠ 1 be a fixed integer. For a given mapping f : X ® Y, we define the

difference operators

Dbf (x, y) := f (kbx+by)+f (kbx−by)−bf (x+y)−bf (x−y)−(k−1)b[(k+2)f (x)+kf (−x)]

and

D̃bf (x, y) := f (kbx+by)+f (kbx−by)−b2f (x+y)−b2f (x−y)−(k−1)b2[(k+2)f (x)+kf (−x)]

for all x,y Î X and b Î B1.

Theorem 3.1 Let � : X2 ® [0, ∞) be a function such that

lim
n→∞

1
knβ

ϕ(knx, kny) = 0 (3:1)

for all x, y Î X. Let f : X ® Y be an odd mapping such that∥∥Dbf (x, y)
∥∥

β
≤ ϕ(x, y) (3:2)

for all x,y Î X and all b Î B1. If there exists a Lipschitz constant 0 <L < 1 such that

ϕ(kx, 0) ≤ kβLϕ(x, 0) (3:3)

for all x Î X, then there exists a unique additive mapping A: X ® Y such that

∥∥f (x) − A(x)
∥∥

β
≤ 1

(2k)β(1 − L)
ϕ(x, 0) (3:4)

for all x Î X. Moreover, if f (tx) is continuous in t Î ℝ for each fixed x Î X, then A is

B-linear, i.e., A(bx) = bA(x) for all x Î X and all b Î B.

Proof Letting b = 1 and y = 0 in (3.2), we get

∥∥f (kx) − kf (x)
∥∥

β
≤ 1

2β
ϕ(x, 0) (3:5)

for all x Î X. Consider the set Ω := {g | g : X ® Y,g(0) = 0} and introduce the gener-

alized metric on Ω:

d(g, h) = inf{C ∈ (0,∞)| ∥∥g(x) − h(x)
∥∥

β
≤ Cϕ(x, 0), ∀x ∈ X}. (3:6)

It is easy to show that (Ω, d) is a complete generalized metric space (see [10, Theo-

rem 2.5]). We now define a function J : Ω ® Ω by

(Jg)(x) =
1
k
g(kx), ∀g ∈ �, x ∈ X. (3:7)

Let g, h Î Ω and C Î [0, ∞] be an arbitrary constant with d (g, h) <C, by the defini-

tion of d, it follows∥∥g(x) − h(x)
∥∥

β
≤ Cϕ(x, 0), ∀x ∈ X. (3:8)

By the given hypothesis and the last inequality, one has∥∥∥∥1k g(kx) − 1
k
h(kx)

∥∥∥∥
β

≤ CLϕ(x, 0), ∀x ∈ X. (3:9)

Hence, it holds that d (Jg, Jh) <Ld(g, h). It follows from (3.5) that d(Jf, f)<1/(2k)b < ∞.

Therefore, by Theorem 2.1, J has a unique fixed point A : X ® Y in the set Ω* = {g Î
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Ω | d (f, g) < ∞} such that

A(x) := lim
n→∞(Jnf )(x) = lim

n→∞
1
kn

f (knx) (3:10)

and A(kx) = kA(x) for all x Î X :Also,

d(A, f ) ≤ 1
1 − L

d(Jf , f ) ≤ 1

(2k)β(1 − L)
. (3:11)

This means that (3.4) holds for all x Î X.

Now we show that A is additive. By (3.1), (3.2), and (3.10), we have

∥∥D1A(x, y)
∥∥

β
= lim

n→∞

∥∥∥∥ 1
kn

D1f (knx, kny)

∥∥∥∥
β

= lim
n→∞

1
knβ

∥∥D1f (knx, kny)
∥∥

β

≤ lim
n→∞

1
knβ

ϕ(knx, kny) = 0

that is,

A(kx + y) + A(kx − y) = A(x + y) + A(x − y) + (k − 1)[(k + 2)A(x) + kA(−x)]

for all x, y Î X. Therefore by Lemma 2.2, we get that the mapping A is additive.

Moreover, if f (tx) is continuous in t Î ℝ for each fixed x Î X, then by the same rea-

soning as in the proof of [4]A is ℝ-linear. Letting y = 0 in (3.2), we get∥∥2f (kbx) − 2kbf (x)
∥∥

β
≤ ϕ(x, 0) (3:12)

for all x Î X and all b Î B1. By definition of A, (3.1) and (3.12), we obtain

∥∥2A(kbx) − 2kbA(x)
∥∥

β
= lim

n→∞
1
knβ

∥∥2f (kn+1bx) − 2kbf (knx)
∥∥

β

≤ lim
n→∞

1
knβ

ϕ(knx, 0) = 0

for all x Î X and all b Î B1. So A (kbx) - kbA (x) = 0 for all x Î X and all b Î B1.

Since A is additive, we get A(bx) = bA(x) for all x Î X and all b Î B1 ∪ {0}. Now, let a

Î B\{0}. Since A is ℝ-linear,

A(bx) = A
(

|b| · b
|b| x

)
= |b|A

(
b
|b| x

)
= |b| · b

|b|A(x) = bA(x)

for all x Î X and all b Î B. This proves that A is B-linear.

Corollary 3.2 Let 0 <r < 1 and δ, θ be non-negative real numbers, and let f : X ® Y

be an odd mapping for which∥∥Dbf (x, y)
∥∥

β
≤ δ + θ(‖x‖rβ +

∥∥y∥∥r
β
) (3:13)

for all x, y Î X and b Î B1. Then there exists a unique additive mapping A : X ® Y

such that

||f (x) − A(x)||β ≤ 1
2β(kβ − kβr)

δ +
1

2β(kβ − kβr)
θ ||x||rβ
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for all x Î X. Moreover, if f(tx) is continuous in t Î ℝ for each fixed x Î X, then A is

B-linear.

Proof The proof follows from Theorem 3.1 by taking ϕ(x, y) = δ + θ
(
‖x‖rβ +

∥∥y∥∥r
β

)
for

all x, y Î X. We can choose L = kb(r-1) to get the desired result.

The Hyers-Ulam stability for the case of r = 1 was excluded in Corollary 3.2. In fact,

the functional Equation (1.2) is not stable for r = 1 in (3.13) as we shall see in the fol-

lowing example, which is a modification of the example of Gajda [41] for the additive

functional inequality (see also [20]).

Example 3.3 Let j : ℂ® ℂ be defined by

φ(x) =
{
x, for |x| < 1,
1, for |x| ≥ 1.

Consider the function f : ℂ® ℂ be defined by

f (x) =
∞∑
m=0

α−mφ(αmx)

for all x Î ℂ, where a >k. Let

Dμf (x, y) := f (kμx+μy)+f (kμx−μy)−μf (x+y)−μf (x−y)−(k−1)μ[(k+2)f (x)+kf (−x)]

for all x, y Î ℂ and μ ∈ T := {λ ∈ C| |λ| = 1}. Then f satisfies the functional inequality

∣∣Dμf (x, y)
∣∣ ≤ 2α2(k2 + 1)

α − 1
(|x| + ∣∣y∣∣) (3:14)

for all x, y Î ℂ, but there do not exist an additive function A : ℂ ® ℂ and a constant

d > 0 such that |f (x) - A(x)| <d |x| for all x Î ℂ.

It is clear that f is bounded by α
α−1 on ℂ. If |x| + |y| = 0 or |x| + ∣∣y∣∣ ≥ 1

α
, then

∣∣Dμf (x, y)
∣∣ ≤ 2α2(k2 + 1)

α − 1

(|x| + ∣∣y∣∣) .
Now suppose that 0 < |x| + ∣∣y∣∣ < 1

α
. Then there exists an integer n ≥ 1 such that

1
αn+1

≤ |x| + ∣∣y∣∣ <
1
αn

. (3:15)

Hence

αm
∣∣kμx ± μy

∣∣ < 1, αm
∣∣x ± y

∣∣ < 1, αm |x| < 1

for all m = 0,1,..., n - 1. From the definition of f and (3.15), we obtain that

∣∣Dμf (x, y)
∣∣ =

∣∣∣∣∣
∞∑
m=n

α−mφ(αm(kμx + μy)) +
∞∑
m=n

α−mφ(αm(kμx − μy))

− μ

∞∑
m=n

α−mφ(αm(x + y)) − μ

∞∑
m=n

α−mφ(αm(x − y))

−(k − 1)μ

[
(k + 2)

∞∑
m=n

α−mφ(αmx) + k
∞∑
m=n

α−mφ(−αmx)

]∣∣∣∣∣
≤ 2α2(k2 + 1)

α − 1
(|x| + ∣∣y∣∣)
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Therefore, f satisfies (3.14). Now, we claim that the functional Equation (1.2) is not

stable for r = 1 in Corollary 3.2. Suppose on the contrary that there exist an additive

function A : ℂ ® ℂ and a constant d > 0 such that |f(x) - A(x)| ≤ d |x| for all x Î ℂ.

Then there exists a constant c Î ℂ such that A(x) = cx for all rational numbers x. So

we obtain that∣∣f (x)∣∣ ≤ (d + |c|) |x| (3:16)

for all rational numbers x. Let s Î N with s + 1 >d + |c|. If x is a rational number in

(0, a-s), then am x Î (0,1) for all m = 0,1,..., s, and for this x we get

f (x) =
∞∑
m=0

φ(αmx)
αm

≥
s∑

m=0

φ(αmx)
αm

= (s + 1)x > (d + |c|) x,

which contradicts (3.16).

Corollary 3.4 Let t, s > 0 such that l := t + s < 1 and δ, θ be non-negative real num-

bers, and let f :X ® Y be an odd mapping for which

∥∥Dbf (x, y)
∥∥

β
≤ δ + θ

[
‖x‖tβ

∥∥y∥∥s
β
+

(
‖x‖λ

β +
∥∥y∥∥λ

β

)]
for all x, y Î X and b Î B1. Then there exists a unique additive mapping A : X ® Y

such that

||f (x) − A(x)||β ≤ 1
2β(kβ − kβr)

δ +
1

2β(kβ − kβr)
θ ||x||rβ

for all x Î X. Moreover, if f(tx) is continuous in t Î ℝ for each fixed x Î X, then A is

B-linear.

Proof The proof follows from Theorem 3.1 by taking

ϕ(x, y) = δ + θ
[
‖x‖rβ

∥∥y∥∥s
β
+

(
‖x‖λ

β +
∥∥y∥∥λ

β

)]
for all x, y Î X. We can choose L = kb(l-1)

to get the desired result.

The Hyers-Ulam stability for the case of l = 1 was excluded in Corollary 3.4. Similar

to Theorem 3.1, one can obtain the following theorem.

Theorem 3.5 Let � : X2 ® [0, ∞) be a function such that

lim
n→∞ knβϕ

( x
kn

,
y
kn

)
= 0

for all x,y Î X. Let f : X ® Y be an odd mapping such that∥∥Dbf (x, y)
∥∥

β
≤ ϕ(x, y)

for all x,y Î X and all b Î B1. If there exists a Lipschitz constant 0 <L < 1 such that �(x,

0) ≤ k-b L � (kx, 0) for all x Î X, then there exists a unique additive mapping A: X ® Y

such that

∥∥f (x) − A(x)
∥∥

β
≤ L

(2k)β(1 − L)
ϕ(x, 0)

for all x Î X. Moreover, if f(tx) is continuous in t Î ℝ for each fixed x Î X, then A is

B-linear.

As applications for Theorems 3.5, one can get the following Corollaries 3.6 and 3.7.
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Corollary 3.6 Let r > 1 and θ be a non-negative real number, and let f : X ® Y be

an odd mapping for which

∥∥Dbf (x, y)
∥∥

β
≤ θ

(
‖x‖rβ +

∥∥y∥∥r
β

)
for all x,y Î X and b Î B1. Then there exists a unique additive mapping A : X ® Y

such that

∥∥f (x) − A(x)
∥∥

β
≤ 1

2β(kβr − kβ)
θ ‖x‖rβ

for all x Î X. Moreover, if f(tx) is continuous in t Î ℝ for each fixed x Î X, then A is

B-linear.

Corollary 3.7 Let t, s > 0 such that l := t + s > 1 and θ be a non-negative real num-

ber, and let f :X ® Y be an odd mapping for which

∥∥Dbf (x, y)
∥∥

β
≤ θ

[
‖x‖tβ

∥∥y∥∥s
β
+

(
‖x‖λ

β +
∥∥y∥∥λ

β

)]
for all x,y Î X and b Î B1. Then there exists a unique additive mapping A : X ® Y

such that

∥∥f (x) − A(x)
∥∥

β
≤ 1

2β(kβλ − kβ)
θ ‖x‖λ

β

for all x Î X. Moreover, if f(tx) is continuous in t Î ℝ for each fixed x Î X, then A is

B-linear.

Theorem 3.8 Let � : X2 ® [0, ∞) be a function such that

lim
n→∞

1
k2nβ

ϕ(knx, kny) = 0 (3:17)

for all x,y Î X. Let f : X ® Y be an even mapping such that∥∥∥D̃bf (x, y)
∥∥∥

β
≤ ϕ(x, y) (3:18)

for all x,y Î X and all b Î B1. If there exists a Lipschitz constant 0 <L < 1 such that

ϕ(kx, 0) ≤ k2βLϕ(x, 0) (3:19)

for all x Î X, then there exists a unique quadratic mapping Q:X ® Y such that

∥∥f (x) − Q(x)
∥∥

β
≤ 1

(2k2)β(1 − L)
ϕ(x, 0) (3:20)

for all x Î X. Moreover, if f (tx) is continuous in t Î ℝ for each fixed x Î X, then Q is

B-quadratic, i.e., Q(bx) = b2Q(x) for all x Î X and all b Î B.

Proof Letting b = 1 and y = 0 in (3.18), we get

∥∥f (kx) − k2f (x)
∥∥

β
≤ 1

2β
ϕ(x, 0) (3:21)

for all x Î X. Consider the set Ω := {g | g : X ® Y, g(0) = 0} and introduce the gen-

eralized metric on Ω:
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d(g, h) = inf
{
C ∈ (0,∞)|∥∥g(x) − h(x)

∥∥
β

≤ Cϕ(x, 0), ∀x ∈ X.
}

It is easy to show that (Ω, d) is a complete generalized metric space. We now define

a function J : Ω ® Ω by

(Jg)(x) =
1
k2

g(kx), ∀g ∈ �, x ∈ X.

Let g, h Î Ω and C Î [0, ∞] be an arbitrary constant with d(g, h) <C, by the defini-

tion of d, it follows∥∥g(x) − h(x)
∥∥

β
≤ Cϕ(x, 0), ∀x ∈ X.

By the given hypothesis and the last inequality, one has∥∥∥∥ 1
k2

g(kx) − 1
k2

h(kx)

∥∥∥∥
β

≤ CLϕ(x, 0), ∀x ∈ X.

Hence, it holds that d(Jg, Jh) ≤ Ld(g, h). It follows from (3.21) that d(Jf, f) ≤ 1/(2k2)ß < ∞.

Therefore, by Theorem 2.1, J has a unique fixed point Q : X ® Y in the set Ω* = {g Î Ω |

d(f, g) < ∞} such that

Q(x) := lim
n→∞(Jnf )(x) = lim

n→∞
1
k2n

f (knx) (3:22)

and Q(kx) = k2Q(x) for all x Î X. Also,

d(Q, f ) ≤ 1
1 − L

d(Jf , f ) ≤ 1

(2k2)β(1 − L)
.

This means that (3.20) holds for all x Î X.

The mapping Q is quadratic because as follows it satisfies in Equation (1.2):

∥∥∥D̃1Q(x, y)
∥∥∥

β
= lim

n→∞

∥∥∥∥ 1
k2n

D̃1f (knx, kny)

∥∥∥∥
β

= lim
n→∞

1
k2nβ

∥∥∥D̃1f (knx, kny)
∥∥∥

β

≤ lim
n→∞

1
k2nβ

ϕ(knx, kny) = 0,

for all x,y Î X, therefore by Lemma 2.2, it is quadratic.

Moreover, if f(tx) is continuous in t Î ℝ for each fixed x Î X, then by the same rea-

soning as in the proof of [4]Q is ℝ-quadratic. Letting y = 0 in (3.18), we get∥∥2f (kbx) − 2k2b2f (x)
∥∥

β
≤ ϕ(x, 0) (3:23)

for all x Î X and all b Î B1. By definition of Q, (3.17) and (3.23), we obtain

∥∥2Q(kbx) − 2k2b2Q(x)
∥∥

β
= lim

n→∞
1

k2nβ
∥∥2f (kn+1bx) − 2k2b2f (knx)

∥∥
β

≤ lim
n→∞

1
k2nβ

ϕ(knx, 0) = 0

for all x Î X and all b Î B1. So Q (kbx) - k2b2Q(x) = 0 for all x Î X and all b Î B1.

Since Q(kx) = k2Q(x), we get Q(bx) = b2Q(x) for all x Î X and all b Î B1 ∪ {0}. Now,
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let b Î B\{0}. Since Q is ℝ-quadratic,

Q(bx) = Q
(

|b| · 1
|b|x

)
= |b|2Q

(
b
|b| x

)
= |b|2 ·

(
b
|b|

)2

Q(x) = b2Q(x)

for all x Î X and all b Î B. This proves that Q is B-quadratic.

Corollary 3.9 Let 0 <r < 2 and δ, θ be non-negative real numbers, and let f : X ® Y

be an even mapping for which∥∥∥D̃bf (x, y)
∥∥∥

β
≤ δ + θ

(
‖x‖rβ +

∥∥y∥∥r
β

)

for all x,y Î X and be B1. Then there exists a unique quadratic mapping Q:X ® Y

such that

∥∥f (x) − Q(x)
∥∥

β
≤ 1

2β(k2β − kβr)
δ +

1
2β(k2β − kβr)

θ ‖x‖rβ

for all x Î X. Moreover, if f (tx) is continuous in t Î ℝ for each fixed x Î X, then Q is

B-quadratic.

The following example shows that the Hyers-Ulam stability for the case of r = 2 was

excluded in Corollary 3.9.

Example 3.10 Let j : ℂ ® ℂ be defined by

φ(x) =
{
x2, for |x| < 1,
1, for |x| ≥ 1.

Consider the function f : ℂ ® ℂ be defined by

f (x) =
∞∑
m=0

α−2mφ(αmx)

for all x Î ℂ, where a >k. Let

D̃μf (x, y) := f (kμx + μy) + f (kμx − μy) − μ2f (x + y) − μ2f (x − y)

− (k − 1)μ2 [
(k + 2)f (x) + kf (−x)

]
for all x, y Î ℂ and μ ∈ T := {λ ∈ C| |λ| = 1}. Then f satisfies the functional inequality

∣∣∣D̃μf (x, y)
∣∣∣ ≤ 2(k2 + 1)α4

α2 − 1

(
|x|2 + ∣∣y∣∣2) (3:24)

for all x, y Î ℂ, but there do not exist a quadratic function Q : ℂ ® ℂ and a con-

stant d > 0 such that |f(x) - Q(x)| ≤ d |x|2 for all x Î ℂ.

It is clear that f is bounded by α2

α2−1
on ℂ. If |x|2 + |y|2 = 0 or |x|2 + ∣∣y∣∣2 ≥ 1

α2, then

∣∣∣D̃μf (x, y)
∣∣∣ ≤ 2α4(k2 + 1)

α2 − 1

(
|x|2 + ∣∣y∣∣2) .

Now suppose that 0 < |x|2 + ∣∣y∣∣2 < 1
α2. Then there exists an integer n ≥ 1 such that

1

α2(n+2)
≤ |x|2 + ∣∣y∣∣2 <

1

α2(n+1)
. (3:25)
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Hence

αm
∣∣kμx ± μy

∣∣ < 1, αm
∣∣x ± y

∣∣ < 1, αm |x| < 1

for all m = 0,1,..., n - 1. From the definition of f and the inequality (3.25), we obtain

that

∣∣∣D̃μf (x, y)
∣∣∣ =

∣∣∣∣∣
∞∑
m=n

α−2mφ(αm(kμx + μy)) +
∞∑
m=n

α−2mφ(αm(kμx − μy))

− μ2
∞∑
m=n

α−2mφ(αm(x + y)) − μ2
∞∑
m=n

α−2mφ(αm(x − y))

−(k − 1)μ2

[
(k + 2)

∞∑
m=n

α−2mφ(αmx) + k
∞∑
m=n

α−2mφ(−αmx)

]∣∣∣∣∣
≤ 2(k2 + 1)α2(1−n)

α2 − 1
≤ 2(k2 + 1)α4

α2 − 1

(
|x|2 + ∣∣y∣∣2)

Therefore, f satisfies (3.24). Now, we claim that the functional Equation (1.2) is not

stable for r = 2 in Corollary 3.9. Suppose on the contrary that there exist a quadratic

function Q : ℂ ® ℂ and a constant d > 0 such that |f(x) - Q(x)| ≤ d |x|2 for all x Î ℂ.

Then there exists a constant c Î ℂ such that Q(x) = cx2 for all rational numbers x. So

we obtain that∣∣f (x)∣∣ ≤ (d + |c|) |x|2 (3:26)

for all rational numbers x. Let s Î N with s + 1 >d + |c|. If x is a rational number in

(0, a-s), then am x Î (0,1) for all m = 0,1,..., s, and for this x we get

f (x) =
∞∑
m=0

φ(αmx)
α2m

≥
s∑

m=0

φ(αmx)
α2m

= (s + 1)x2 > (d + |c|) x2,

which contradicts (3.26).

Similar to Corollary 3.9, one can obtain the following corollary.

Corollary 3.11 Lett, s > 0 such that l := t + s < 2 and δ, θ be non-negative real num-

bers, and let f :X ® Y be an even mapping for which∥∥∥D̃bf (x, y)
∥∥∥

β
≤ δ + θ

[
‖x‖tβ

∥∥y∥∥s
β
+

(
‖x‖λ

β +
∥∥y∥∥λ

β

)]

for all x,y Î X and b Î B1. Then there exists a unique quadratic mapping Q:X ® Y

such that

∥∥f (x) − Q(x)
∥∥

β
≤ 1

2β(k2β − kβλ)
δ +

1
2β(k2β − kβλ)

θ ‖x‖λ
β

for all x Î X. Moreover, if f(tx) is continuous in t Î ℝ for each fixed x Î X, then Q is

B-quadratic.

Similar to Theorem 3.8, one can obtain the following theorem.

Theorem 3.12 Let � : X2 ® [0, ∞) be a function such that

lim
n→∞ k2nβϕ

( x
kn

,
y
kn

)
= 0
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for all x, y Î X. Let f : X ® Y be an even mapping such that∥∥∥D̃bf (x, y)
∥∥∥

β
≤ ϕ(x, y)

for all x, y Î X and all b Î B1. If there exists a Lipschitz constant 0 <L < 1 such that

�(x, 0) ≤ k-2bL �(kx, 0) for all x Î X, then there exists a unique quadratic mapping Q:

X ® Y such that

∥∥f (x) − Q(x)
∥∥

β
≤ L

(2k2)β(1 − L)
ϕ(x, 0)

for all x Î X. Moreover, if f(tx) is continuous in t Î ℝ for each fixed x Î X, then Q is

B-quadratic.

We now prove our main theorem in this section.

Theorem 3.13 Let � : X2 ® [0, ∞) be a function such that

lim
n→∞

1
knβ

ϕ(knx, kny) = 0 (3:27)

for all x, y Î X. Let f : X ® Y be a mapping such that

∥∥Dbf (x, y)
∥∥

β
≤ ϕ(x, y) and

∥∥∥D̃bf (x, y)
∥∥∥

β
≤ ϕ(x, y) (3:28)

for all x, y Î X and all b Î B1. If there exists a Lipschitz constant 0 <L < 1 such that

ϕ(kx, 0) ≤ kβLϕ(x, 0) (3:29)

for all x Î X, then there exist a unique additive mapping A: X ® Y and a unique

quadratic mapping Q:X ® Y such that

∥∥f (x) − A(x) − Q(x)
∥∥

β
≤ 21−2β

kβ(1 − L)

[
ϕ(x, 0) + ϕ(−x, 0)

]
(3:30)

for all x Î X. Moreover, if f(tx) is continuous in t Î ℝ for each fixed x Î X, then A is

B-linear and Q is B-quadratic.

Proof If we decompose f into the even and the odd parts by putting

fe(x) =
f (x) + f (−x)

2
and fo(x) =

f (x) − f (−x)
2

(3:31)

for all x Î X, then f(x) = fe(x) + fo(x). Let ψ(x,y) = [�(x,y) + �(-x, -y)]/2b , then by

(3.27)-(3.29) and (3.31) we have

lim
n→∞

1
knβ

ψ
(
knx, kny

)
= 0, ψ(kx, 0) ≤ kβLψ(x, 0),∥∥Dbfo(x, y)

∥∥
β

≤ ψ(x, y),
∥∥∥D̃bfe(x, y)

∥∥∥
β

≤ ψ(x, y).

Hence by Theorems 3.1 and 3.8, there exist a unique additive mapping A : X ® Y

and a unique quadratic mapping Q : X ® Y such that

∥∥fo(x) − A(x)
∥∥

β
≤ 1

(2k)β(1 − L)
ψ(x, 0),

∥∥fe(x) − Q(x)
∥∥

β
≤ 1

(2k2)β(1 − L)
ψ(x, 0)
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for all x Î X. Therefore∥∥f (x) − A(x) − Q(x)
∥∥

β
≤ ∥∥fo(x) − A(x)

∥∥
β
+

∥∥fe(x) − Q(x)
∥∥

β

≤ 1

(2k)β(1 − L)
ψ(x, 0) +

1

(2k2)β(1 − L)
ψ(x, 0)

≤ 2

(2k)β(1 − L)
ψ(x, 0)

=
21−2β

kβ(1 − L)

[
ϕ(x, 0) + ϕ(−x, 0)

]
for all x Î X.

Corollary 3.14 Let 0 <r < 1 and δ, θ be non-negative real numbers, and let f : X ® Y

be a mapping for which

∥∥Dbf (x, y)
∥∥

β
≤ δ + θ

(
‖x‖rβ +

∥∥y∥∥r
β

)
and

∥∥∥D̃bf (x, y)
∥∥∥

β
≤ δ + θ

(
‖x‖rβ +

∥∥y∥∥r
β

)

for all x,y Î X and be B1. Then there exist a unique additive mapping A : X ® Y and

a unique quadratic mapping Q: X ®Y such that

∥∥f (x) − A(x) − Q(x)
∥∥

β
≤ 22(1−β)

kβ − kβr

[
δ + θ ‖x‖rβ

]
for all x Î X. Moreover, if f(tx) is continuous in t Î ℝ for each fixed x Î X, then A is

B-linear and Q is B-quadratic.

Similar to Theorem 3.13, one can obtain the following theorem.

Theorem 3.15 Let �: X2 ® [0, ∞) be a function such that

lim
n→∞ k2nβϕ

( x
kn

,
y
kn

)
= 0

for all x,y Î X. Let f : X ® Y be a mapping such that

∥∥Dbf (x, y)
∥∥

β
≤ ϕ(x, y) and

∥∥∥D̃bf (x, y)
∥∥∥

β
≤ ϕ(x, y)

for all x, y Î X and all b Î B1. If there exists a Lipschitz constant 0 <L < 1 such that

ϕ(x, 0) ≤ k−2βLϕ(kx, 0)

for all x Î X, then there exist a unique additive mapping A: X ® Y and a unique

quadratic mapping Q: X ® Y such that

∥∥f (x) − A(x) − Q(x)
∥∥

β
≤ 21−2βL

kβ(1 − L)

[
ϕ(x, 0) + ϕ(−x, 0)

]
for all x Î X. Moreover, if f(tx) is continuous in t Î ℝ for each fixed x Î X, then A is

B-linear and Q is B-quadratic.

Corollary 3.16 Let r > 2 and θ be a non-negative real number, and let f : X ® Y be

a mapping for which

∥∥Dbf (x, y)
∥∥

β
≤ θ

(
‖x‖rβ +

∥∥y∥∥r
β

)
and

∥∥∥D̃bf (x, y)
∥∥∥

β
≤ θ

(
‖x‖rβ +

∥∥y∥∥r
β

)

for all x,y Î X and b Î B1. Then there exist a unique additive mapping A : X ® Y

and a unique quadratic mapping Q:X ® Y such that
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∥∥f (x) − A(x) − Q(x)
∥∥

β
≤ 22(1−β)kβ

krβ − k2β
θ ‖x‖rβ

for all x Î X. Moreover, if f(tx) is continuous in t Î ℝ for each fixed x Î X, then A is

B-linear and Q is B-quadratic.
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